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Diameter and height are crucial morphological parameters of banana pseudo-

stems, serving as indicators of the plant’s growth status. Currently, in densely

cultivated banana plantations, there is a lack of applicable research methods for

the scalable measurement of phenotypic parameters such as diameter and

height of banana pseudo-stems. This paper introduces a handheld mobile

LiDAR and Inertial Measurement Unit (IMU)-fused laser scanning system

designed for measuring phenotypic parameters of banana pseudo-stems

within banana orchards. To address the challenges posed by dense canopy

cover in banana orchards, a distance-weighted feature extraction method is

proposed. This method, coupled with Lidar-IMU integration, constructs a three-

dimensional point cloud map of the banana plantation area. To overcome

difficulties in segmenting individual banana plants in complex environments, a

combined segmentation approach is proposed, involving Euclidean clustering,

Kmeans clustering, and threshold segmentation. A sliding window recognition

method is presented to determine the connection points between pseudo-

stems and leaves, mitigating issues caused by crown closure and heavy leaf

overlap. Experimental results in banana orchards demonstrate that, compared

with manual measurements, the mean absolute errors and relative errors for

banana pseudo-stem diameter and height are 0.2127 cm (4.06%) and 3.52 cm

(1.91%), respectively. These findings indicate that the proposedmethod is suitable

for scalable measurements of banana pseudo-stem diameter and height in

complex, obscured environments, providing a rapid and accurate inter-orchard

measurement approach for banana plantation managers.
KEYWORDS

banana pseudo-stem diameter, banana pseudo-stem height, mobile LiDAR system, 3D
point cloud, multi sensor fusion
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1 Introduction

China ranks third globally in banana production and is a

significant economic crop in southern regions, particularly in

Hainan, Guangxi, and Guangdong (Zhang et al., 2008). However,

banana cultivation practices in the country tend to be extensive,

with a lack of modern production management techniques. This

not only results in higher cultivation costs but also diminishes

the competitiveness of banana yields and quality. Adult banana

plants consist of components such as corms, pseudo-stems,

leaves, and fruit clusters. The diameter and height of the banana

plant pseudo-stem are crucial indicators for assessing plant

health and predicting banana yields- (Garcı ́a et al., 2020;

Magalhães et al., 2020). Accurately and rapidly measuring the

pseudo-stem diameter and height is of paramount importance for

evaluating banana growth and providing scientific guidance for

field management.

Currently, cameras and LiDAR are the most commonly used

devices for measuring crop phenotypic parameters (Wang et al.,

2021). Wang et al. (Wang et al., 2023) employed a stereo vision

camera to achieve rapid and non-destructive measurement of

banana plant pseudo-stem diameter through binocular

calibration, stereo rectification, and stereo matching. They utilized

a cascade classifier for sample training. Song et al. (Song et al., 2019)

proposed a 3D reconstruction algorithm using a depth camera. This

algorithm employs a particle swarm optimization algorithm for

pseudo-stem reconstruction, data fitting, and calculation of banana

pseudo-stem diameter based on depth images obtained from an

RGB-D camera. Peng et al. (Peng et al., 2022) utilized four different

depth sensors, namely, Kinect V2, PMD CamBoard pico flexx, ZED

stereo vision camera, and Velodyne 16-line LiDAR, to capture point

clouds during the banana suckering stage. They extracted

parameters such as plant height, stem diameter, and leaf area of

banana suckers. Compared with manual measurements, Kinect V2

achieved optimal point cloud reconstruction and phenotypic

parameter accuracy. Although cameras, compared with LiDAR,

are cost-effective and provide more accurate measurement data,

camera measurements in outdoor environments are influenced by

environmental conditions such as lighting and weather. This may

result in decreased image quality or the inability to obtain accurate

information. Furthermore, cameras are unable to achieve large-

scale measurement of banana pseudo-stem phenotypic parameters,

posing challenges for the scale management of orchards.

Lidar technology offers advantages over camera devices in terms

of measuring distance, accuracy, and environmental adaptability,

making it widely applied in the field of crop phenotypic

measurements (Peng et al., 2023). Miao et al. (Miao et al., 2022)

proposed a method for measuring the diameter and height of

banana pseudo-stems using ground-based terrestrial laser

scanning (TLS). Similarly, Brack et al. (Brack et al., 2020) utilized

TLS to acquire point cloud data in forests, measuring parameters

such as tree diameter at breast height (DBH) and tree height. Shen

et al (Shen et al., 2022), employing a robust deep learning

framework, utilized TLS to obtain forest point cloud data and

measured the DBH and tree height of wood in the forest. While
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TLS allows for large-scale and accurate measurement of some

phenotypic parameters of trees, dense tree canopies or other

obstructions around fruit tree trunks may hinder laser

penetration, preventing the complete measurement of the trunk

shape. Moreover, TLS devices often require the setup of scanning

stations at different positions to obtain comprehensive trunk data

(Gollob et al., 2019). This implies the need to identify suitable

station positions and conduct multiple scans, increasing the

complexity and workload of measurements. Given the complexity

of ground-based lidar, some researchers have turned to mobile laser

scanning (MLS for estimating tree morphological parameters). Su

et al. (Su et al., 2020) developed a backpack LiDAR system for

estimating phenotypic parameters such as tree diameter and height

in the forest. The results showed that the backpack lidar system

could accurately estimate tree height, comparable with TLS, without

the need for multiple receiver stations, thereby improving efficiency.

Bienert et al. (Bienert et al., 2021) used a mobile lidar platform to

reconstruct three-dimensional landscapes in large forest areas and

successfully extracted individual trees from point clouds. Čerňava

et al. (Čerňava et al., 2019) fused GNSS data with a Riegl VMX-250

lidar scanner to build globally consistent point cloud data and

estimate DBH. Yadav et al. (Yadav and Lohani, 2020) used the

StreetMapper 360 mobile lidar scanning system, fused with GNSS

data, to reconstruct urban road scenes and separate trees and their

trunks. While MLS systems can provide real-time point cloud data

of the environment, they typically require a mobile platform and

GNSS data for assistance. In environments where it is difficult for

mobile platforms to access and GNSS coverage is low, such as in

dense canopies, MLS systems may fail to provide globally consistent

point cloud data (Fan et al., 2018; Xu et al., 2019; Wu et al., 2020),

thus hindering accurate construction of point cloud maps in

the region.

In response to this situation, in recent years, laser SLAM

(Simultaneous Localization and Mapping) technology has been

widely applied to the measurement of crop phenotypic

parameters, enabling simultaneous localization and mapping in

real time within unfamiliar environments (Bailey and Durrant-

Whyte, 2006; Durrant-Whyte and Bailey, 2006). SLAM is a critical

technique that fuses perception and localization, utilizing sensors

such as cameras and LiDAR to gather environmental information.

Combined with motion estimation algorithms, SLAM generates

maps and estimates the platform′s position simultaneously. Zhou

et al. (Zhou et al., 2019) employed a VLP-16 LiDAR with the LiDAR

Odometry and Mapping (LOAM) algorithm to generate a three-

dimensional point cloud map of forest areas, fitting tree diameters at

breast height (DBH) using the RANSAC algorithm. The mean

absolute error of tree radius was 0.43 cm, with an overall relative

error of 2.27%, meeting forestry mapping requirements. Pierzchała

et al. (Pierzchała et al., 2018) utilized a graph-SLAM-based

simultaneous localization and mapping algorithm to generate

local maps of forests, evaluating the accuracy of fitting diameter at

breast height (DBH). The aforementioned approaches involve the

use of single sensors or loosely coupled methods for laser mapping,

which can lead to issues such as trajectory drift and mapping

failures in complex outdoor environments. In recent years, Lidar-
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IMU tightly coupled methods, such as the notable LIO-Mapping

(Ye et al., 2019) and LIO-SAM (Shan et al., 2020), have significantly

improved mapping accuracy and stability, providing reliable

methods for measuring crop phenotypic parameters. This study

adopts the robust LIO-SAMmapping and localization algorithm for

three-dimensional reconstruction of environmental maps.

Utilizing a handheld mobile LiDAR system in conjunction with

synchronized mapping and localization methods presents a

versatile and portable solution for mobile laser scanning. We

adopted the LIO-SAM laser SLAM algorithm as the foundational

framework for our three-dimensional map reconstruction

algorithm; this approach allows for easy deployment in various

environments, offering real-time acquisition of high-precision

three-dimensional point cloud data. In response to the need for

measuring morphological parameters of banana pseudo-stems, this

study introduces a Lidar-IMU fusion SLAM data collection

platform. Initially, the mobile LiDAR and IMU sensors are

integrated to construct a three-dimensional orchard map for

banana plantations. Addressing challenges faced by LIO-SAM in

outdoor orchard environments, where irregular shapes of branches

and leaves, as well as measurement noise, can lead to inaccurate,

incomplete, and uneven feature extraction, a distance-weighted

feature extraction method is proposed. This method enhances the

accuracy and robustness of mapping the banana plantation

environment by extracting edge and plane features effectively.

Subsequently, a segmentation process is applied using a combined

approach of filtering, Euclidean clustering, and K-means clustering

to isolate the point clouds of individual banana plants. Finally, a

sliding window method is introduced to extract essential

morphological parameters such as the diameter and height of the

banana pseudo-stems. The main contributions of this study include

(1) the development of a handheld mobile LiDAR inertial

navigation fusion collection platform applied to the measurement

of banana pseudo-stem phenotypic parameters; (2) the introduction

of a distance-weighted principal component feature extraction

method; and (3) the proposal of an automated measurement

method for calculating the diameter and height of banana

pseudo-stems.
2 Methodology

The entire banana pseudo-stem diameter and height

measurement system primarily consists of three parts, data

acquisition, point cloud data processing, and phenotypic

parameter measurement, as illustrated in Figure 1. Taking banana

plants as the research subject, we integrate data from mobile LiDAR

and inertial measurement unit (IMU) to perform three-dimensional

reconstruction of the environmental map. The acquired

environmental point cloud undergoes preprocessing, including

ground removal and cluster segmentation, to separate each

banana plant and measure its pseudo-stem diameter, height, and

other phenotypic parameters. The measured phenotypic parameters

are compared with manually obtained true values to assess the

measurement accuracy of the algorithm.
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2.1 Data acquisition

2.1.1 Collection equipment and locations
The data acquisition system is illustrated in Figure 2. The

handheld 3D scanning device used is the RoboSense RS-16 LiDAR,

coupled with the HFI-A9 nine-axis IMU by HandsFree Robotics. The

laptop employed is the Lenovo Legion Y7000(i5–6300HQ), featuring

a quad-core processor, a quad-thread central processing unit (CPU),

8 GB of DDR4 RAM, and a 512-GB SSD hard drive. The

experimental data were collected at the banana orchard of the

Teaching and Research Base of South China Agricultural

University, covering an area of approximately 30 × 30 m and

including 43 banana trees.
2.2 Data acquisition method

2.2.1 IMU odometry module
1) IMU preintegration: The measured values of angular velocity

and acceleration output by the IMU sensor are defined as follows in

Equations 1 and 2:

~w = wb + bg + ng   (1)

~ab = qbw(a
w + gw ) + ba + na (2)

The variable b represents the random walk bias; n denotes

random white noise; qbw represents the rotation matrix from the

world coordinate system to the IMU body coordinate system, and g

is the gravity vector in the world coordinate system. We collect

measurements within the time interval[i, j]. Based on the original

measurement data collected within the time interval[i, j], we can

infer the robot’s motion using Equations 3, 4 and 5.

Rj = Ri ·
Yj−1
k=i

Exp ~w − bgk − hgd
k

� �
Dt

� �
(3)

vj = vi + gDtij +o
j−1

k=i

Rk · efk − bak − had
k

� �
· Dt (4)

Pj = Pi +o
j−1

k=i

Vk · Dt +
1
2
g · Dt2 +

1
2
Rk · efk − bak − had

k

� �
Dt2

� �
(5)

In the above, Rj 、Vj, and Pj represent the azimuth, velocity,

and position at time j, respectively, estimated based on the state at

time i. We employ the method outlined in the literature Forster

et al. (2016) to compute the relative motion between two instants,

denoted as SR, SV, and SP, and integrate these values into the

state estimation.

2) State estimation: The transformation of the inertial

measurement unit (IMU) states at time i and time j is defined as

x
bj
bi
, and the residual during the transformation is represented by dx

as shown in Equations 6 and 7.

x
bj
bi
= pij, v

i
j , q

i
j, ba, bg , g

k
h i

(6)
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dx = dp, dv , dq , db, da, dg
� �

(7)

In the equations, xbi represents the state of the IMU in the

body coordinate system at time i; pij and qij denote the translation

and rotation of the IMU from time i to j; ba and bg represent

accelerometer and gyroscope biases; gk represents the gravity

vector. The continuous-time motion and noise transfer for the

IMU are described in Equations 8 and 9, respectively. This paper

employs the iterative Kalman filtering method proposed by Zheng

et al. (2018) to propagate errors and obtain range information.

Equations 10–12 represent its error propagation and update

model.
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xj = Fj−1xj−1 + Gj−1mj−1 (8)

dj = Fj−1d j − 1 + Gj−1n (9)

In the equations, xbi represents the state of the Inertial

Measurement Unit (IMU) in the body coordinate system at time

i; pij and q
i
j denote the translation and rotation of the IMU from time

i to j; ba and bg represent accelerometer and gyroscope biases; and

gk represents the gravity vector. The continuous-time motion and

noise transfer for the IMU are described in Equations 8 and 9. This

paper employs the iterative Kalman filtering method proposed by

Zheng et al. (Zheng et al., 2018) to propagate errors and obtain
FIGURE 1

System overview.
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range information.

Kj = Pjjj−1H
T
j HjPjjj−1H

T
j + JjMiJ

T
j

� 	−1
(10)

dxj = dxj−1 + Ki,j Hi,jdxj−1 − f (x
bj
bi
⊕ dx)

� �
(11)

Pjjj−1 = Fj−1Pj−1jj−1F
T
j−1 + Qj−1 (12)

After completing the iteration, obtain the optimal estimate of

the current state, and update the covariance matrix Pjjj using

Equation 13. Then, initiate the next iteration.

Pjjj = (I − KjHjPjji) (13)
2.2.2 Feature extraction module
1) Point cloud projection and distortion correction: Taking the

example of the laser radar in this paper, operating at a frequency of

10 Hz with a scanning period of approximately 0.1 s. Within one

scanning period, points in the point cloud are not acquired at the

same moment due to the motion of the laser radar with the carrier.

In other words, the coordinate systems of different laser points in

the same frame are inconsistent. Therefore, distortion correction is

necessary for the point cloud. For points within the time span [t, t

+0.1], the initial pose of the robot has been obtained in Section 2.2.1.

This pose is considered as the initial pose at time t. However, the

IMU outputs data at a frequency of 300 Hz for angular velocity and
Frontiers in Plant Science 05
acceleration. To better fuse data of two different frequencies, we

employ a linear interpolation method as shown in Equation 14 to

interpolate the 10-Hz lidar data onto the time steps of the 300-Hz

IMU pose data, facilitating alignment with the pose data obtained

from IMU preintegration.

Pd=
Dℜ slerp(q,tk

t}k
q
⌣
, s)


 �
Pd + stkt0k

p
⌣

(14)

where s = ts
t,−
k
tk
; slerp(q1, q2, s) is the spherical linear interpolation

operation on quaternions (Dam et al., 1998).

2) Distance-weighted feature extraction method: When a frame

of LiDAR point cloud data is received, we project the point cloud

obtained from LiDAR into a distance image (image resolution of

16 × 1,800) for the extraction of point cloud features. In contrast to

the method proposed by Shan et al. (2020), which relies on

roughness for feature extraction, we adopt a different approach.

For a given frame of LiDAR point cloud P, where each point pi =

 ½xi, yizi�T , we identify m points in its left and right neighborhoods,

denoted as ½pi−m,… :, pi−1� and ½pi+1,… :, pi+m�, respectively. We

then compute the centroid coordinates Pmean of the frame’s point

cloud using Equation 15 and the covariance matrix C for each point

as shown in Equation 16.
FIGURE 2

Data collection framework.
TABLE 1 Segmentation success rate under different parameters.

Number Parameter Accuracy

1 T=0.4m 37.2%

2 T=0.5m 79.1%

3 T=0.6m 95.3%

4 T=0.65m 90.7%

5 T=0.7m 74.4%

6 T=0.8m 48.8%

7 T=1.0m failed
TABLE 2 Comparison of the accuracy of the proposed method with
other studies.

Parameters Number RMSE MAPE

Pseudo-
stem diameter

1
2
3

2.70 mm 4.06
mm
3.80 mm

1.40% 1.40%
1.30%

4 3.90 mm 1.04%

5 2.13 mm 4.06%

Pseudo-
stem height

6
7

4.50 cm
20.14 cm

6.32%
5.11%

8 27.90 cm 9.40%

9 3.52 cm 1.91%
Number 1 and 6 contributed by Wang et al. (2022), numbers 2 contributed by Song (2019),
numbers 3, 4, 7, and 8 contributed by Miao (2022), and numbers 5 and 9 contributed by
this study.
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Pmean =
1

2m + 1o
i+m
K=i−mPK (15)

C =
1
2mo

m

i=1
Wjmean ∗ (Pj − Pmean)

T (Pj − Pmean)
� 	

(16)

where Wjmean represents the weight, determined by calculating

the distance from the current point to the new centroid coordinates.

M is a 3 × 3 matrix, and performing the eigenvalue decomposition

on the covariance matrix C yields three eigenvalues l1, l2, and l3
(l1 >  l2 >  l3). Define Fe

i and Fp
i as the line feature points and

plane points at time i, respectively. The features of the point cloud

are extracted using Equation 17.

l = l1 + l2 (17)

If the l value is less than the threshold Et , then the point is

classified as a linear feature point. If the l value is greater than the

threshold Pt , then it is classified as a planar point. For all the

features extracted at time i, they form a LiDAR frame Fi, where Fi =

{Fe
i , F

p
i }.
2.2.3 Mapping module
To improve the accuracy of the composition, we employ a scan

matching method to find the optimal pose of the current laser frame

to the already constructed map. We scan match the newly acquired

laser frame Fe
i , F

p
i with Mi. Various scan matching methods can be

utilized (Besl and McKay, 1992; Segal et al., 2009; Zhang and Singh,

2017), and we choose the method proposed in Zhang and Singh

(2017) due to its computational efficiency and robustness in

challenging environments. Using the pose transformation matrix

Ti estimated in Section 2.11, we transform Fe
i , F

p
i from the local

coordinate system to the world coordinate system, obtaining Fwe
i ,

Fwp
i . We then find corresponding matches inMe

i andMp
i , and upon

successful matching, insert them into the map. The distance

between features and their corresponding edges or planar patches

can be calculated using the Equations 18 and 19.

dek =
pei+1,k − pei,u
� 	� pei+1,k − pei,v

� 	�� ��
pei,u − pei,v
�� �� (18)

dpk =

ppi+1,k − ppi,u

ppi,u − ppi,v
� 	� ppi,u − ppi,w

� 	
�����

�����
ppi,u − ppi,v
� 	� ppi,u − ppi,w

� 	�� �� (19)

Here, k, u, v, and w are the feature indices corresponding to the

feature set. For the line feature set Fwe
i+1 with pei+1,k, we calculate its

straight-line distance dek to the two nearest features pei,u, p
e
i,v in

the local map line feature set Me
i . For the plane feature set Fwp

i+1

with ppi+1,k, we calculate its plane distance dpk to the nearest features

ppi,u, p
p
i,v , and ppi,w in the local map plane feature set Mp

i . By

minimizing the distances dek and dpk, we can obtain the optimal

position of the new feature point in the map. This establishes a least

squares problem as formulated in Equation 20, and the Gauss–

Newton method is used to solve this nonlinear least squares

equation.
Frontiers in Plant Science 06
min 

Ti+1

= o
pe
i+1,k

∈F≤we
i+1

dek + o
ppi+1,k∈Fwp

i+1

dpk

8<:
9=; (20)
2.3 Banana Grove point cloud
data processing

Utilizing CloudCompare software as a three-dimensional point

cloud data processing tool, we perform basic preprocessing on the

point cloud obtained after mapping. Using Visual Studio 2015 as

the platform, with the installation of Point Cloud Library 1.8.0 (PCL

1.8.0) and CMake 4.1.2, we implement automated and rapid

measurement of banana pseudo-stem diameter, height, and other

phenotypic parameters through C++ programming. The three-

dimensional point cloud data processing consists of three main

parts: data preprocessing, point cloud segmentation, and pseudo-

stem phenotypic parameter measurement. The overall framework

of point cloud data processing is illustrated in Figure 3.

2.3.1 Point cloud preprocessing
The data preprocessing process includes several steps: target

area segmentation, point cloud filtering, surface fitting, elevation

normalization, and plane segmentation. The point cloud data

collected in the experiment are read, and the target area is

segmented using CloudCompare software. The generated point

cloud map typically contains some noise points. To address this,

statistical filtering in CloudCompare software is employed to

remove noise points, preventing its impact on the measurement

parameters. Fruit trees and the ground are not separated. This can

affect subsequent clustering. Considering the unevenness of the

experimental environment, especially the rough terrain, this study

initially applies the Cloth Simulation Filter (CSF) algorithm (Zhang

et al., 2016) to fit the mesh of the ground point cloud. The distance

from each point in the original point cloud to the ground mesh is

calculated, and elevation normalization is performed in the Z-axis

direction, establishing a uniform lowest point for subsequent tree

trunk height calculations. After normalization, the ground is fitted

into a plane. The Random Sample Consensus (RANSAC) plane

segmentation algorithm (Schnabel et al., 2007) is then employed to

segment the ground point cloud data.

2.3.2 Banana tree point cloud segmentation
To facilitate the rapid calculation of banana pseudo-stem

diameter and height, an automated method is developed based on

C++. This method includes operations such as extracting high

points from the point cloud, performing Euclidean clustering, K-

means clustering, and statistical filtering, as outlined in

Algorithm 1. This algorithm is designed for the segmentation of

banana tree point clouds.
Input: Pori: A pre-processed point cloud; Te:

Euclidean clustering distance threshold; T:

Width threshold;
frontiersin.org
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Fron
Output: Ps: A set of single banana point cloud;

1 Initialization: Ps ← f; n=1;

2 Extract point cloud Pf of plane [1.0, 1.2]m from Pori;

3 Statistically filtered Pf;

4 Euclidean clustering Pf generated Pfe;

5 for i ← 1 to size(P _fe) do

6 Initialization K← 0;

7 K = (xmax-xmin)+(ymax-ymin);

8 if K>T then

9 Statistically filtered the i Pfe;

10 Save the i clustered point cloud Pfe;

11 Calculate centroid using Centroid

calculation formula;

12 Save (K, centroid) as an array;

13 end

14 end

15 Input (K,centroid) and Pfe;

16 Kmeans clustering;

17 Save cluster point cloud Pfek;
Algorithm 1. Segmentation method of point cloud.

After removing the ground point cloud, the point cloud of

banana plants in the experimental area is not separated individually

and needs to undergo clustering segmentation. Common traditional

point cloud clustering segmentation algorithms include region

growing segmentation (Nurunnabi et al., 2012), minimum cut-

based segmentation (Golovinskiy and Funkhouser, 2009), normal

difference-based segmentation (Ioannou et al., 2012), super-voxel-

based segmentation (Papon et al., 2013), progressive morphological

filtering segmentation (Zhang et al., 2003), Euclidean clustering

extraction algorithm (Sun and Salvaggio, 2013), density-based
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spatial clustering of applications of noise (DBSCAN), and K-

means clustering algorithm (MacQueen, 1967). Considering the

spatial distribution characteristics of banana plants in the plantation

and the clustering effects, parameter adjustments, and time

consumption of other algorithms, this study ultimately employed

a combination of the euclidean clustering and threshold

segmentation and the K-means clustering algorithm method to

identify banana pseudo-stem point clouds. However, the K-means

algorithm is significantly influenced by the number of categories (K)

and the starting points of clustering, so these two parameters should

be determined first.
2.4 Calculation of banana pseudo-stem
phenotypic parameters

2.4.1 Calculation of banana pseudo-
stem diameter

The measurement of the diameter of a banana pseudo-stem

involves two parts: the extraction of a single pseudo-stem’s point

cloud at a fixed height and the calculation of the pseudo-stem’s

diameter. In banana pseudo-stem diameter measurement, positions

1 m above the ground are typically extracted for measurement

(Miao et al., 2022). Considering the growth conditions of banana

plants in the experimental area and the influence of ground weeds

and leaves, this study extracts point clouds in the range of 1.0 m–1.2

m above the ground for calculating the pseudo-stem diameter. In

the previous section, the segmentation extraction and filtering of a

single banana pseudo-stem point cloud were completed, as shown

in Algorithm 1. For the measurement of banana pseudo-stem

diameter, different methods exhibit varying levels of robustness in

their measurement results. Hence, we compared four different circle
FIGURE 3

Point cloud data processing framework.
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fitting methods for estimating the size of banana pseudo-stems:

Least Squares Circle Fitting (Chernov and Lesort, 2005), Hough

Transform Circle Fitting (Rabbani and Van Den Heuvel, 2005),

Robust Least Trimmed Squares Method (Nurunnabi et al., 2017),

and RANSAC Circle Fitting (Kuželka et al., 2020). Least Squares

Circle Fitting is a classical approach that minimizes the sum of

squared distances between data points and the fitted circle. While

computationally simple, its accuracy may be compromised when

dealing with noisy or outlier-prone data. Originally designed for

detecting circular shapes in images, Hough Transform Circle Fitting

has been adapted for two-dimensional point cloud circle fitting. It

detects and fits circular objects in point cloud data, but its

performance can be sensitive to preprocessing and parameter

selection, potentially leading to computational overhead and

unstable results. Robust Least Trimmed Squares Method is a

variant of Least Squares Circle Fitting that enhances robustness

by removing outliers with significant influence on the fitting result.

This method is suitable for scenarios with noise or outliers,

providing a more robust circle fitting. RASNSAC Circle Fitting

employs the Random Sample Consensus (RANSAC) algorithm to

fit circles. By iteratively selecting random subsets of data points for

fitting and selecting the best fitting result, it demonstrates strong

robustness against noise and outliers.

2.4.2 Calculation of banana pseudo-stem height
The measurement of the pseudo-stem height of bananas

involves three main components: threshold segmentation,

boundary point recognition, and height measurement. The key to

pseudo-stem height measurement lies in determining the

intersection points between the pseudo-stem and the leaf, as well

as between the pseudo-stem and the ground. The height difference

along the axial direction between these two positions is considered

as the height. The pseudocode for the entire pseudo-stem height

measurement is outlined in Algorithm 2. In Algorithm 2, to

accurately identify the boundary points between the banana

pseudo-stem and the leaves, a threshold segmentation method is

initially employed to obtain the point cloud near the banana

pseudo-stem. Specifically, by calculating the distance of each

point in the current banana plant to the directional vector, if this

distance is less than the threshold W, the point is retained;

otherwise, it is removed. The segmentation process is illustrated

in Figure 4C. Subsequently, a continuity-based sliding window

approach is proposed to identify the boundary points between the

pseudo-stem and the leaves. After threshold segmentation, the

point cloud is horizontally sliced from bottom to top, as shown in

Figure 4A. The thickness of the slice should not be too large.
Fron
Input: Pfek: point cloud after kmeans clustering; R:

pseudostem radius; V: pseudostem axis vector; d: window

distance; W: threshold; dw: threshold;

Output: banana pseudostem height H;

1 Initialization: H ←  f;

2 for i← 1 to size(Pfe) do

3 Set W: 0.15m; set d: 0.02m; set dw: 0.1m;

4 Threshold segmentation of Pfek;
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5 Slice the point cloud Pfek into different layers

PL;

6 Set the continuous flag as 0;

7 for i← 1 to size (PL) do

8 Calculate distance a= Xmax - Xmin;

9 Calculate distance b= Ymax - Ymin;

10 if a+b ¿ 4 *R + dw then

11 continuous flag+;

12 if continuous flag > 10 then

13 Zmax = starposition + dw*(window − 8);

14 else

15 Continuous flag ← 0;

16 end

17 end

18 end

19 end
Algorithm 2. Measurement of banana pseudostem height.

Through experimentation, it has been validated that setting the

distance d of the sliding window, i.e., the slice thickness, to 0.02 m is

optimal. As determined from the earlier calculation of pseudo-stem

diameter, slicing the pseudo-stem horizontally at a height of 0.5 m

above the ground is not affected by weeds, leaves, etc. Therefore,

starting from a height of 0.5 m above the ground, all point clouds of

the banana plant are segmented into different windows. The lengths

a and b of each window in the X and Y directions are calculated. By

assessing the relationship between the window’s perimeter C and its

diameter, the occurrence of a perimeter mutation in the window can

be determined, as shown in Figure 4B. On the XY plane, the

perimeter of the boundary point between the stem and leaf is

greater than that of the pseudo-stem edge point cloud. Hence, by

calculating the perimeters of point clouds in the XY plane for

different windows, positions with perimeter mutations can be

identified, indicating potential boundary points between the

pseudo-stem and the leaves. When the perimeter mutations

persist for 10 consecutive windows, it can be concluded that a

boundary point has been found, with the window of the first

occurrence in the current continuous sequence being identified as

the boundary point window. Since the lowest point in the Z

direction has been standardized for all plants, the point cloud at

the intersection between the banana plant and the ground

represents the minimum value in the Z direction for the pseudo-

stem, and each plant’s lowest point is the same, located at the lowest

point of the pseudo-stem point cloud.
3 Result and discussion

3.1 Feature extraction module
comparative experiment

To evaluate the effectiveness of the distance-weighted feature

extraction method, we utilized the data storage functionality in ROS

to save the reconstructed maps. For better visualization, we opted to

record the map reconstructed from a single banana tree instead of
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using the entire experimental banana plantation map for

visualization. The comparative experiments primarily focused on

assessing the differences in the performance of the reconstructed

point clouds at edge and planar points. The point cloud maps

constructed using the original method and the improved method

are depicted in the Figure 5. As shown in Figure 5A, indicated by the

green arrows, the original method tends to extract planar points as

edge points, such as some ground points and certain quasi-planar

points on banana leaves. In Figure 5B, our method demonstrates a

more complete and uniformly distributed extraction of surface

features, avoiding the adverse impact on mapping accuracy

caused by the aggregation of numerous redundant feature points.
3.2 Point cloud preprocessing

As shown in Figure 6, the reconstructed banana plantation

contains a significant amount of noise and outliers, necessitating
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certain preprocessing steps for convenient subsequent usage. The

preprocessing steps include the removal of point cloud noise,

ground fitting, and ground correction. In this regard, we

employed a widely used point cloud processing software

(CloudCompare). Figure 6A illustrates the point cloud after

denoising using statistical outlier removal (SOR), resulting in a

reduction in the number of points from 1,931,651 to 1,755,892

without compromising quality. Figure 6B presents the ground

surface model fitted using CSF. By adjusting various fitting

parameters, we ensure that the extracted ground surface includes

more ground points and fewer points corresponding to banana

plants. To ensure consistent ground heights for different banana

plants, we calculate the distance of each point to the surface and

project it onto the plane. Figure 6C displays the banana plantation

map after height correction. Although some ground points still exist

in this image, we utilize the RANSAC plane filtering method to

remove them, yielding a fully preprocessed point cloud as depicted

in Figure 6D.
A B C

FIGURE 4

Stem-leaf junction recognition process. (A) The process of sliding window slicing. (B) Calculation of the perimeter for different slicing windows. (C)
Threshold segmentation diagram.
A B

FIGURE 5

Feature extraction comparative diagram: (A) Depicts a line feature comparison; (B) illustrates a planar feature extraction comparison. In both cases,
the white point cloud represents the reconstructed point cloud using the original method, whereas the pink point cloud represents the point cloud
reconstructed using the method proposed in this paper.
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Using the distance-weighted feature extraction method

proposed in Section 2.22, we constructed a banana plantation

environment map. Figure 7 illustrates the point cloud after

preprocessing, revealing minimal alteration in the outer contours

of the banana plants. The preprocessing, involving ground removal

and point cloud normalization, effectively addressed the issue of

inconsistent banana plant heights caused by terrain variations.
3.3 Banana plant point cloud segmentation

The division of banana plants is also a crucial task in this article.

To ensure the accuracy of banana plant segmentation, the

combination of Euclidean clustering algorithm, threshold

segmentation, and k-means clustering method is proposed in

Section 2. 32, algorithm 1. We utilized Euclidean clustering for

classifying the point cloud data at fixed heights, followed by joint

threshold segmentation to extract pseudo-stem point clouds from

the classification results and compute their pseudo-stem count and

centroid coordinates. These obtained parameters were then

employed in K-means clustering. The choice of K value

significantly influences the effectiveness of K-means clustering.

Therefore, we further investigated how to achieve the best

clustering results under different threshold values, denoted as T.

From Algorithm 1, the classification of banana pseudo-stems under

different width thresholds (T) can be obtained, as shown in Figure 8.

By experimentally varying the threshold segmentation parameter T

after Euro-Clustering, the optimal parameters for segmenting
Frontiers in Plant Science 10
adjacent plant point clouds in the banana plantation were

obtained. Recent plant point clouds in the banana plantation

were obtained.

Here, we used seven different T values to validate the results,

and the experimental results are shown in Table 1. Through

comparative experiments, it can be observed that when T = 0.6

m, the segmentation success rate is the highest. When T is greater

than 0.6 m, it is unable to filter out the point clouds connecting

adjacent banana plants, classifying the point cloud originally

belonging to the banana pseudo-stem as leaf cloud, leading to a

decrease in segmentation success rate. If the value of T is less than

0.6, the canopy point cloud will be segmented into multiple parts,

classifying the leaf point cloud as pseudo-stem point cloud,

resulting in a decrease in segmentation success rate. Therefore,

this study selects T = 0.6 m as the experimental parameter.
3.4 Boundary point recognition method
based on a continuous sliding window

Due to the interference caused by the drooping of the leaves,

direct application of the horizontal slicing method in stem height

measurement results in incomplete separation of the pseudo-stem,

thereby affecting the accuracy of pseudo-stem height measurement.

Therefore, it is necessary to eliminate redundant leaf clouds when

measuring pseudo-stem height. This paper proposes a boundary

point recognition method based on a continuous sliding window, as

shown in Algorithm 2. Figure 9C depicts the pseudo-stem point
A

B

D

C

FIGURE 6

Point cloud preprocessing workflow. (A) Origin point cloud. (B) Ground surface fitting. (C) Normalize point cloud. (D) Filtered ground point cloud.
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cloud obtained by directly slicing and separating using the

horizontal slicing method from Figure 9A. Figure 9D represents

the complete pseudo-stem point cloud segmented by the method

proposed in this paper, as shown in Figure 9B. By comparing

Figures 9C, D, it can be observed that our method effectively

reduces the occurrence of this situation, obtaining a more

complete pseudo-stem point cloud.
3.5 Precision evaluation of diameter and
height measurements of banana
pseudo-stems

The experimental plot comprises a total of 43 banana plants. After

European-style clustering classification, 39 banana plant diameter

point clouds were identified, with four plants mistakenly classified as

leaf point clouds. The main reason for the failure to identify certain
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banana plants is the loss of point clouds from pseudo-stems at a fixed

height due to point cloud occlusion, resulting in smaller bounding

boxes. Alternatively, the proximity of the pseudo-stem to a broken leaf

can cause the bounding box to expand beyond its threshold range. To

validate the accuracy of the computed pseudo-stem diameter and

height parameters, a corresponding program was developed to

automatically measure the banana pseudo-stem diameter. For the

true measurement of banana diameter, we used a paper ruler to

measure the circumference of the banana plant at three positions: 1.0

m, 1.1 m, and 1.2 m above the ground. We then calculated the average

circumference and converted it into diameter. For the measurement of

banana pseudo-stem height, we utilized a high-precision surveying

ruler to repeat the measurement three times for each banana plant,

from the ground to the point offirst leaf insertion. The average of these

measurements was taken as the true value of the pseudo-stem height.

The accuracy of the measurement parameters was assessed using the

root mean square error (RMSE), mean absolute percentage error

(MAPE), and correlation coefficient (R) between the measured

values and true values. The calculation methods are shown in

Equations 21–23.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(xmi − xai)

2

s
(21)

MAPE =
1
no

n

i=1

xmi − xaij j
xmi

� 100% (22)
FIGURE 7

Banana plantation 3D point cloud map.
A

B

D

E

F

GC

FIGURE 8

The results of Euclidean clustering and K-means clustering. In the Euclidean clustering plots in columns I and III, the green point clouds represent
point clouds identified as banana pseudo-stems, whereas the red point clouds represent leaf points. In columns II and IV, the plots represent K-
means clustering results under different T values. (A) T = 0.4 m. (B) T = 0.5 m. (C) T = 0.6 m. (D) T = 0.65 m. (E) T = 0.7 m. (F) T = 0.8 m. (F) T = 0.9
m. (G) T = 1.0 m.
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R2 =
Cov(xmi, xai)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½xmi�Var½xai�

p (23)
3.5.1 Measurement of pseudo-stem
diameter parameters

In the calculation of pseudo-stem diameter for banana plants,

different methods exhibit varying degrees of robustness to noise and

outliers. To obtain a more accurate estimation of banana pseudo-

stem size, we compared four different circle fitting methods for

calculating pseudo-stem diameter. As depicted in Figure 10A, we

acquired point clouds of all banana pseudo-stems at a fixed height.

In Figure 10B, the least squares circle fitting method was applied,

whereas in Figure 10C, the Hough Transform circle fitting method

was employed. In Figure 10D, the robust least trimmed squares

method was utilized, and in Figure 10E, the RANSAC cylindrical

fitting method was used to estimate the sizes of all banana pseudo-

stems’ diameters.
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This comparison aims to assess the influence of these four

fitting methods on the accuracy of pseudo-stem diameter

determination, considering their robustness to noise and outliers.

The results presented in the figures allow for a visual examination of

the differences in the estimated pseudo-stem sizes between the four

fitting methods.

Figure 11A shows the pseudo-stem diameters computed using

the least squares fitting method, where R2 is a negative value and

deemed meaningless, hence not annotated in the figure. The RMSE

is 0.018726 cm, and the MAPE exceeds 32%. Figure 11B depicts the

pseudo-stem diameters measured using the Hough Transform

circle fitting method, with an R2 of 0.6263, RMSE of 0.9425 cm,

and MAPE of 15.641%. Figure 11C shows the measurement results

obtained using the robust least trimmed squares method, with an R2

of 0.8992, RMSE of 0.6172 cm, and MAPE of 11.1246%. Figure 11D

illustrates the pseudo-stem diameters obtained using the RANSAC

fitting method, where R2 > 0.99, RMSE is controlled within 0.0022

m, and MAPE is less than 4.1%. The automatic measurement

accuracy of banana pseudo-stem diameter exceeds 95.9%. Clearly,

the pseudo-stem diameter measurements obtained through the least

squares method exhibit significant errors and lack practical

significance, whereas the errors in the measurements obtained

through the Hough Transform and robust least trimmed squares

methods are greater than those obtained through the RANSAC

circle fitting method. This comparative experiment demonstrates

that, for the measurement of banana pseudo-stem size, the

RANSAC cylindrical fitting method possesses high robustness,

mitigating the impact of surface outliers on measurement results.

Employing this method results in precise measurements of banana

pseudo-stem diameter, with algorithmic automated values closely

aligning with the ground truth obtained from manual point

cloud measurements.
3.5.2 Measurement of pseudo-stem
height parameters

After fitting three-dimensional cylinders to the point cloud of

fixed-height pseudo-stems, separating banana plants using K-

means clustering, and applying threshold segmentation to remove

most of the non-pseudo stem points, we employed the continuity-

based sliding window method proposed in this paper to identify the

boundary points between banana leaves and pseudo-stems. The

complete pseudo-stem point cloud was extracted, and the results are

shown in Figure 12. Using the extracted point cloud, we measured

the height of banana pseudo-stems. We also compared the heights

measured using the sliding window method with the results

obtained from the continuity-based sliding window method

proposed in Section 2.42 of this paper. In the experimental field,

we measured the pseudo-stem height of 43 banana plants, with only

three plants being misidentified. The pseudo-stems of 39 banana

plants were correctly identified, and the measurement results were

within the threshold.

As shown in Figure 12, the program developed for the

automatic and accurate measurement of banana pseudo-stem

height in the experimental field was utilized, and the results were

compared with manually measured true values. Figure 13A displays
A B

DC

FIGURE 9

Distinguishing pseudo-stem point clouds using the continuity sliding
window method. (A) Identification of stem-leaf junction points using
the sliding window method. (B) Using the stem-leaf boundary points
identified based on the continuous sliding window method. In both
cases, the red line indicates the boundary point positions. (C) The
pseudo-stem point clouds obtained by segmentation using the
sliding window method. (D) Utilizing pseudo-stem point clouds
segmented based on the continuity sliding window method.
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FIGURE 10

Different methods of circle fitting. (A) Least squares method. (B) Hough transform method. (C) Fixed-height point cloud. (D) Robust least trimmed
squares method. (E) RANSAC 3D cylinder fitting method.
A B
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FIGURE 11

Comparison of measurement results between RANSAC cylinder fitting and least squares circle fitting. (A) The result of measuring pseudo-stem
diameter based on the least squares circle fitting. (B) The measurement results obtained by Hough transform circle fitting method. (C) Comparison
between the measured value and the real value of the robust least trimmed squares circle fitting method. (D) Results obtained from measuring
pseudo-stem diameter based on RANSAC cylinder fitting.
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the results of banana pseudo-stem height measured using the

continuity-based sliding window method, with an R2 greater than

0.99, RMSE controlled within 0.036 m, and MAPE not exceeding

2%. Figure 13B shows the results of banana pseudo-stem height

measured using the sliding window method, with an R2 of 0.94,

RMSE of 11.94 cm, and MAPE of 6.04%. Consequently, the

proposed method for measuring banana pseudo-stem height

demonstrated high accuracy, with algorithmic measurements

closely aligning with manual measurements.
3.6 Discussion

This study investigates the Synchronous Localization and

Mapping (SLAM) method based on handheld mobile laser for

point cloud mapping, successfully applied to the construction of a

point cloud map for a banana plantation. Considering the complex

environment of the banana plantation, with features like leaf

occlusion, we propose a combined method using filtering,

Euclidean clustering, and K-Means clustering for segmentation of

banana plants. This method successfully segments banana

plants and calculates the diameter of the pseudo-stem. An

approach based on continuity sliding window is introduced to

enhance the accuracy of identifying boundary points between the

pseudo-stem and leaves, along with the computation of pseudo-

stem height. Experimental results demonstrate the effectiveness of

the proposed method in measuring phenotypic parameters on a

large scale in banana plantations, providing valuable references for

orchard management.

Plant point cloud segmentation: To separate banana plants

from the point cloud map, we propose a threshold segmentation

method that combines the Euclidean clustering and K-Means

clustering techniques. However, K-Means is influenced by the

number of clusters (K) and the initial cluster centers (C).

Therefore, we explore the impact of different threshold

parameters on the number of clusters (K) and determine the

optimal threshold parameter (T). As shown in Figure 8, we

obtain different results for Euclidean clustering and K-Means

clustering by varying the value of T. When the threshold T is too

small, the Euclidean clustering may classify some pseudo-stem

point clouds as leaf point clouds, and when T is too large, leaf

point clouds may be classified as pseudo-stem point clouds,

affecting the accuracy of clustering. By comparing the results, we
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determine the optimal threshold T, providing accurate initial results

for subsequent phenotype parameter measurements.

Boundary point recognition based on continuous sliding

window: Accurately identifying the boundary between the

pseudo-stem and leaves is a crucial aspect for providing precise

measurements of pseudo-stem height. The continuity-based

method proposed in this paper addresses recognition errors

caused by the non-smooth surface of the pseudo-stem or

protrusions. As shown in Figure 9C, the traditional sliding

window method, when encountering abrupt changes in perimeter,

directly identifies it as a boundary point, resulting in incomplete

recognition of pseudo-stem points and affecting the measurement

accuracy of pseudo-stem height. However, the method proposed in

this paper effectively resolves this issue, as depicted in Figure 9D,

showcasing the successfully and comprehensively identified

pseudo-stem point cloud. This has a significant impact on the

subsequent calculation of pseudo-stem height.

Accuracy evaluation of pseudo-stem diameter measurement: To

evaluate the robustness of the proposed method, we compared the

results of pseudo-stem diameter calculation based on the least

squares method, Hough transform circle fitting method, robust

least trimmed squares circle fitting method, and RANSAC cylinder

fitting method. As shown in Figure 11, the pseudo-stem diameters

calculated using the RANSAC circle fitting method are closer to

manual measurements compared to the other three methods, with

the least squares method yielding more dispersed results that

deviate significantly from the true values. From a technical

perspective, there are several reasons for this. Firstly, the typical

measurement accuracy of lidar is approximately 2 cm, leading to

maps that may contain a large number of discrete points. Secondly,

banana plants often exhibit certain degrees of inclination, resulting

in a considerable number of discrete points when projecting the

point cloud from a fixed height onto the XY plane. The least squares

method aims to find the circle that minimizes the sum of squared

distances between the circle and data points through mathematical

optimization. Therefore, it may perform poorly on datasets

containing numerous discrete points. Conversely, the robust least

trimmed squares method achieves more accurate measurements by

trimming points with large residuals and iteratively fitting the

remaining points. The Hough Transform circle fitting method is

similarly insensitive to discrete points, but it requires prior

information such as the initial coordinates of the circle center and

the initial diameter, and the accuracy of this prior information
A B

FIGURE 12

(A) Extracted pseudo-stem point cloud using the continuous sliding window method. (B) Corresponding 3D point cloud map.
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significantly influences its measurement results. On the other hand,

the RANSAC fitting algorithm estimates model parameters by

randomly selecting data points and evaluates model quality based

on the error between data points and the model. Therefore, it

exhibits higher robustness and measurement accuracy when dealing

with datasets containing noise and outliers. In comparison with

Kinect v2 measurements (Table 2, number 1 and 2), the MAPE of

our method increased by 1.7% to 2.8%, which is within a reasonable

range. While camera-based measurements slightly improve the

accuracy of pseudo-stem diameter, using a camera introduces

challenges such as the need to control sampling distance for

optimal measurement, susceptibility to environmental changes

leading to significant measurement errors, and difficulties in

implementing large-scale measurements. Comparing with

ground-based LiDAR measurements (Table 2 number 3 and 4),

the measurement method proposed in this paper (Table 2, number

5) shows an increase in MAPE of 2.76% to 3.02%, which is

attributed to the fact that the measurement error of the lidar

device itself is approximately 10 times that of the camera and

ground-based lidar.

Accuracy evaluation of pseudo-stem height measurement: To

validate the impact of the continuity-based sliding window method

on the measurement of pseudo-stem height, we compared the results

with the conventional sliding window approach, as shown in

Figure 13A. The measurements based on the proposed method in

this study are relatively close to the ground truth, indicating accurate

recognition of boundary points. In contrast, the measurements from

the conventional sliding window method are generally lower than the

actual values, primarily due to the unevenness of the pseudo-stem.

Instances of protrusions are often incorrectly identified as boundary

points, leading to consistently lower measurements and

demonstrating the poor robustness of this method. The average

measurement error for banana plant height is 4.5 cm, with an

average measurement error of 6.32% (Table 2, number 6). In this

study, the average relative error for height measurement is 1.91%,

representing an improvement of approximately 4.4% in

measurement accuracy compared to camera-based measurements.

This improvement is attributed to the increasing distance between
Frontiers in Plant Science 15
Kinect and the measured plant, causing a proportional increase in

measurement errors and a decrease in measurement correlation.

However, the variation in measurement errors is relatively small

when the distance change is not significant. In comparison with

ground-based LiDAR measurements (Table 2, numbers 7 and 8) for

two experimental sites, the results for pseudo-stem height

measurement are as follows: 1) RMSE of 0.2014 m, MAPE of

5.11% for the first site, and 2) RMSE of 0.2788 m, MAPE of 9.40%

for the second site. Compared to the measurement method presented

in this study (Table 2, number 9), our approach shows a reduction in

MAPE for stem height measurement ranging from 3.2% to 7.5%

across the two experimental sites, and both sets of measurements fall

within a reasonable range.

The comparison results indicate that the methodology proposed

in this paper slightly falls short in measuring the diameter of banana

pseudostems when compared to camera and ground-based lidar

methods. However, it surpasses these methods in the accuracy of

measuring pseudo-stem height. Part of the reason for this

discrepancy lies in the differing errors associated with the

measurement equipment. Unlike expensive ground-based lidar

devices that can achieve a measurement accuracy of 1 mm–2

mm, and cameras whose measurement error typically ranges

from 2 mm–4 mm (with errors increasing as the measurement

distance grows), the mobile lidar used in this study has a

measurement accuracy of ±2 cm. Given that the diameters of

banana plants collected in the field generally fall between 10 cm–

18 cm, the precision of the equipment significantly impacts the

measurement of smaller targets like banana diameters. For high-

precision devices, measuring the pseudo-stem diameter using the

least squares method is feasible, but this is not suitable for the

pseudo-stem diameter measurements discussed in this paper.

Therefore, we employ a three-dimensional cylindrical fitting

method to minimize the impact of equipment precision on the

accuracy of diameter measurements. The accuracy of measuring

pseudo-stem height is less affected by equipment precision, and the

integrity of pseudo-stem point cloud segmentation can enhance

measurement accuracy. The segmentation method based on a

continuity sliding window proposed in this paper can extract a
A B

FIGURE 13

Comparing the results of using a continuous sliding window and a regular sliding window. (A) Presenting the results of pseudo-stem height
measurements obtained through the continuous sliding window method. (B) The results of pseudo-stem height measurements using the sliding
window method.
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complete pseudo-stem point cloud, thereby providing superior

accuracy in pseudo-stem height measurements compared to

camera and ground-based lidar methods.

Time consumption: Compared to manual measurement, the

proposed method requires 8 min for a single scan, with 7 min for

point cloud preprocessing and program execution, totaling 15 min.

Manual measurement for each banana plant takes approximately 3

min, resulting in a total of 123 min for 41 plants. The proposed

method is approximately 1/8th of the time required for manual

measurement, effectively improving orchard management efficiency.
4 Conclusions

The text describes the development of a handheld mobile

scanning system combining mobile LiDAR and IMU sensors for

the purpose of mapping banana plantations. Additionally, an

automated algorithm for measuring the diameter and height of

banana pseudo-stems is designed. The results indicate an absolute

average error of 0.2127 cm and a relative average error of 4.06% for

banana pseudo-stem diameter measurement, with a correlation

coefficient of 0.99. The average absolute error for banana pseudo-

stem height measurement is 3.52 cm, with an average relative error of

1.90% and a correlation coefficient of 0.99. The overall error meets

surveying requirements. Research has shown that the method

proposed in this paper is applicable for extracting tree phenotypic

parameters in complex and obstructed orchard environments,

thereby offering orchard managers a novel approach for phenotypic

measurement. In the future, the integration of GPS data will be

implemented to achieve precise localization for each banana plant.
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Garcıá, G., Cedeño, Á., Lucero, H., Macıás, L., López, C., Álava, G., et al. (2020).
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