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Fresh-cut flowers are considered to be one of the most delicate and challenging

commercial crops. It is important to take into consideration how tominimize loss

during storage and transportation when preserving cut flowers. Many impinging

(bad effect) forces can interact to shorten the flowers’ vase life. In the flower

industry, effective methods need to be developed to extend freshly cut flowers’

life. Fresh-cut flowers’ vase life can be shortened by a variety of interlocking

causes. The flower industry must develop new techniques to extend the flowers’

vase lifespan. This review provides comprehensive, up-to-date information on

classical, modified atmosphere packaging (MAP), and controlled atmosphere

packaging (CAP) displays. According to this review, a promising packaging

technique for fresh flowers can be achieved through smart packaging. A smart

package is one that incorporates new technology to increase its functionality.

This combines active packaging, nanotechnology, and intelligence. This

technology makes it easier to keep an eye on the environmental variables that

exist around the packaged flowers to enhance their quality. This article offers a

comprehensive overview of creative flower-saving packaging ideas that reduce

flower losses and assist growers in handling more effectively their flower

inventory. To guarantee the quality of flowers throughout the marketing chain,

innovative packaging techniques and advanced packaging technologies should

be adopted to understand various package performances. This will provide the

consumer with cut flowers of standard quality. Furthermore, sustainable

packaging is achieved with circular packaging. We can significantly reduce

packaging waste ’s environmental impact by designing reused or

recyclable packaging.
KEYWORDS

modified atmosphere packaging, controlled atmosphere packaging, nanotechnology,
intelligent packaging, postharvest, shelf-life, storage
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1 Introduction

Almost all cut flowers have short vase life and fast quality

deterioration because of their ephemeral nature. Postharvest

practices are crucial in maintaining both the quality and longevity

of cut flowers, owing to their ephemeral nature (Hassan and

Schmidt, 2004). After harvest, cut flowers have several factors that

affect their quality. These factors can be pre- or postharvest,

underscoring the importance of effective flower management in

extending their lifespan (Ali et al., 2022). A variety of factors

contribute to harvesting, grading, precooling, conditioning,

pulsation, bunching, wrapping, packaging, storing, and

transporting (Belay et al., 2016; Hassan et al., 2020a; Kumar et al.,

2022). Proper management of all these stages can significantly

enhance the vase life and quality of flowers (Hassan et al., 2014;

Hassan et al., 2020b). In addition to reducing the marketability and

quality of harvested flowers, they also limit the commercial value of

the flowers (Mazrou et al., 2022).

Furthermore, the preservation of cut flower quality postharvest

has consistently been a subject of significant scientific interest.

Due to increased respiration and transpiration during flower

handling, transportation, and export, the flowers undergo

physiological stress. This expedites the deterioration of their

quality (Belay et al., 2016). Furthermore, packaging serves to

preserve flower quality during transport, export, and storage,

thereby increasing their chances of safety. A direct consequence

of this is an improved marketing and distribution network. Losses

in the cut flower industry are estimated to be approximately 20%–

40% due to inefficient postharvest packaging and storage; hence,

investing in this area could potentially yield higher returns than

expanding production. Also, cut flowers after harvest will wilt; will

be abscised, discolored, and dehydrated; and will brown and

succumb to senescence. An increased CO2 and reduced O2

atmosphere during storage can mitigate these changes. Modified

atmosphere packaging (MAP) also protects cut flowers from wilting

(Bishop et al., 2007; Biji et al., 2015; Ghaani et al., 2016; Salgado

et al., 2021; Kumar et al., 2022).

In addition, MAP, a well-validated horticultural commodity

shelf-life extender and postharvest quality preservation technique,

extends the shelf-life of fresh produce postharvest.

Also, a MAP design optimizes oxygen uptake and CO2

evolution in packaged fresh produce, as well as gas transfer

through packaging films, by decreasing oxygen levels and

increasing carbon dioxide levels in the package atmosphere.

Microorganisms that cause spoilage can be controlled in MAP

environments by reducing mold growth and flower decay.

Furthermore, MAP reduces exposure to mold spores and other

environmental contaminants (Belay et al., 2016). CO2, O2, N2, water

vapor, and other trace gases are changed and selectively controlled

to increase shelf life. Using this definition, there are no controlled

atmosphere packaging (CAP) systems in commercial use. However,

the combination of in-package or in-film O2 and C2H4 absorbers,

together with CO2 release agents, could be classed as CAP, at least

during the early stages of the storage life of the packaged product

(Belay et al., 2016). Additionally, intelligent packaging technologies

enhance product safety, durability, and quality standards in the
Frontiers in Plant Science 02
food industry. With this system, product quality can be continually

monitored and its status relayed to customers. As a result, customer

satisfaction can be increased and product waste can be decreased.

Intelligent packaging technologies are classified into three major

categories: indicators, data carriers, and sensors. Despite its

potential, intelligent packaging remains underutilized. Moreover,

the delicate nature of cut flowers also makes them difficult to store

(Popa et al., 2019). Therefore, fresh-cut flowers require knowledge

of modern packaging technology to preserve them during storage

and transportation. This review discusses the preservation aspects

of fresh-cut flowers from a fresh-keeping perspective, which could

prove beneficial for those in the floral industry. Additionally, it

discusses the prospects for an integrated modeling approach and

recent advances in modern packaging technology.

This understanding can inform the performance of various

packaging formats. Consequently, there will be an increase in flower

life and a higher quality of product. The current review suggests that

future research should aim to identify the most effective packaging

strategies for cut flowers.
2 Classical packaging

A package constitutes a significant influence over consumers’

perceptions and enhances their purchase. Inadequate harvesting,

handling, and storage can cause significant losses in the plant’s

production investment (Belay et al., 2016; Dias et al., 2017).

Furthermore, packaging materials must be resilient to vibration,

shock, drop, compression, and refrigeration during transportation

and storage to ensure the quality of flowers. To ensure compliance

with the importing countries’ regulations, package standards vary

depending on the species, cultivars, transportation mode, storage,

and market outlet. In addition to being strong enough, the

packaging material should be low cost or reusable, moisture-

resistant, and easy to operate. Also, the most widely used

packaging materials are cellophane, cardboard, butter paper,

polyethylene, polypropylene, and polyolefin. Furthermore, to

furnish relevant information about flower content, all types must

be labeled (Wang and Qi, 1997; Patil, 2009; Gupta and Dubey, 2018;

Kumar et al., 2022). In order to maintain the quality of flowers

throughout the marketing process, packaging materials must

maintain their physical, physiological, and pathological integrity.

It is recommended to package orchid flowers in two-piece boxes

and to keep ethylene scrubbers in the box as well. A preservative

solution is poured into flasks containing single Cymbidium flowers

packed in fern leaves. A three-sided box with a display window is

used for packing the flasks (Jawaharlal et al., 2006). Also, the vase

life of Cymbidium flowers packaged with cellophane paper is 28

days to 40 days, compared to an 18-day to 27-day vase life for

unpackaged flowers. Furthermore, in comparison with the control

(50 days without packing), flowers packed in cellophane had the

longest vase life (56 days), followed by polypropylene (54 days) and

low-density polythene (54 days) (De and Singh, 2016).

In addition, marigolds are often packaged in newspaper,

cellophane, and polyethylene. However, cardboard boxes lined

with newspaper and cellophane showed the highest moisture
frontiersin.org
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content, maximum freshness index, and minimal loss of weight, as

well as the least amount of spoilage of flowers. Chrysanthemums are

packaged similarly. Corrugated fiberboard boxes in vertical

hampers marked for upright stacking are the most suitable

material for packaging Gladiolus spikes. This configuration thus

minimizes the potential for geotropic curvature, which adversely

affects flower quality due to gravity-induced damage. Corrugated

card sleeves, waxed paper, or cardboard boxes are the most

common packaging used for rose bouquets. Flowers are not

chipped inside plastic sleeves to prevent humidity buildup.

Packaging of potted flowering plants, such as potted Hibiscus,

varies based on the size of the plant, the quantity of foliage, and

the flexibility and fragility of the leaves and branches. Their

packaging is also influenced by factors including their

entanglement potential and injury risk during handling,

transportation, and shipment. Historically, potted plants have

been commonly packaged in clear plastic sleeves, craft paper, or

fiberboard boxes wrapped in plastic or paper, with dividers between

plants (Figure 1) (Twede et al., 2015).

In addition, traditional floral packaging failed to meet

consumers’ demands for quality. Consequently, novel packaging

strategies have become vital in expanding the production of various

cut flowers. They have been employed to preserve flower quality,

ensure microbial safety, and prolong vase life, presenting

alternatives to traditional packaging methods. Furthermore, the

aim of novel packaging is to improve certain aspects of packaging,

such as efficiency, sustainability, quality, and protection, through

the use of advanced materials and technologies. Moreover,

numerous innovative packaging techniques exist, including MAP,

CAP, intelligent packaging, and nanotechnology packaging.
2.1 Modified atmosphere packaging

MAP technology significantly contributes to maintaining the

quality of cut flowers postharvest by delaying physiological changes

(Poonsri, 2017). Furthermore, the elevated CO2 concentration

within the packaging substantially diminishes respiration and

ethylene synthesis, thereby significantly reducing the energy

produced. The packaging permits the removal of undesirable

gases and provides the means of manipulating oxygen levels and
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carbon dioxide concentrations. MAP effectively preserves the

quality of fresh produce by reducing respiration intensity,

material consumption, carbon dioxide production, oxygen

consumption, and heat generation (Watkins, 2000; Sousa-

Gallagher et al., 2013). In addition, MAP stabilization can be

achieved by packing cut flowers in plastic of varying permeability

to CO2 and O2. Nonetheless, the final concentrations of CO2 and O2

within the pack during storage, as well as the maintenance of water

balance in the flowering stem, significantly influence the

floral response.

Regulation of ethylene gas production will extend the storage

duration for flowers, ensuring their quality and enhancing their

lifespan. Although refrigeration and humidity control can

significantly decelerate senescence and decay, they do not stop

ethylene production. The term “modified atmosphere storage”

(MAS) encapsulates storage under such atmospheric alteration.

MAS offers several benefits, including ease of use, cost-

effectiveness, and less complexity than controlled atmosphere and

low-pressure storage methods. Despite these advantages, MAS lacks

the precision of CAS (Ben-Yehoshua et al., 2005; Sandhya, 2010;

Wilson et al., 2019).

On the other hand, the process of senescence in plants is a

complex, highly regulated process. This involves a decline in

photosynthesis, with the loss of chlorophyll and the dismantling

of chloroplasts, as well as the degradation of macromolecules such

as proteins, nucleic acids, and lipids. As a result, there is a significant

difference between other flower systems in terms of nutrient

mobilization and senescence mechanisms (“ethylene sensitive”

and “ethylene insensitive”). These distinctions could be attributed

in part to higher free SPD levels, which bind to intracellular

constitutive molecules like DNA, thereby stabilizing their

structures and slowing the progression of senescence. The PCA-

soluble fraction is the primary source of conjugated PAs when

irreversible senescence is caused by the ethylene burst (Buchanan-

Wollaston, 1997; Bagni and Tassoni, 2006). It is reported that low

levels of oxygen inhibit ethylene. The effect of CO2 on ethylene may

also be reduced; it may act as a competitive inhibitor although it

seems unlikely to bind to the ethylene receptor when examined

closer (De Wild et al., 2003; Ben-Yehoshua et al., 2005). In 2000,

Watkins described the importance of CO2 during MAP,

demonstrating that CO2 affects several metabolic processes, such

as respiration and 1-aminocyclopropane-1-carboxylic acid synthase

(ACC). Physiological breakdown is a common consequence of

exposure to low oxygen (1%) and high carbon dioxide (>20%)

levels in numerous fresh vegetables. It is important to keep cut

flowers away from chilling temperatures. Hence, to avoid chilling

injury signs, CO2 accumulation and O2 reduction are helpful (Wang

and Qi, 1997). It is generated by balancing the gases within the

package in a dynamic way. As a result, fresh flowers must get

enough oxygen to be consumed by the package. It is also necessary

to have an equal output and production of CO2 (Smith et al., 2003;

Sandhya, 2010). Depending on the specific permeability of these

films, holes may be needed for a stable atmosphere inside (Del-Valle

et al., 2003). It has been proven that MAP technology can prolong

the storage period of fresh produce without affecting its natural

quality postharvest. It is necessary to integrate the dynamic
FIGURE 1

Classical Packaging materials for cut flowers.
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properties of the produce, packaging characteristics, and ideal

equilibrium conditions for its environment to obtain an optimal

MAP design (Figure 2) (Belay et al., 2016).

Escalona et al. (2007) have shown that MAP technology

effectively extends the shelf life of fruits and vegetables. However,

there have been few reports on cut flowers published. In addition,

several postharvest changes negatively influence both the

commercial value and vase life of cut flowers. These alterations

encompass petal discoloration, petal detachment, tissue browning,

and wilting. MAP manipulates the CO2 and O2 levels within the

package to inhibit these changes (Poonsri, 2021). It is important to

note that flower species differ considerably in their responses to

altered circumstances during storage (Zeltzer et al., 2001).

Furthermore, MAP techniques have demonstrated promising

results when it comes to maintaining the quality and increasing

the shelf life of some cut flowers, including carnations (Bishop et al.,

2007), roses (De Pascale et al., 2005; Bishop et al., 2007), and lily

(Wu et al., 2013). However, MAP has previously been reported to

have a disappointing effect on cut flowers (Reid, 2001; Reid and

Jiang, 2012). Furthermore, significant tissue browning, collapse, and

decay were observed in Trapaeolum majus L., Borago officinalis L.,

and Viola tricolor L. stored at −2.5°C to 20°C in polyethylene bags

(Kelley et al., 2003).

The storage of various flowers, including carnations,

gypsophilas, solidagos, and several cultivars of roses, in MAP

(7.09 kPa CO2 and 13.17 kPa O2) at 2°C for 10 days resulted in a

quick increase in CO2 levels and a subsequent decrease in O2 levels.

Consequently, the flowers preserved a significantly higher fresh

weight (3.5 times) than flowers kept in a standard environment.

MAP flowers have demonstrated a 10% reduction in water loss and

a superior appearance after shipment in comparison to

conventional carton flowers. As MAP shipments progressed, CO2

concentrations increased to 6%, while oxygen concentrations

declined to 15%. During the same period, from day 1 to day 8,

CO2 concentrations remained constant, while oxygen

concentrations declined steadily. The application of the PAP

system demonstrated its ability to delay senescence in flowers and

leaves while also reducing ethylene biosynthesis. MAP storage at 5°

C, using polypropylene (24) and high-density polyethylene (24),

was found to enhance the preservation of Gerbera flowers. A vase

life evaluation offlowers stored at PAP revealed reduced weight loss,
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high water uptake, and larger flowers than those not stored at PAP

(Patel and Singh, 2009). Furthermore, the MAP system was found

to extend the lifespan of tulip flowers significantly when stored at 0°

C for 20 days. A floral arrangement stored in MAP outperformed

one packaged in regular packaging, as demonstrated in Figure 3

(Aros et al., 2017).

In addition, the lifespan of Gladiolus spikes was successfully

extended when stored at 3°C–4°C, for 18 days, in either

polypropylene or low-density polyethylene (Jhanji and Dhatt,

2017). The structure of the flower affects the efficiency of MAP.

The application of MAP treatment to carnations, stored for 7 days

at a temperature of 5°C, resulted in significant reductions in weight

loss, decay, and visual quality deterioration (Kou et al., 2012).

Conversely, the same treatment negatively affected the visual

quality of snapdragons and increased weight loss (Kou et al.,

2012, Kou et al., 2012). In addition, marigold flowers (Tagetes

erecta L.) stored in MAP at 23°C for 8 days exhibited significant

weight loss reduction and color preservation (Pal et al., 2016). The

MAP treatment utilized polyethylene films, low-density

polyethylene films, high-density polyethylene films, polyvinyl

chloride films, and polypropylene films. All films were kept at 13°

C and 95% relative humidity. MAP films significantly decrease

anthocyanin content, respiration rates, and weight loss.

Polypropylene film, among the conventional packing types,

demonstrated the longest storage life, at 18 days, while ordinary

conventional packaging had the shortest, at 9 days (Yimyong and

Soni, 2014). It was possible to store spikes ofOrnithogalum for up to

3 days at 4°C in MAP with cellophane (Yimyong and Soni, 2014).

From the aforementioned findings, it is evident that the adaptability

of various flower species to the MAP environment varies.

It can be divided into two types based onMontanez et al. (2010):
1. Active MAP: It consists of an evacuated package with the

flowers inside and an infusion of the desired

gas composition.

2. Passive MAP: Traditional methods are generally employed

during the initial stages of packaging, which are subsequently

substituted with more advanced methods. The permeability

of a film and the rate of flower respiration are major

contributors to this phenomenon. MAPs exert an influence

on a process in both active and passive forms, primarily

influencing gas transmission through the packaging

(Moradinezhad and Dorostkar, 2021).
2.1.1 Active MAP of cut flowers
In recent times, passive MAP has been utilized to considerably

extend the vase lifespan of cut flowers. Fresh flowers cannot be stored

and distributed in this way because of their limitations regarding

maintaining the desired environment. Therefore, the shortcomings of

passive packaging are being rectified via the activeMAPmethod. This

method (MAP) involves absorbing or scavenging undesirable

compounds like CO2 and O2, removing excessive water, and

scavenging ethylene and antibacterial substances. Other active

systems may release or introduce into the package headspace
FIGURE 2

Overall heat transfer process in a modified atmosphere packaged
fresh product. *Continuous phenomena within and around the
packaged product (Belay et al., 2016).
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compounds such as preservatives, CO2, antioxidants, and other

chemicals (Yousuf et al., 2018).

The active MAP technique employs the flushing of packages

with a gas mixture whose composition varies depending on the

respiration rate and permeability of the film (Ghidelli and Pérez-
Frontiers in Plant Science 05
Gago, 2018). In addition, a technology that embeds an ethylene

scavenger into active packaging could prolong the shelf lives of

fruits, vegetables, and cut flowers. An ethylene scavenger can be

either an absorber (which absorbs and entraps ethylene) or a

scavenger (which absorbs water through the chemical reaction
A

B

FIGURE 3

(A) Pictures of the evolution of the vase life of 10 tulip flowers each (composed of a mixture of eight cultivars) after storage at 0°C for 20 days and
31 days using active and passive modified atmosphere packaging (MAP) and cellulose film (conventional) (Aros et al., 2017). (B) Modified Atmosphere
Packaging materials and their usage.
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between two materials) (Gaikwad et al., 2020). Furthermore,

antimicrobial packaging enhances food’s nutritional and sensory

qualities, with minimal preservation techniques needed (Vermeiren

et al., 2000; Sung et al., 2013). In addition to failing to demonstrate

benefits, commercial trials lack valid controls, which have clouded

the results’ credibility. There have been many studies looking at the

effectiveness of sealed packages (such as salad packages) for single

flowers and small bouquets, but while the results have sometimes

been promising, they are limited to a small number of flowers or

even a few specific species and therefore have very limited general

application (Reid and Jiang, 2012). Research has been conducted to

elucidate the reasons behind unsuccessful implementations of

controlled atmosphere storage (Yahia, 2009). Moreover, as

temperatures rise (10°C, 15°C), petals show a decrease in

respiration. Technological advancements can broaden the

application of controlled atmosphere (CA) to fresh flowers,

enhancing cost-effectiveness during transportation and storage

(Kader, 2003).

In another study, a MAP film filled with 5% CO2 and 2% O2 was

wrapped around orchid flowers in an active MAP experiment. In

contrast, orchid flowers were stored passively without CO2 or oxygen

under passive MAP conditions. The orchid flowers were stored at a

temperature of 13°C and a relative humidity of 95% in the dark. In

active MAP, orchid flowers were stored for 9.33 days. In normal

atmosphere conditions, orchid flowers are stored for 7 days (0.03%

CO2 and 21% O2) (Poonsri, 2021).

2.1.2 Passive modified atmosphere packaging for
cut flowers

The rate of respiration and film permeability are key factors

influencing the impact of passive MAP (Ghidelli and Pérez-Gago,

2018). In the process of passive modified atmosphere (MAP)

storage, gases are partially modified while in storage, rather than

being completely altered. MAP is helpful aside from reducing

respiration. Despite their widespread use in commercial

applications, such as cut flower storage, they have not achieved

widespread commercial success. Several studies suggest an

increased lifespan postharvest for Gladiolus and cut roses

although these findings have yet to be substantiated through

commercial trials. Packaging materials play a passive role in

preserving a product’s freshness. They naturally diffuse gases to

create the desired atmosphere, and this can be achieved through the

use of barrier packaging films. Diverse types of film materials are

used to produce passive preservation. In a passive MAP state,

significant quantities of carbon dioxide and reduced amounts of

oxygen are produced over time due to a high respiration rate and

gas permeability of the packaging film. Achieving optimal

atmospheric conditions necessitates a balance in the permeability

of the packaging film and the respiration rate of the product (Brody

et al., 2010). Passive MAP retains flowers in plastic wrap without

contact with CO2 or oxygen. Flowers are wrapped in MAP plastic

wrap (without CO2 or oxygen) to preserve them. Poonsri (2021)

reports that passive MAP flowers are wrapped in MAP plastic

without carbon dioxide and oxygen (CO2 and O2). The experiments
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were executed at a temperature of 13°C, under 95% relative

humidity. Furthermore, the biochemical parameters studied

included anthocyanin content, protein degradation, amino acid

metabolism, and electrolyte leakage, and the biochemical

parameters studied included anthocyanin content, protein

degradation, amino acid metabolism, and electrolyte leakage. In

their study, Fadda et al. (2020) explored the effectiveness of passive

MAP at 5°C in the chemical properties of Calendula flowers. The

microperforated film used in MAP with microscopically shaped

holes prevents bacterial growth and preserves the visual and

nutritional quality of Calendula petals in storage at 5°C for up to

10 days. It can be concluded that low humidity, despite reducing

weight, adversely affects flower freshness and hastens the

degradation of total phenols and carotenoids. In a study, Patel

and Singh (2009) conducted an experiment to determine the effects

of passive MAP and storage temperature on the quality of Gerbera

flowers. The application of polypropylene and high-density

polyethylene passive MAPs at 5°C significantly reduced vase

bending and weight loss. These outcomes paved the way for

extended vase life and postponed petal senescence, attributable to

polypropylene and high-density polyethylene MAPs.

According to the study of Yahia (2009), orchids stored in PP

packaging exhibited the longest average storage life at 15.66 days.

Decreasing oxygen levels during storage could induce elevated levels

of carbon dioxide, thereby affecting ethanol production and

respiration rate. Upon the successful completion of the control

experiment after 6 days, ethylene levels steadied at 13.22 ppm,

leading to wilting, abscission, and senescence (Poonsri, 2020). Cut

flowers are said to have an extended shelf life when passive MAP is

used in conjunction with low temperatures, as reported by Yahia

(2009) and Poonsri (2020).

Additionally, Singh et al. (2009) analyzed the preservation of

jasmine flower buds using polypropylene film packed under

passive modified atmospheres (MAPs). Based on a comparison

between MAP-stored and non-MAP-stored buds, buds stored in

MAP appeared to retain greater freshness with a lower

physiological loss of weight (PLW%) and a longer shelf life. The

percentage of brown and wilted buds increased with storage

temperatures as high as 10°C and storage times as long as 20

days. The temperature during storage influenced the freshness of a

bud as well. Temperature is also a factor affecting the freshness of

a bud. In both MAP-treated and MAP-less buds, freshness was

completely lost after 10°C storage. Chrysargyris et al. (2018)

reported that harvested Tagetes flowers survived for up to 14

days under passive modified atmosphere packaging (with or

without ethanol) under different salinities (0, 50, and 100 mM).

A 14-day storage period at 100 mM of NaCl reduced the weight of

the flowers and changed their marketability. The presence of salt

during harvest and/or ethanol during storage induces non-

enzymatic mechanisms (e.g., proline content) as well as

enzymatic mechanisms (catalase). In an experiment, scientists

found that short-term exposure to salinity or ethanol may

enhance carotenoid and anthocyanin levels, which makes them

potentially beneficial nutraceuticals (Figure 4).
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3 Controlled atmosphere packaging
for cut flowers

Physiological changes and respiration can be slowed down in

three ways. The first method is to lower the ambient temperature,

the second method is to reduce the oxygen, and the third method is

to increase the amount of carbon dioxide. In the MAP method,

these three steps are also followed. However, there is one major

difference between the MAP and the CAP: the management of

changes throughout the flowers’ life (durability). In other words, the

MAP method cannot control what happens to the product after

packaging or respiration.

However, the best combination of retaining gases in the package

is achieved by changing three gases. CA storage combined with

refrigeration reduces respiration and delays yellowing and

quality changes.

There are some functions for CA generation and maintenance,

including O2 removal, excess CO2 removal, and the addition of air

to replace O2 consumed by respiration. In addition, there is the

removal of C2H4 and, in some cases, the addition of CO2. There are

several factors to consider when selecting appropriate functions and

devices for the generation and maintenance of CA, including the

storage conditions required for the products and the location of

storage. Scientists have shown that CA storage affects flower quality,

including positive and negative, and may also have no effects. This

includes reductions in physiological processes consisting of C2H4

production, respiration rate, volatile compounds, phytochemical

compounds, color, etc. However, tolerance for individual flower

varieties needs to be considered (Patel and Singh, 2009; Bodbodak

and Moshfeghifar, 2016; Singh et al., 2021).

The benefits of controlled atmosphere packaging (CAP) are

as follows:
Fron
a) Carbon dioxide (CO2) levels are increased preventing mold

and bacteria growth.
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b) The amount of oxygen (O2) in the atmosphere decreases.

c) Monitoring nitrogen levels: Nitrogen is an inert gas that

inhibits respiration and enzyme activity.

d) It creates a low storage temperature.

e) It prevents high levels of internal ethylene from creating

senescence and death-inducing changes.
Controlled atmosphere (CA) storage significantly impacts the

postharvest quality and marketability of cut flowers. Increased CO2

concentration leads to a reduction in respiration rate, which benefits

product quality maintenance (Burana et al., 2015). One of the

primary limitations of CA storage of flowers is the fluctuation in

optimal levels of CO2 and O2 required for various flowers (Gupta

and Dubey, 2018). Moreover, an environment of low O2

concentration can also decelerate the respiration rate, thereby

preserving flower quality (Cefola et al., 2016). In addition, under

controlled atmosphere storage, changes in metabolism patterns,

respiratory enzymes, and membranes were substantially delayed,

inhibiting the premature senescence of cut flowers (Defilippi et al.,

2006). It appears that there have been a limited number of studies

examining controlled atmosphere storage of cut flowers. Further

research is needed to explore the relationship between controlled

atmosphere packaging and flower cooling. Globally, research in this

sector is limited, necessitating the development of advanced

postharvest technology, including cold storage and controlled

atmosphere packaging for cut flowers. A controlled atmosphere

serves as a complement to refrigeration, thus enhancing the

efficiency of refrigerated storage (Akbudak et al., 2005).

Dias et al. (2017) demonstrated that CA containing 3% O2 and 6%

CO2 at 1°Cmaintained a significant quality for storage periods between

14 and 21 days. It is suitable for cut rose storage under a controlled

atmosphere and could also be used for rose export procedures. CA

concentrations were associated with higher flower quality, longer green

foliage, and a lesser incidence of Botrytis cinerea. As a result, this

indicates that the conditions for storing cut roses are adequate.

As part of their study, Burana et al. (2015) assessed how short-

term CA affected the vase life of cut carnations, prairie gentian, and

chrysanthemum flowers at 5°C with elevated CO2 concentrations of

10%, 15%, or 20%, followed by 23°C water following senescence.

Based on this study, short-term CA can decrease ethylene production

and prolong vase life. It would be helpful to conduct more studies in

order to optimize the levels, durations, and temperatures of CO2

treatment. A study by De and Singh (2016) found that in CA storage,

orchid flowers are stored in gas-tight cooling chambers using cooling

systems designed to produce a higher level of CO2 and a lower level of

oxygen in order to reduce respiration rates, ethylene production, and

reactions. It is usually recommended to keep CO2 storage levels above

4% and not below 0.4%.

Furthermore, in CA storage, the gaseous mixture composition is

altered and stored differently from that of the ambient atmosphere.

It is generally recommended to maintain cut flower quality in a

storage unit by retaining CO2 above 1% and oxygen below 8%. In

addition, it is recommended to maintain a specified temperature

and relative humidity. Ethylene production and respiration rates are

reduced when the concentration of these gases is modified within
FIGURE 4

Controlled Atmosphere Packaging and their materials.
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the tolerance level of each species. Concentrations that are too high

or too low, however, may increase decay and senescence. There has

been little use of CA storage for storing cut flowers. CA storage for

cut flowers has only been reported in a few studies, including the

study by Saltveit (1997). It has been shown that in the presence of

elevated CO2/low oxygen atmospheres, fresh flowers are delayed

from undergoing undesirable postharvest changes, such as wilting

and aging. In a controlled atmosphere at 2°C, cut Red Gala rose

flowers lasted 45 days in a controlled atmosphere (5% CO2 and 4%

O2). A controlled atmosphere kept at 2°C (5% CO2 and 4% O2) for

45 days retained red Gala roses’ vase life slightly longer than air-

stored roses, as reported by Poonsri (2015). Recent advances in CA

storage technology have led to several improvements. In some

polymeric packaging films and containers, certain additives are

used to modify the headspace atmosphere. The CA storage

technology has undergone several improvements in recent years.

Headspace atmospheres can sometimes be modified with the addition

of certain additives to polymeric packaging film or containers. Active

modified atmosphere packaging describes this type of packaging. It

was developed so passiveMAP deficiencies can be eliminated through

active MAP. It is possible to use an oxygen scavenger when a film is

effective as a moisture barrier but not as an oxygen barrier. Pack

oxygen will be excluded in this way. In the same way, MAP can be

controlled by carbon dioxide absorbents and emitters as well as

ethanol emitters and ethylene absorbents. Flowers are placed along

with appropriate absorbent materials. In addition to modifying

package headspace, they also extend the flowers’ shelf life. It is

believed that low internal oxygen concentrations have beneficial

effects on reduced respiration and reduced ethylene sensitivity

(largely due to elevated CO2 levels). CA can be established rapidly

(0.7% to 1.5%), ethylene-free, and programmed (or sequential) (such

as storing in 1% oxygen for 2 to 6 weeks followed by 2% to 3% oxygen

for the rest of the storage period) when low O2 concentrations (0.7%

to 1.5%) are accurately monitored and controlled. Kader (2003)

explored dynamic CA in which the levels of CO2 and O2 are

adjusted based on monitoring some attributes.

A summary of most studies that focused on the responses of

plant species of cut flowers to different packaging and average

storage life are listed in Table 1.
4 Future generation of packaging
materials for cut flowers

4.1 Nanotechnology packaging

In modern times, passive or traditional flower packaging is

being replaced by innovative, interactive, and responsive flower

packaging designed with nanotechnology. Several factors have

contributed to the development of smart packages aimed at

extending flower shelf life, such as environmental awareness,

advances in new knowledge (such as nanotechnology and

biotechnology), and consumer lifestyle changes in flower

production, sales practices, and consumer lifestyles. Mlalila et al.
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(2016) and Salgado et al. (2021) observed that it is important to

maintain innocuousness and quality while also caring for

the environment.

The utilization of nanotechnology in the synthesis of

nanoparticles has paved the way for their use in food packaging.

Consequently, it is expected to enhance the properties of food and

flower packaging, enabling them to retain freshness for a longer

time. Significant changes in packaging material properties have

been achieved using nanoparticles. Commercially, a variety of

nano-based packaging materials are also available, along with

enhanced, active, and intelligent packaging, guaranteeing food

quality and traceability. The ability of nanoparticles to scavenge

oxygen, be UV-impervious, and possess antimicrobial properties

makes them excellent candidates for use in nanocomposites. Due to

their notable surface area to volume ratio, nanoparticles can be

toxic. Hence, it is imperative to understand their migration and

interaction with polymer matrices when developing packaging

materials (Ashfaq et al., 2022).

Nanomanufacturing is the process of manufacturing,

manipulating, identifying, and producing nanomaterials (1–100

nm). Packaging polymers can be modified to improve their

strength, durability, flexibility, barrier, reuse properties, and

durability by adding additives. This technique can significantly

extend the shelf life of food products and cut flowers.

Nanotechnology has recently found its way into the food

industry, where it is being utilized to develop innovative

packaging materials. Nanoparticles (NPs) can be used as

reinforcements to improve the barrier and mechanical properties

of polymers. The application of nanoparticles to biopolymers

reduces the demand for raw materials (more sustainable), thereby

reducing dependence on petroleum (Bumbudsanpharoke et al.,

2015; Souza and Fernando, 2016; Cerqueira et al., 2018a; 2018b;

Shukla et al., 2019).
4.1.1 The most commonly used nanoparticles in
food packaging and its potential to be used as
flower packaging

Integration of nanotechnology with traditional food packaging

materials, such as films and containers, can preserve food quality

and extend shelf life (Tsagkaris et al., 2018). In addition,

nanotechnology can be employed to create superior packaging,

characterized by improved physical, mechanical, and antibacterial

properties. Moreover, nanotechnology facilitates the development

of smart packaging, which can be monitored and controlled to

maintain ideal conditions for food products (Primožič et al., 2021).

Commercially available packaging materials are now used to

package cut flowers, but additional research is needed to enhance

their competitiveness.

The use of nanotechnology in food contact materials (FCMs) is

the largest current application of this technology in the food sector

and is divided into four main categories by Chaudhry et al. (2008): i)

FCMs with improved packaging properties (gas barrier, mechanical,

etc.) because of the incorporation of NPs; ii) “active” FCMs that
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gain additional properties such as antimicrobial or oxygen

scavenging through the incorporation of NPs; iii) “intelligent”

FCMs as result of the incorporation of nanosensors; and iv)

biodegradable polymer–nanomaterial composite biopolymers with

improved characteristics using nanofillers.

Among the latest innovations in the food packaging industry, the

use of biodegradable polymers reinforced with nanofillers is

highlighted due to its sustainable appeal. This matches consumers’

demand for more environmentally friendly products. This is because
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they are sustainable andmatch consumers’ desire for environmentally

friendly products (Figure 5) (Abdollahi et al., 2012; Tang et al., 2012).
4.2 Intelligent packaging

Gregor-Svetec (2018) predicts that smart packaging will

continue to be the fastest-growing market in the future due to its

unique, interactive, and customer-friendly features. Furthermore,
TABLE 1 Responses of plant species of cut flowers to different packaging and average storage life.

No. Crop Type of package Storage
hours/
days

Temperature Responses to package Source

1. Calendula Passive modified atmosphere packaging
(MAP) with microperforated film

10 days 5°C Overall (visual and nutraceutical)
quality is good

Fadda
et al. (2020)

2. Carnation
and
snapdragons

Modified atmosphere packaging (MAP)
sealed with a gas-permeable film

7 days 5°C Reduced weight loss and decay
incidence and maintained
visual quality

Kou
et al. (2012)

3. Carnation,
prairie
gentian,
chrysanthemum

Short-term controlled atmosphere 2 h 5°C and 23°C Prolong the vase life of ethylene-
sensitive flowers

Burana
et al. (2015)

4. Cultivars
of roses

Modified atmosphere plastic containers
(7.09 kPa CO2 and 13.17 kPa O2)

10 days 2°C Flower quality was good Zeltzer et
al. (2001)

5. Dendrobium
orchids

Modified atmosphere packaging (5% CO2

2% O2),
Controlled atmosphere
Normal package (NP)

28.33 days
18.15 days
11.67 days

Delaying the senescence Poonsri
(2015)
Poonsri
(2017)
Poonsri
(2020)

6. Gerbera Passive MAP 7 days 5°C, 10°C, and
15°C

Significantly lower physiological loss in
weight; improved flower size, petal
length, and width during vase life

Patel and
Singh (2009)

7. Jasmine Polypropylene packaging film for passive
MAP (MAP)

10 days 2°C Physiological reduction in weight loss Singh
et al. (2009)

8. Marigold
Tagetes

Passive modified atmosphere packaging
(with or without ethanol), when exposed
to salinity (0, 50, and 100 mM NaCl)

14 days Flowers survived, increasing the levels
of carotenoids and anthocyanins,
making them potential nutraceuticals

Chrysargyris
et al. (2018)

9. Marigold Low-density polyethylene (LDPE) bags, 8 days
of storage

23°C Significantly reduced weight loss and
retained color and overall appearance

Pal
et al. (2016)

10. Orchid Passive MAP, polypropylene packaging,
increase in CO2 and a decrease in O2

inside the packaging

15.66 days Longest average storage life Yahia and
Singh (2009)

11. Orchid Active MAP, the orchid flowers were
wrapped with MAP film filled with 5%
CO2 and 2% O2

9.33 days Flower size is longer Poonsri
(2021)

12. Ornithogalum
spikes

Modified atmosphere packaging
with cellophane

3 days 4°C Best for storage Dastagiri
et al. (2014)

13. Red Gala rose The flowers were stored in a controlled
atmosphere (5% CO2 and 4% O2)

45 days 2°C Longer vase life Poonsri
(2015)

14. Roses
‘Avalanche’

Controlled atmosphere (3% O2 and
6% CO2)

14 days and
21 days

1°C Significantly higher flower quality,
longer green foliage, and minor
Botrytis cinerea incidence

Dias
et al. (2017)

15. Tulip Modified atmosphere packaging 20 days 0°C Significantly better and successfully
extended postharvest life

Aros
et al. (2017)
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packaging technologies must be innovative to address a variety of

challenges. These technologies can also be applied for intelligent

and active packaging of cut flowers. Flowers are usually packaged to

meet four basic functions: protection or preservation, containment,

convenience, and communication. As packaging grows smarter and

more active, these basic functions are improved. Nanotechnology in

food packaging produces clever, interactive, and responsive food

packaging with enhanced functionalities that move from passive or

traditional food packaging to active or innovative food packaging

(Wilson, 2007; Mlalila et al., 2016; Gregor-Svetec, 2018).

In 2004, the European Commission defined intelligent

packaging materials as “materials and articles that monitor the

condition of packaged foods or the surrounding environment”

(Ghaani et al., 2016). A thorough evolution is taking place in

both of these fields, which leads to ever-changing definitions of

intelligent and active packaging. Active packaging refers to a

package that adjusts to suboptimal physiological or

environmental conditions to improve them. In addition to

barcodes, radio frequency identification tags (RFIDs), sensors,

and indicators, intelligent packaging is also called smart

packaging since it is equipped with smart devices for

communicating, monitoring, sensing, recording, tracking, and

indicating food safety, quality, and history during the supply

chain (Wilson, 2007; Kalpana et al., 2019). To become more

efficient and effective, intelligent packaging systems are being

developed. A novel packaging idea will ensure the quality of

packed food during shipping and storage by maintaining the food

state (Kaushani et al., 2022).

In addition, intelligent packaging relies on the ability to

communicate information gathered by the sensor. A variety of

sensors have been developed based on chemical, enzymatic,
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immunochemical, or mechanical reactions. It is possible to place

these sensors on or inside the package. Furthermore,

communication of time and temperature conditions and history,

oxygen and carbon dioxide levels, package leaks, spoilage, ripeness,

freshness, microbial growth, and specific foodborne human

pathogen identification can be accomplished and detected with

these tools. In addition, nanosensors can be used to monitor the

external and internal conditions of fresh and processed foods, an

important application of nanotechnology (Wilson, 2007; Fuertes

et al., 2015; Caon et al., 2017). One type of intelligent packaging is

the use of freshness indicators, which are small devices printed on

packaging materials or attached to package labels. It is usually

possible to detect spoilage or the freshness of packaged goods by

observing the color change of the packaging. Various quality-related

metabolites, which are closely related to the type of product,

microbial growth, packaging material, and storage conditions,

were investigated by Butler (2012) and Fang et al. (2017).

Furthermore, an intelligent package responds to changing

external or internal stimuli in response to an “on/off” switch, to

communicate the product’s status to the consumer (Yam et al.,

2005). The 2016 Strategic Research and Innovation Agenda

recommends that the European Technology Platform (Food for

Life) conducts research on smart intelligent/communicative

packaging. A chromogenic marker’s simplicity has some

advantages and some limitations, including a lack of specificity

(false positives or false negatives). Also, poor quality is not

necessarily associated with certain target metabolites. It is crucial

to correlate metabolite concentrations with organoleptic quality and

safety. Time–temperature indicators (TTIs) are also innovative

chromogenic indicators. Intelligent packaging includes food

packaging with temperature indicators. Real-time monitoring

determines the impact of temperature on food quality (Kerry and

Butler, 2008; Zhang et al., 2016).

Moreover, these three types of technologies are used in

intelligent packaging, depending on the type of product.

Intelligent packaging uses sensors, indicators (such as gas sensors,

freshness indicators, and temperature indicators) (Figure 6), and

radio frequency identification (Vanderroost et al., 2014; Müller and

Schmid, 2019). Nopwinyuwong et al. revealed a packaging system

(or part of the package) that continuously monitors metabolites

related to food spoilage to determine food freshness. As a result of

the decrease in pH, this indicator’s color changed from basic to

acidic (Nopwinyuwong et al., 2010).

In addition, RFIDs and application-specific integrated circuit

(ASICs) are used to identify and monitor temperatures. Intelligent

packaging is now possible thanks to communication systems.

Information about packages can be communicated through this

technology. This technology allows packages to interact with people

or appliances remotely to receive information about the condition

of the packages. At present, wireless communication for packaging

is costly, which limits its use in general. Despite this, costs remain

low, and technology applications in the future should only be

limited by our imaginations. An alternative to RFID packaging is

ASIC technology. Having a custom-designed silicon chip, ASIC is

considered a simpler and more economical technology. RFID

technology has an economic threshold, which ASIC devices may
FIGURE 5

Nanotechnology Packaging’s materials and their usage.
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overcome. Several studies are underway to deal with microbial

contamination of flower containers using these two approaches.

Scientists worldwide are investigating the release of volatile

antimicrobial compounds into flower storage containers to

minimize microbial growth. It is also possible to develop flower

containers with antimicrobial compounds. To reduce microbial

growth in flower storage containers, researchers are studying

volatile antimicrobial compounds. Additionally, antimicrobial

compounds are added to plastic plant containers. There has been

a general problem with such technologies: flowers can become

tainted if high enough concentrations of volatile antimicrobial

compounds are administered in the headspace—even though they

may also be effective in reducing microbial growth and extending

flower freshness (Wilson, 2007).

Finally, intelligent packaging constitutes a burgeoning

technology in the realm of flower packaging. Despite its nascent

status and lack of full-scale commercial viability, intelligent

packaging holds tremendous potential to enhance cut flower

safety, quality, and traceability. Furthermore, its utility for

consumers can be markedly enhanced. The system enables

communication with the rose product and serves as a conduit for

early warnings to the consumer, regardless of its lack of sensor

capability for external or internal environment detection.
4.3 Green/sustainable packaging system in
ornamental cut flowers

The concept of sustainable packaging integrates all phases of the

supply chain and encompasses a wide range of eco-friendly

materials, practices, and designs. To improve the quality of our

ecosystem, we must reduce pollution due to plastics and other non-

biodegradable items. Packaging sustainability is about more than

just the product itself—it is about the entire supply chain. In

addition to obtaining non-toxic materials and employing eco-
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friendly production methods, we will expedite the processing

procedure, lower the cost of materials and labor, and use eco-

friendly packaging.

Plastics and non-biodegradable packaging materials are

becoming increasingly unpopular among customers today. It is

essential to package flowers properly since they are perishable goods

that must be kept at a certain temperature and hydrated during

transportation. Additionally, businesses are developing eco-friendly

and non-toxic containers and packages, such as polymeric

formulations, which can last longer and be cross-contaminated-

free. In the first layer, a biodegradable film rehydrates the flowers by

utilizing moisture that has been drained from them. The film layer

prevents moisture from accumulating in the flower stems and

preserves oxygen levels in the flowers. In order to prevent

excessive water use while transporting flowers, sustainable flower

packing is the goal. Another goal is to be able to transport twice as

many flowers per truck (Matthews et al., 2021).

The majority of paper packaging is made out of wood, a

renewable resource. This substance is usually mixed with other

materials, such as metal or plastic because it is easily polluted. As

long as recyclable packaging is clean and does not cling to other

materials, such as drink cartons, it can be transformed into fresh,

reusable paper or cartons. The concept of circular packaging is

related to sustainable packaging. The environment is protected

without sacrificing quality with eco-friendly packaging. However,

this still leads to linear processes, like burning to recycle. As shown

in Figure 7, circular packaging keeps items and resources useful and

valuable at all times. Therefore, when choosing a sustainable

packaging material, it is important to consider the whole value

chain (Amin et al., 2022; Ribeiro et al., 2024).

The adoption of biodegradable advanced packaging systems is

crucial to keep up with the recent cut flower boom, including MAP,

CAP, composite packaging, antimicrobial/antifungal packaging

(AP), edible packaging (EP), and nano packaging (NP). Plastic-

based films are minimized in favor of biodegradable and edible films
FIGURE 6

Intelligent Packaging materials and their usage.
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and coatings as a result of stringent environmental legislation. A

good example of an active packaging technology is MAP.

Primary packaging is made of plastic since it is light, flexible,

and reasonably priced. Plastics, however, are not all recyclable.

There are a variety of plastic polymers that make up most plastics.

Recyclable plastics also consist of many layers, which complicates

the recycling process. Multilayered plastic packaging includes

oxygen barriers as well. In addition to providing flowers with the

best protection possible, these packaging options minimize flower

waste and prolong the vase life of the flowers. Moreover, raw

materials are used more efficiently and CO2 emissions are

reduced (Amin et al., 2022; Yadav et al., 2022; Malakar et al., 2023).

These techniques are rarely used for flower species. In addition

to other physiological bottlenecks, this may be due to a lack of

knowledge, negligence, and suppression. A novel or advanced

packaging system that is resistant to chilling stress should be

considered for international exports of cut flowers since it is one

of the major setbacks.
4 Future perspectives

The optimization of each flower type is an essential prerequisite

for an intelligent packaging system. For example, ASICs are being

explored as a potential alternative to RFID packaging. This

optimization would enhance the microbicidal effects of this

technology, thereby improving treatment uniformity. Also,

intelligent packaging provides information regarding quality and

environmental changes within food, and cut flower information is
Frontiers in Plant Science 12
centered on parameters such as time and temperature, which includes

sensors or indicators for freshness, time–temperature, integrity, etc.

Furthermore, the integration of appropriate cooling systems into the

storage chamber is essential to minimize temperature buildup. More

research is required in this area. Currently, there is no market for

commercial packaging that promises pathogen removal from flowers.

Significant progress has been made in these areas, but the benchmark

for these technologies’ performance should remain high. The

effectiveness of technologies that detect or eliminate pathogens

should be guaranteed at all times for consumers to confidently rely

on them to assess the safety of flowers they smell. Researchers

working on intelligent and active packaging face challenges. The

adoption of cut flower trading would not only enhance profitability

but also stimulate scientific advancement.
5 Conclusions

As a concluding point, traditional packaging methods failed to

meet the stringent consumer expectations for product quality.

Instead, they focus on quality (maintaining flower freshness),

safety (ensuring microbial control), and durability (extending vase

life). A range of novel packaging techniques are available, such as

MAP, CAP, intelligent packaging, and nanotechnology packaging.

Innovative flower packaging today utilizes nanotechnology. With

this technology, packaging becomes interactive and responsive,

replacing traditional passive methods. Furthermore, severe

environmental legislation has encouraged a shift away from

plastic-based films in favor of biodegradable or edible alternatives.
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FIGURE 7

The closed-loop flower waste sustainable system.
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The significant environmental impact can be significantly mitigated

through packaging that is either reused or recyclable.
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Montanez, J. C., Rodrıǵuez, F. A. S., Mahajan, P. V., and Frıás, J. M. (2010).
Modelling the effect of gas composition on the gas exchange rate in perforation-
mediated modified atmosphere packaging. J. Food Eng. 96, 348–355. doi: 10.1016/
j.jfoodeng.2009.08.007

Moradinezhad, F., and Dorostkar, M. (2021). Effect of vacuum and modified
atmosphere packaging on the quality attributes and sensory evaluation of fresh
jujube fruit. Int. J. Fruit Sci. 21, 82–94. doi: 10.1080/15538362.2020.1858470

Müller, P., and Schmid, M. (2019). Intelligent packaging in the food sector: a brief
overview. Foods 8, 16. doi: 10.3390/foods8010016

Nopwinyuwong, A., Trevanich, S., and Suppakul, P. (2010). Development of a novel
colorimetric indicator label for monitoring freshness of intermediate-moisture dessert
spoilage. Talanta 81, 1126–1132. doi: 10.1016/j.talanta.2010.02.008

Pal, S., Kumar Ghosh, P., and Bhattacharjee, P. (2016). Effect of packaging on shelf-
life and lutein content of marigold (Tagetes erecta L.) flowers. Recent patents
Biotechnol. 10, 103–120. doi: 10.2174/1872208310666160725195516

Patel, T., and Singh, A. (2009). Effect of different modified atmosphere packaging
(map) films and cold storage temperatures (5, 10 and 15â°c) on keeping quality of
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