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Pan-genome studies are important for understanding plant evolution and guiding the breeding of crops by containing all genomic diversity of a certain species. Three short-read-based strategies for plant pan-genome construction include iterative individual, iteration pooling, and map-to-pan. Their performance is very different under various conditions, while comprehensive evaluations have yet to be conducted nowadays. Here, we evaluate the performance of these three pan-genome construction strategies for plants under different sequencing depths and sample sizes. Also, we indicate the influence of length and repeat content percentage of novel sequences on three pan-genome construction strategies. Besides, we compare the computational resource consumption among the three strategies. Our findings indicate that map-to-pan has the greatest recall but the lowest precision. In contrast, both two iterative strategies have superior precision but lower recall. Factors of sample numbers, novel sequence length, and the percentage of novel sequences’ repeat content adversely affect the performance of all three strategies. Increased sequencing depth improves map-to-pan’s performance, while not affecting the other two iterative strategies. For computational resource consumption, map-to-pan demands considerably more than the other two iterative strategies. Overall, the iterative strategy, especially the iterative pooling strategy, is optimal when the sequencing depth is less than 20X. Map-to-pan is preferable when the sequencing depth exceeds 20X despite its higher computational resource consumption.
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1 Introduction

In 2005, Tettelin et al. introduced the pan-genome concept to encompass the entire gene set in Streptococcus agalactiae (Tettelin et al., 2005). Since then, this concept has gained widespread application in characterizing the collective genes of a species, encompassing core, dispensable, and private components. The advancement of sequencing technology, especially the prevalent next-generation short-read sequencing, has enabled large-scale pan-genome analysis in plants, extending beyond its initial application in microbes. By 2007, the pan-genome concept was introduced to maize (Morgante et al., 2007). After that, plenty of studies have delved into the plant pan-genomes of diverse species, such as poplar (Zhang et al., 2019), Brachypodium distachyon (Gordon et al., 2017), Brassica oleracea (Golicz et al., 2016), Brassica napus (Hurgobin et al., 2018), pepper (Ou et al., 2018), Medicago (Zhou et al., 2017), rice (Zhao et al., 2018), soybean (Li et al., 2014), hexaploid bread wheat (Montenegro et al., 2017), tomato (Gao et al., 2019), and sunflower (Hübner et al., 2019). These plant pan-genomics studies are pivotal in pinpointing key novel non-reference genes or sequences related to processes like signaling (Golicz et al., 2016), defense mechanisms (Gordon et al., 2017), resistance pathways (Bayer et al., 2019), important agricultural traits (Gao et al., 2019), and heterosis (Zhang et al., 2016).

Microbial pan-genome studies have benefited from well-established toolkits like Roary (Page et al., 2015), PGAP (Zhao et al., 2012), PanGP (Zhao et al., 2014), PanOCT (Fouts et al., 2012), and PANNOTATOR (Santos et al., 2013), while there is not a uniform strategy or pipeline for plant pan-genome construction. There are three plant pan-genome construction strategies based on next-generation sequencing short-reads. They can be summarized as the iterative individual (Golicz et al., 2016; Hurgobin et al., 2018; Hübner et al., 2019), the iterative pooling (Montenegro et al., 2017), and the map-to-pan (Hu et al., 2017; Sun et al., 2017; Zhou et al., 2017; Ou et al., 2018; Gao et al., 2019; Qin et al., 2021). All these three strategies construct a pan-genome based on a high-quality reference genome. For map-to-pan, the whole genome of each accession included in the pan-genome analysis is assembled and then aligned to the reference genome to obtain non-redundant novel sequences not existing in the reference genome. Unlike map-to-pan, unmapped or poorly mapped reads with reference genomes are first extracted. In the iterative pooling method, unmapped or poorly mapped reads from each accession are pooled and assembled in a metagenomic way. In the iterative individual approach, unmapped or poorly mapped reads are assembled directly for each accession, pooled, and removed redundancy. Two iterative strategies are used for pan-genome construction with large-scale samples due to their low requirement for low sequencing depth and computation resource consumption. In contrast, whole genome sequencing and assembly are needed in map-to-pan, so map-to-pan is suitable for pan-genome construction with a few samples. Some pan-genome studies have incorporated long reads from third-generation sequencing platforms, like in rice (Qin et al., 2021), soybean (Liu et al., 2020), sorghum (Tao et al., 2021), maize (Hufford et al., 2021), and Raphanus sativus (Zhang et al., 2021), while their widespread adoption is constrained by high sequencing expenses, especially in plant pan-genome projects with large-scale samples. Given the vast availability of published short-read sequencing data for numerous plant species, it is prevalent to construct plant pan-genomes based on next-generation short-reads.

Here, we thoroughly benchmark these three strategies for plant pan-genome construction, factoring in different sequencing depths and the number of samples included. We also compare the efficiency of these three strategies in recovering novel non-reference sequences with different lengths and repetitive content percentages. Additionally, we compare computational resource consumption among these three strategies, encompassing both time and memory. Our in-depth evaluation aims to shed light on the effectiveness of these three pan-genome construction strategies under varying conditions and guide researchers in choosing the optimal pan-genome construction strategy.




2 Materials and methods



2.1 Data sets

Our research collected 20 high-quality chromosome-level genome assemblies, gene annotation files, gene sequences, protein sequences, and PacBio long reads from the rice XI subtype (Qin et al., 2021) (Supplementary Table 1). We categorized these samples into five groups with 5, 8, 10, 15, and 20 samples, respectively. The group with 8 samples included all subtypes from XI-1B. It was used for benchmarking the influence of various sequencing depths, lengths, and repeat content percentages of novel sequences on these three strategies. The information from the other four groups was compared to examine how the sample number included affected the performance of these three strategies.

The ART-Illumina read simulation tool (Huang et al., 2012) was used to generate the simulated next-generation sequencing short-reads with depths of 5X, 10X, 20X, 30X, and 50X, with 20 high-quality chromosome-level genome assemblies as the reference. To evaluate the limitations of simulated reads, the real data of next-generation sequencing short-reads for the 9311 sample was downloaded from GSA (https://ngdc.cncb.ac.cn/gsa/) under Project ID PRJCA002103 and RunID CRR279354. These sequences were aligned to the reference genome using BWA-MEM (Li, 2013). MSU was used as a reference genome, and its genome sequence was downloaded from RiceRC (https://ricerc.sicau.edu.cn/RiceRC/download/downloadBefore). This genome assembly produced by the Rice Genome Annotation Project was initially located at the Institute for Genomic Research. It is now at Michigan State University (MSU) (Ouyang et al., 2007). Finally, sequencing depth, genome coverage, and other characteristics were calculated using the BAMDST toolkit (https://github.com/shiquan/bamdst). We generated the simulated sequencing data according to the average depth of real data for each chromosome. The characteristics of simulated data were calculated by the BAMDST toolkit and then compared with the characteristics of real data.




2.2 Construction of the testing data set

Three pan-genome construction strategies, iterative individual, iterative pooling, and map-to-pan, utilized simulated short reads to create a test dataset for each group with different sample sizes (Figure 1). Each strategy underwent identical data pre-processing, which involved eliminating reads with over five Ns, trimming adapters, removing low-quality bases from the 5’ and 3’ ends when the quality score was consistently below 20, and discarding reads shorter than 30 bp. All pre-processing tasks were executed using a Perl script developed in-house, which was deposited in BioCode with ID BT007415 (https://ngdc.cncb.ac.cn/biocode/tools/BT007415).




Figure 1 | Workflow of evaluation for three plant pan-genome construction strategies based on next-generation short-reads.



For map-to-pan, high-quality reads were firstly collected for whole genome assembly using SOAPdenovo2 (Luo et al., 2012) through the eupan assemble linearK model in the EUPAN toolkit (Hu et al., 2017). The iterative k-mer was set to a range between 15 and 127 to optimize the assembly outcome. Secondly, the whole genome assembly of each sample was aligned to the reference genome via the MUMmer software (Kurtz et al., 2004). Those sequences not aligned with the reference genome with 90% identity and 90% coverage simultaneously were recognized as candidate novel non-reference sequences. Subsequently, each sample’s novel sequences were combined, and redundancy was eliminated using CD-HIT (Fu et al., 2012).

For the iterative individual, high-quality reads were initially mapped to the reference genome using BWA MEM (Li, 2013). Unmapped and poorly mapped reads and those with an edit distance of ≥ 8 were extracted for assembly by MEGAHIT (Li et al., 2015). Then, the contigs assembled from each sample were merged, and redundancy was removed with CD-HIT (Fu et al., 2012). For iterative pooling, high-quality reads were initially mapped to the reference genome using BWA-MEM (Li, 2013). Unmapped and poorly mapped reads with an edit distance of ≥ 8 were extracted and pooled. These pooling of unmapped or poorly mapped reads were assembled using MEGAHIT (Li et al., 2015).

For both iterative methods, the edit distance threshold was 8 to select poorly mapped reads. The length of almost all simulated reads was 83 bp, so if the edit distance was greater than 8, the mapping rate of a read to the reference genome was less than ~90%. They may be from highly diverse genomic regions of subspecies compared with the reference genome. So, these reads were also collected and combined with the unmapped reads for novel sequence assembly for two iterative methods.

Unlike the SOAPDENOVO2 for assembly in map-to-pan, we employed MEGAHIT to assemble those unmapped or poorly mapped reads in both iterative strategies to maximize the utilization of these reads. Since MEGAHIT was often utilized for microbial metagenome assembly, it performed better when reads exhibited greater heterogeneity, especially in iterative pooling, where unmapped or poorly mapped reads were pooled together for assembly.




2.3 Construction of the validated data set

The plant pan-genome consists of the gene-centric and sequence-centric pan-genome (Golicz et al., 2020). Here, novel genes identified from gene-based pan-genome and insertions identified from sequence-based pan-genome were combined as the validated data set.

For gene-centric pan-genome construction, there were two kinds of strategies including synteny-based, such as in rice (Qin et al., 2021), and gene clustering-based, such as in Brachypodium distachyon (Gordon et al., 2017) using GET_HOMOLOG-EST (Contreras-Moreira et al., 2017), soybean (Liu et al., 2020) using OrthoMCL (Li et al., 2003), rice (Shang et al., 2022) using OrthoFinder (Emms and Kelly, 2019). Besides, GENESPACE can cluster genes across multiple genomes (Lovell et al., 2022). Here, we used a synteny-based method. Protein sequences related to the longest gene transcript and information on the gene location for each of the 20 samples from Qin et al (Qin et al., 2021) were used for the gene-based pan-genome construction for each of the 5 groups. All genes of the nuclear genome’s 12 chromosomes from MSU (V.7.0 http://rice.plantbiology.msu.edu) were used as the base. Genes from a new genome were aligned against a reference gene set using BLASTP software (Altschul et al., 1990) and gene synteny was analyzed using MCSCANX software (Wang et al., 2012). Those genes that did not show synteny with the reference gene set were considered novel genes. These novel genes were then added to the former reference gene set to form a new reference gene set. These steps were repeated until all samples were included. The reference gene set and identified novel genes from the final step were combined as the pan-gene set. Novel genes from each step were combined and then aligned to the MSU reference genome using MUMmer (Kurtz et al., 2004). Genes with high similarity (identity ≥ 90% and coverage ≥ 90%) with the MSU reference genome were discarded to exclude the false positives. The remaining gene set was used for further analysis.

To compare the consistency of the gene-based pan-genome from the synteny-based method and gene-clustering-based methods, OrthoFinder was used to construct the gene-based pan-genome with the reference genome and extra 5, 8, 10, 15, and 20 samples. Those gene groups not containing genes from MSU were considered novel gene groups that did not exist in the reference genome.

Sequence-based pan-genome was constructed as complementary to gene-based pan-genome. Here, insertions compared with the reference genome from each sample for each of the 5 groups were considered novel sequences absent from the reference genome. PacBio long reads of each sample were first mapped to the MSU reference genome by pbmm2 software (https://github.com/PacificBiosciences/pbmm2) with default parameters. After this, structural variations were called and genotyped using pbsv software (https://github.com/PacificBiosciences/pbsv) using default parameters. Entries related to insertions were extracted. Then, these insertions were merged at the group level using SURVIVOR software (Jeffares et al., 2017). Those insertions ≤ 50 bp in length or had supporting reads of ≤ 20 were excluded. To eliminate the false positive introduced during insertion identification, the remaining insertion sequences were then aligned to the genome of each sample in each of the 5 groups. Those insertions not having a high similarity (identity ≥ 90% and coverage ≥ 90%) with the genome sequences were excluded.

The RepeatMasker tool (Chen, 2004) was employed for the validated data set to detect repetitive elements, using rice as the model species.




2.4 Recall and precision definition

The sequences from the testing data set were aligned to sequences from the validated data set using the MUMmer software (Kurtz et al., 2004). When different sequences from the testing data sets were aligned to the same sequences from the validated data set, and they had an overlap of 90% or more, these sequences from the testing data sets and their recovered regions for sequences from the validated data set were combined. For each sequence from the validated data set, its coverage was defined as the ratio of recovered length by sequences from the testing data set to its whole length. If the coverage was ≥ 0.5, this sequence from the validated data set was considered a recovered sequence. The recall value was defined as the ratio of the number of recovered ones to the total number of sequences from the validated data set.

For each of the 5 groups, sequences from the testing data set were aligned to all genomes in that group. Those sequences with a high similarity (90% identity and 90% coverage) were considered as precise sequences. The precision value was defined as the ratio of the number of precise ones to the total number of sequences from the testing data set.





3 Results



3.1 The characteristics of the testing and validated data set

The characteristics of the testing data set. All the simulated next-generation short-reads with sequencing depths of 5X, 10X, 20X, 30X, and 50X for 20 samples have a high-quality read rate of ≥99% (Supplementary Table 2). By comparing the characteristics between simulated and real data, we find that the simulated reads have almost identical or even higher genome coverage than the real data under the same sequencing depth (Supplementary Table 3). This indicates the availability of simulated data for evaluation. However, there are some biases in simulated data. For example, the rate of singletons and reads pairs mapping to different chromosomes of simulated data is lower than in real data (Supplementary Table 4). These simulated reads after preprocessing are used to construct the testing data set using three strategies for each of the 5 groups (Supplementary Table 5). For map-to-pan, optimal k-mers used for whole genome assembly for different samples are different, highlighting the necessity for an iterative k-mer strategy (Supplementary Figure 1). When sequencing depth increases, the length of assembled contigs of map-to-pan increases, while sequencing depth has no significant influence on both iterative methods (Figure 2A).




Figure 2 | (A) The average and maximum lengths of assembled contigs for three strategies across varied sequencing depths. (B) A heatmap of the overlapping number of insertions between paired samples in the group consisting of 8 samples. (C) A pie chart showing the percentage of insertions found in genic versus intergenic regions and the distribution of insertion numbers as samples increase in the group consisting of 8 samples. (D) A heatmap of the presence and absence profile for insertions across samples in the group consisting of 8 samples. The distribution for the repeat content percentage (E) and length (F) of novel sequences from the validated data set for the group consisting of 8 samples. The distribution for the count of novel genes (G) and insertions (H) with different lengths and repeat content percentages in the group consisting of 8 samples.



The characteristics of the validated data set. For gene-based pan-genome, the ratio of core genes decreases with sample size increases, and this ratio stabilizes around 50% when the sample size reaches 6 or more (Supplementary Table 6). For the group with MSU and the other 8 samples, synteny-based methods can find 18,500 (91.67%) of 20,179 gene groups from OrthoFinder. After filtering, all 13,078 novel genes identified from the synteny-based method are included in the results from the OrthoFinder. This further demonstrated the usability of synteny-based methods in novel gene identification. For sequence-based pan-genome by 8 samples, the insertion counts diverge among samples, and their overlaps with each other are not uniform (Figure 2B). Insertions are predominantly localized in intergenic regions, indicating that insertions can be used as a complement to novel genes (Figure 2C). The insertions have different distribution patterns among different samples, further supported by the insertion presence and absence profile (Figure 2D). The characteristics of sequence-based pan-genome are consistently observed in the other 4 groups (Supplementary Figure 2). The summary of novel genes and insertions for each of the 5 groups is shown in Table 1. Insertions have a higher repeat percentage than the novel genes (Figure 2E), retroelements and DNA transposons emerge as the predominant repeat elements in them (Supplementary Table 7). However, their overall lengths are less than the novel genes (Figure 2F). The repeat percentage of novel genes is the highest at the longest and shortest ones (Figure 2G), while for insertions, they consistently show a high repeat percentage for all lengths (Figure 2H).


Table 1 | Statistics of novel genes and insertions from the validated data set for each of the 5 groups.






3.2 Evaluation of the influence of sequencing depth on three pan-genome construction strategies

Testing and validated data sets from the group with 8 samples are utilized to evaluate the different efficiency of three pan-genome construction strategies under different sequencing depths. For the coverage of novel genes from the validated data set under all different sequencing depths (Figure 3A) and insertions from the validated data set under 20X or more sequencing depth (Figure 3B), the difference is significant between map-to-pan and the other two iterative strategies, highlighting the different performance of map-to-pan and the other two iterative strategies. The difference is significant between iterative individual and iterative pooling for the coverage of novel genes under 10X or less sequencing depth (Figure 3A) and insertions (Figure 3B) under all different sequencing depths. Iterative pooling has a slightly higher average coverage for novel sequences from the validated data set than iterative individual, especially when sequencing depth is 10X or less. The main reason is that iterative pooling gathered all unmapped or poorly mapped reads for assembly, comparable to increasing the sequencing depth.




Figure 3 | The impact of sequencing depth on three strategies. (A) The distribution for recovered coverage of sequences from the testing dataset to novel genes from the validated dataset for the three strategies across varied sequencing depths. (B) The distribution for recovered coverage of sequences from the testing dataset to insertions from the validated dataset for the three strategies across varied sequencing depths. (C) Recall distribution for the three strategies across various sequencing depths. (D) Precision distribution for the three strategies across various sequencing depths. (E) Distribution of assembled length, categorized by false and true tags, for the three pan-genome construction strategies of the plant. NS means P > 0.05, * means P ≤ 0.05, ** means P < 0.01, *** means P < 0.001.



Map-to-pan has the highest recall value, and the other two iterative strategies have nearly identical lower recall values (Figure 3C). Specifically, the recall value of both novel genes and insertions from the validated data set is lower than 0.25 for two iterative strategies under all sequencing depths. For map-to-pan, the recall value of novel genes from the validated data set is around 0.5, and of insertions from the validated data set is around 0.75 under 50X sequencing depth.

Conversely, map-to-pan has the lowest precision value, and the other two iterative strategies have almost identical precision values (Figure 3D). Those sequences that are not precisive, are mainly from short sequences for map-to-pan and have a consistent distribution across all lengths for the other two iterative strategies (Figure 3E).

Overall, higher sequencing depths improve map-to-pan performance, including its coverage and recall for novel sequences from the validated data set (Figure 3A–C), and precision (Figure 3D). However, there needs to be obvious evidence to support the influence of sequencing depth on the other two iterative strategies.




3.3 Impact of sample size on three pan-genome construction strategies

In pan-genome research, including more samples will introduce more genomic diversity and biological information unless the current pan-genome of certain species is closed. A closed pan-genome means adding new genomes or samples will not induce the increase in pan-genome size, which depends on the frequency of gene exchange between subspecies and whether enough samples are included. Therefore, the number of samples included is vital in pan-genome construction.

For sequences from the map-to-pan strategy, the difference in their coverage for novel genes from the validated data set is significant among different sample sizes with all sequencing depths. At the same time, there is no significance for both iterative strategies (Figure 4A). Conversely, for sequences from these three strategies, their coverage for insertions from the validated data set is similar among different sample sizes, except for the map-to-pan strategy under 50X sequencing depth (Figure 4B).




Figure 4 | The impact of the number of samples included on three strategies. (A) The distribution for recovered coverage of sequences from the testing dataset to novel genes from the validated dataset for the three strategies across various sample numbers included. (B) The distribution for recovered coverage of sequences from the testing dataset to insertions from the validated dataset for the three strategies across various sample numbers included. (C) Recall distribution for the three strategies across various sample numbers included. (D) Precision distribution for the three strategies across various sample numbers included. NS means P > 0.05, * means P ≤ 0.05, ** means P  0.01, *** means P < 0.001.



Recall and precision values are further used to evaluate sample size influence on these three strategies. For map-to-pan, their recall value for novel genes decreases as sample size increases, while for insertions, their recall value increases as sample size increases (Figure 4C). For two iterative strategies, the sample size does not significantly influence their recall value for both novel genes and insertions from the validated data set. There is no obvious difference between iterative individual and iterative pooling.

Higher sequencing depth can improve the coverage and recall for novel sequences from the validated data set of map-to-pan with an expanded sample size but does not affect both iterative strategies. This indicates the limited capability of iterative strategies for novel sequence identification, no matter the sample size or sequencing depth. Map-to-pan has the lowest precision value under different sample sizes, while there is a positive correlation between precision value and sample size, such a relationship is not observed for the two iterative methods (Figure 4D).




3.4 Comparison of three pan-genome construction methods’ performance with the different novel sequence length

Novel sequences from the validated data set are divided into four length-based categories: SS, S, M, and L for both novel genes and insertions (Supplementary Table 8). SS-tagged novel sequences have lengths from 50 bp to 100 bp, S-tagged novel sequences have lengths from 100 bp to 1000 bp, M-tagged novel sequences have lengths from 1000 bp to 10000 bp, L-tagged novel sequences have lengths larger than 10000 bp. Most novel genes fall in the M category, whereas most insertions are in the S category.

For sequences from all three strategies, there is a negative relationship between their coverage for novel sequences from the validated data set and the length of the novel sequences from the validated data set for both novel genes and insertions (Supplementary Figure 3A, B). Increased sequencing depth improves the recovered coverage of sequences from map-to-pan for novel sequences from the validated data set (Supplementary Figure 3A, B) and the length of recovered novel sequences from the validated data set, especially for insertions (Supplementary Figure 3C). The overall recall value is lower for the SS and L categories than the S and M categories for all three strategies (Supplementary Figure 3D). The recall value drops as the length of novel sequences from the validated data set increases for two iterative strategies under all sequencing depths and for map-to-pan under 10X or less sequencing depth. Increased sequencing depth improves the map-to-pan’s recall for novel sequences with different lengths but has no significant effect on the two iterative methods.

Regarding recall value, the map-to-pan strategy outperforms the other two iterative strategies for different length categories except for L. Additionally, no significant difference exists between the individual and pooling iterative strategy across all length categories.




3.5 Diverse efficiency of three pan-genome construction methods in response to novel sequences’ repeat content percentage

Novel genes and insertions from the validated data set are divided into ten groups based on their repeat content percentage, using intervals of 0.10. The majority of these genes and insertions are found within the [0, 0.1] and (0.9, 1] intervals (Supplementary Table 9).

For sequences from all three pan-genome construction strategies, their recovered coverage of novel sequences from the validated data set decreases as the repeat content percentage increases (Supplementary Figure 4A, 4B). Novel sequences with repeat percentages in the ranges of [0, 0.25] and [0.75, 1] are more easily identified by these three methods (Supplementary Figure 4C).

The recall value is negatively associated with the repeat content percentage for the two iterative strategies under all sequencing depths and for the map-to-pan technique under 10X or less sequencing depth (Supplementary Figure 4D). Sequencing depth can improve the recall value of map-to-pan for novel sequences with different repeat content percentages but has no significant effect on the two iterative methods. Overall, the map-to-pan strategy has a higher recall value than the other two iterative strategies, especially for those novel sequences with higher repeat percentages. The distinction between the iterative individual and iterative pooling strategies is subtle under different repeat content percentages.




3.6 Time and memory consumption comparison among three pan-genome construction methods

The map-to-pan strategy demands considerably greater computational resources regarding memory and time than the other two iterative methods (Table 2). The main computational burden for the map-to-pan strategy arises from assembling the whole genome for every sample included. At a sequencing depth of 30X, it uses about 62GB of memory and takes approximately 212 minutes for each sample, utilizing 4 CPUs. Assembling unmapped or poorly mapped reads for the iterative individual strategy uses only around 10MB and takes about 18 minutes per sample. For the iterative pooling strategy, assembling pooled unmapped or poorly mapped reads consumes nearly 10MB of memory and takes about 115 minutes to construct a pan-genome with 8 samples, operating on 4 CPUs. The second highest computational demand for the map-to-pan strategy comes from aligning the assembled genome of each sample to the reference genome. In the case of the two iterative methods, only the assembly of unmapped or poorly mapped reads is aligned to the reference genome, thus requiring significantly less memory and time than map-to-pan.


Table 2 | Memory and time requirements for three pan-genome construction strategies at the sequencing depth of 30X for the 9311 sample.



For both two iterative methods, the most resource-intensive step is the alignment of whole-genome sequencing reads from each sample included in the pan-genome construction to the reference genome. This step requires about 5.4GB of memory and an estimated 202 minutes per sample when using 4 CPUs for each sample.





4 Discussion

The pan-genome study proves effective for plant genomic studies because it aims to encompass all genomic diversity of a certain species, which is important for the deep understanding of evolution and providing more novel genomic targets for breeding. It aids in identifying crucial novel non-reference genes or sequences associated with signaling (Golicz et al., 2016), defense mechanisms (Gordon et al., 2017), resistance pathways (Bayer et al., 2019), vital agricultural attributes (Gao et al., 2019), and heterosis (Zhang et al., 2016). Currently, three strategies based on next-generation sequencing short-reads are utilized for constructing the plant pan-genome, they can be summarized as iterative individual, iterative pooling, and map-to-pan. They have different performances under different conditions. This diversity complicates the integration or comparison of pan-genome information for the same species from different projects and makes it difficult for users to select the optimal pan-genome construction strategy. Hence, we performed the first comprehensive evaluation of these three strategies considering the sequencing depths, sample sizes, length and repeat content percentage of novel sequence, and computational resource consumption.

Our findings indicate that: (1) map-to-pan has the highest recall but lowest precision value, whereas the two iterative strategies have lower recall but higher precision values; (2) the number of samples, the length of novel sequences, and the percentage of repeat content are inversely related to the recall value of these three pan-genome construction strategies, primarily because an increased number of samples brings more complexity, and new sequences with larger length and a higher percentage of repeat content are challenging to be assembled just based on next-generation short-reads; (3) higher sequencing depth can enhance the performance of map-to-pan, but it doesn’t affect the other two iterative strategies; (4) regarding the consumption of computational resources, map-to-pan requires significantly more than the other two iterative strategies, particularly at higher sequencing depths. Generally, the iterative method, particularly the iterative pooling method, is optimal when the sequencing depth is lower than 20X, considering recall and precision value. However, map-to-pan performs better with sequencing depths greater than 20X, even though it demands more computational memory and time.

However, there are some limitations in our evaluation. First, we only included a single species (rice) in our assessment. These three short-reads-based strategies for plant pan-genome construction may perform better in species with simpler genomes, such as Arabidopsis thaliana, and worse in species with more complex genomes, such as barley. Secondly, certain assembly and mapping software are used for these three strategies in our evaluation, while the choice of different software may also impact the evaluation results. Thirdly, we only used a synteny-based method for gene-based pan-genome construction. The core gene ratio differs slightly between these two methods of OrthoFinder and synteny-based. Fourthly, the choice of assessment data also influences the evaluation results. Here, we selected simulated data for evaluation, which needs to fully characterize the real data results. Meanwhile, we evaluated the performance of pan-genome construction strategies based on short reads. Still, it would be better to construct the pan-genome by a combination of short and long reads, such as in rice (Qin et al., 2021), soybean (Liu et al., 2020), sorghum (Tao et al., 2021), maize (Hufford et al., 2021), and Raphanus sativus (Zhang et al., 2021).
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1 Introduction


In 2005, Tettelin et al. introduced the pan-genome concept to


encompass the entire gene set in Streptococcus agalactiae (Tettelin


et al., 2005). Since then, this concept has gained widespread


application in characterizing the collective genes of a species,


encompassing core, dispensable, and private components. The


advancement of sequencing technology, especially the prevalent


next-generation short-read sequencing, has enabled large-scale pan-


genome analysis in plants, extending beyond its initial application


in microbes. By 2007, the pan-genome concept was introduced to


maize (Morgante et al., 2007). After that, plenty of studies have


delved into the plant pan-genomes of diverse species, such as poplar


(Zhang et al., 2019), Brachypodium distachyon (Gordon et al.,


2017), Brassica oleracea (Golicz et al., 2016), Brassica napus


(Hurgobin et al., 2018), pepper (Ou et al., 2018), Medicago (Zhou


et al., 2017), rice (Zhao et al., 2018), soybean (Li et al., 2014),


hexaploid bread wheat (Montenegro et al., 2017), tomato (Gao


et al., 2019), and sunflower (Hï¿½bner et al., 2019 ). These plant pan-


genomics studies are pivotal in pinpointing key novel non-reference


genes or sequences related to processes like signaling (Golicz et al.,


2016), defense mechanisms (Gordon et al., 2017), resistance


pathways (Bayer et al., 2019), important agricultural traits (Gao


et al., 2019), and heterosis (Zhang et al., 2016).


Microbial pan-genome studies have benefited from well-


established toolkits like Roary (Page et al., 2015), PGAP (Zhao


et al., 2012), PanGP (Zhao et al., 2014), PanOCT (Fouts et al., 2012),


and PANNOTATOR (Santos et al., 2013), while there is not a


uniform strategy or pipeline for plant pan-genome construction.


There are three plant pan-genome construction strategies based on


next-generation sequencing short-reads. They can be summarized


as the iterative individual (Golicz et al., 2016; Hurgobin et al., 2018;


Hï¿½bner et al., 2019 ), the iterative pooling (Montenegro et al., 2017),


and the map-to-pan (Hu et al., 2017; Sun et al., 2017; Zhou et al.,


2017; Ou et al., 2018; Gao et al., 2019; Qin et al., 2021). All these


three strategies construct a pan-genome based on a high-quality


reference genome. For map-to-pan, the whole genome of each


accession included in the pan-genome analysis is assembled and


then aligned to the reference genome to obtain non-redundant


novel sequences not existing in the reference genome. Unlike map-


to-pan, unmapped or poorly mapped reads with reference genomes


are first extracted. In the iterative pooling method, unmapped or


poorly mapped reads from each accession are pooled and assembled


in a metagenomic way. In the iterative individual approach,


unmapped or poorly mapped reads are assembled directly for


each accession, pooled, and removed redundancy. Two iterative


strategies are used for pan-genome construction with large-scale


samples due to their low requirement for low sequencing depth and


computation resource consumption. In contrast, whole genome


sequencing and assembly are needed in map-to-pan, so map-to-pan


is suitable for pan-genome construction with a few samples. Some


pan-genome studies have incorporated long reads from third-


generation sequencing platforms, like in rice (Qin et al., 2021),


soybean (Liu et al., 2020), sorghum (Tao et al., 2021), maize


(Hufford et al., 2021), and Raphanus sativus (Zhang et al., 2021),
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while their widespread adoption is constrained by high sequencing


expenses, especially in plant pan-genome projects with large-scale


samples. Given the vast availability of published short-read


sequencing data for numerous plant species, it is prevalent to


construct plant pan-genomes based on next-generation short-reads.


Here, we thoroughly benchmark these three strategies for plant


pan-genome construction, factoring in different sequencing depths


and the number of samples included. We also compare the


efficiency of these three strategies in recovering novel non-


reference sequences with different lengths and repetitive content


percentages. Additionally, we compare computational resource


consumption among these three strategies, encompassing both


time and memory. Our in-depth evaluation aims to shed light on


the effectiveness of these three pan-genome construction strategies


under varying conditions and guide researchers in choosing the


optimal pan-genome construction strategy.

2 Materials and methods


2.1 Data sets


Our research collected 20 high-quality chromosome-level


genome assemblies, gene annotation files, gene sequences, protein


sequences, and PacBio long reads from the rice XI subtype (Qin


et al., 2021) (Supplementary Table 1). We categorized these samples


into five groups with 5, 8, 10, 15, and 20 samples, respectively. The


group with 8 samples included all subtypes from XI-1B. It was used


for benchmarking the influence of various sequencing depths,


lengths, and repeat content percentages of novel sequences on


these three strategies. The information from the other four groups


was compared to examine how the sample number included


affected the performance of these three strategies.


The ART-Illumina read simulation tool (Huang et al., 2012) was


used to generate the simulated next-generation sequencing short-


reads with depths of 5X, 10X, 20X, 30X, and 50X, with 20 high-


quality chromosome-level genome assemblies as the reference. To


evaluate the limitations of simulated reads, the real data of next-


generation sequencing short-reads for the 9311 sample was


downloaded from GSA (https://ngdc.cncb.ac.cn/gsa/) under


Project ID PRJCA002103 and RunID CRR279354. These


sequences were aligned to the reference genome using BWA-


MEM (Li, 2013). MSU was used as a reference genome, and its


genome sequence was downloaded from RiceRC (https://


ricerc.sicau.edu.cn/RiceRC/download/downloadBefore). This


genome assembly produced by the Rice Genome Annotation


Project was initially located at the Institute for Genomic Research.


It is now at Michigan State University (MSU) (Ouyang et al., 2007).


Finally, sequencing depth, genome coverage, and other


characteristics were calculated using the BAMDST toolkit


(https://github.com/shiquan/bamdst). We generated the simulated


sequencing data according to the average depth of real data for each


chromosome. The characteristics of simulated data were calculated


by the BAMDST toolkit and then compared with the characteristics


of real data.
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2.2 Construction of the testing data set


Three pan-genome construction strategies, iterative individual,


iterative pooling, and map-to-pan, utilized simulated short reads to


create a test dataset for each group with different sample sizes


(Figure 1). Each strategy underwent identical data pre-processing,


which involved eliminating reads with over five Ns, trimming


adapters, removing low-quality bases from the 5 ï¿½ and 3 ï¿½ ends


when the quality score was consistently below 20, and discarding


reads shorter than 30 bp. All pre-processing tasks were executed
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using a Perl script developed in-house, which was deposited in


BioCode with ID BT007415 (https://ngdc.cncb.ac.cn/biocode/


tools/BT007415).


For map-to-pan, high-quality reads were firstly collected for


whole genome assembly using SOAPdenovo2 (Luo et al., 2012)


through the eupan assemble linearK model in the EUPAN toolkit


(Hu et al., 2017). The iterative k-mer was set to a range between 15


and 127 to optimize the assembly outcome. Secondly, the whole


genome assembly of each sample was aligned to the reference


genome via the MUMmer software (Kurtz et al., 2004). Those

FIGURE 1


Workflow of evaluation for three plant pan-genome construction strategies based on next-generation short-reads.
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sequences not aligned with the reference genome with 90% identity


and 90% coverage simultaneously were recognized as candidate


novel non-reference sequences. Subsequently, each sample ï¿½ s novel


sequences were combined, and redundancy was eliminated using


CD-HIT (Fu et al., 2012).


For the iterative individual, high-quality reads were initially


mapped to the reference genome using BWA MEM (Li, 2013).


Unmapped and poorly mapped reads and those with an edit


distance of ≥ 8 were extracted for assembly by MEGAHIT (Li


et al., 2015). Then, the contigs assembled from each sample were


merged, and redundancy was removed with CD-HIT (Fu et al.,


2012). For iterative pooling, high-quality reads were initially


mapped to the reference genome using BWA-MEM (Li, 2013).


Unmapped and poorly mapped reads with an edit distance of ≥ 8


were extracted and pooled. These pooling of unmapped or poorly


mapped reads were assembled using MEGAHIT (Li et al., 2015).


For both iterative methods, the edit distance threshold was 8 to


select poorly mapped reads. The length of almost all simulated reads


was 83 bp, so if the edit distance was greater than 8, the mapping


rate of a read to the reference genome was less than ~90%. They


may be from highly diverse genomic regions of subspecies


compared with the reference genome. So, these reads were also


collected and combined with the unmapped reads for novel


sequence assembly for two iterative methods.


Unlike the SOAPDENOVO2 for assembly in map-to-pan, we


employed MEGAHIT to assemble those unmapped or poorly


mapped reads in both iterative strategies to maximize the


utilization of these reads. Since MEGAHIT was often utilized for


microbial metagenome assembly, it performed better when reads


exhibited greater heterogeneity, especially in iterative pooling,


where unmapped or poorly mapped reads were pooled together


for assembly.

2.3 Construction of the validated data set


The plant pan-genome consists of the gene-centric and


sequence-centric pan-genome (Golicz et al., 2020). Here, novel


genes identified from gene-based pan-genome and insertions


identified from sequence-based pan-genome were combined as


the validated data set.


For gene-centric pan-genome construction, there were two


kinds of strategies including synteny-based, such as in rice (Qin


et al., 2021), and gene clustering-based, such as in Brachypodium


distachyon (Gordon et al., 2017) using GET_HOMOLOG-EST


(Contreras-Moreira et al., 2017), soybean (Liu et al., 2020) using


OrthoMCL (Li et al., 2003), rice (Shang et al., 2022) using


OrthoFinder (Emms and Kelly, 2019). Besides, GENESPACE can


cluster genes across multiple genomes (Lovell et al., 2022). Here, we


used a synteny-based method. Protein sequences related to the


longest gene transcript and information on the gene location for


each of the 20 samples from Qin et al (Qin et al., 2021) were used for


the gene-based pan-genome construction for each of the 5 groups.


All genes of the nuclear genome ï¿½ s 12 chromosomes from MSU


(V.7.0 http://rice.plantbiology.msu.edu) were used as the base.
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Genes from a new genome were aligned against a reference gene set


using BLASTP software (Altschul et al., 1990) and gene synteny was


analyzed using MCSCANX software (Wang et al., 2012). Those


genes that did not show synteny with the reference gene set were


considered novel genes. These novel genes were then added to the


former reference gene set to form a new reference gene set. These


steps were repeated until all samples were included. The reference


gene set and identified novel genes from the final step were


combined as the pan-gene set. Novel genes from each step were


combined and then aligned to the MSU reference genome using


MUMmer (Kurtz et al., 2004). Genes with high similarity (identity ≥


90% and coverage ≥ 90%) with the MSU reference genome were


discarded to exclude the false positives. The remaining gene set was


used for further analysis.


To compare the consistency of the gene-based pan-genome


from the synteny-based method and gene-clustering-based


methods, OrthoFinder was used to construct the gene-based pan-


genome with the reference genome and extra 5, 8, 10, 15, and 20


samples. Those gene groups not containing genes from MSU were


considered novel gene groups that did not exist in the


reference genome.


Sequence-based pan-genome was cons t ruc t ed as


complementary to gene-based pan-genome. Here, insertions


compared with the reference genome from each sample for each


of the 5 groups were considered novel sequences absent from the


reference genome. PacBio long reads of each sample were first


mapped to the MSU reference genome by pbmm2 software (https://


github.com/PacificBiosciences/pbmm2) with default parameters.


After this, structural variations were called and genotyped using


pbsv software (https://github.com/PacificBiosciences/pbsv) using


default parameters. Entries related to insertions were extracted.


Then, these insertions were merged at the group level using


SURVIVOR software (Jeffares et al., 2017). Those insertions ≤ 50


bp in length or had supporting reads of ≤ 20 were excluded. To


eliminate the false positive introduced during insertion


identification, the remaining insertion sequences were then


aligned to the genome of each sample in each of the 5 groups.


Those insertions not having a high similarity (identity ≥ 90% and


coverage ≥ 90%) with the genome sequences were excluded.


The RepeatMasker tool (Chen, 2004) was employed for the


validated data set to detect repetitive elements, using rice as the


model species.

2.4 Recall and precision definition


The sequences from the testing data set were aligned to


sequences from the validated data set using the MUMmer


software (Kurtz et al., 2004). When different sequences from the


testing data sets were aligned to the same sequences from the


validated data set, and they had an overlap of 90% or more, these


sequences from the testing data sets and their recovered regions for


sequences from the validated data set were combined. For each


sequence from the validated data set, its coverage was defined as the


ratio of recovered length by sequences from the testing data set to its
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whole length. If the coverage was ≥ 0.5, this sequence from the


validated data set was considered a recovered sequence. The recall


value was defined as the ratio of the number of recovered ones to the


total number of sequences from the validated data set.


For each of the 5 groups, sequences from the testing data set


were aligned to all genomes in that group. Those sequences with a


high similarity (90% identity and 90% coverage) were considered as


precise sequences. The precision value was defined as the ratio of


the number of precise ones to the total number of sequences from


the testing data set.

3 Results


3.1 The characteristics of the testing and
validated data set


The characteristics of the testing data set. All the simulated


next-generation short-reads with sequencing depths of 5X, 10X,


20X, 30X, and 50X for 20 samples have a high-quality read rate of


≥99% (Supplementary Table 2). By comparing the characteristics


between simulated and real data, we find that the simulated reads


have almost identical or even higher genome coverage than the real


data under the same sequencing depth (Supplementary Table 3).


This indicates the availability of simulated data for evaluation.


However, there are some biases in simulated data. For example,


the rate of singletons and reads pairs mapping to different


chromosomes of simulated data is lower than in real data


(Supplementary Table 4). These simulated reads after


preprocessing are used to construct the testing data set using


three strategies for each of the 5 groups (Supplementary Table 5).


For map-to-pan, optimal k-mers used for whole genome assembly


for different samples are different, highlighting the necessity for an


iterative k-mer strategy (Supplementary Figure 1). When


sequencing depth increases, the length of assembled contigs of


map-to-pan increases, while sequencing depth has no significant


influence on both iterative methods (Figure 2A).


The characteristics of the validated data set. For gene-based pan-


genome, the ratio of core genes decreases with sample size increases,


and this ratio stabilizes around 50% when the sample size reaches 6


or more (Supplementary Table 6). For the group with MSU and the


other 8 samples, synteny-based methods can find 18,500 (91.67%) of


20,179 gene groups from OrthoFinder. After filtering, all 13,078


novel genes identified from the synteny-based method are included


in the results from the OrthoFinder. This further demonstrated the


usability of synteny-based methods in novel gene identification. For


sequence-based pan-genome by 8 samples, the insertion counts


diverge among samples, and their overlaps with each other are not


uniform (Figure 2B). Insertions are predominantly localized in


intergenic regions, indicating that insertions can be used as a


complement to novel genes (Figure 2C). The insertions have


different distribution patterns among different samples, further


supported by the insertion presence and absence profile


(Figure 2D). The characteristics of sequence-based pan-genome
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are consistently observed in the other 4 groups (Supplementary


Figure 2). The summary of novel genes and insertions for each of the


5 groups is shown in Table 1. Insertions have a higher repeat


percentage than the novel genes (Figure 2E), retroelements and


DNA transposons emerge as the predominant repeat elements in


them (Supplementary Table 7). However, their overall lengths are


less than the novel genes (Figure 2F). The repeat percentage of novel


genes is the highest at the longest and shortest ones (Figure 2G),


while for insertions, they consistently show a high repeat percentage


for all lengths (Figure 2H).

3.2 Evaluation of the influence of
sequencing depth on three pan-genome
construction strategies


Testing and validated data sets from the group with 8 samples


are utilized to evaluate the different efficiency of three pan-genome


construction strategies under different sequencing depths. For the


coverage of novel genes from the validated data set under all


different sequencing depths (Figure 3A) and insertions from the


validated data set under 20X or more sequencing depth (Figure 3B),


the difference is significant between map-to-pan and the other two


iterative strategies, highlighting the different performance of map-


to-pan and the other two iterative strategies. The difference is


significant between iterative individual and iterative pooling for


the coverage of novel genes under 10X or less sequencing depth


(Figure 3A) and insertions (Figure 3B) under all different


sequencing depths. Iterative pooling has a slightly higher average


coverage for novel sequences from the validated data set than


iterative individual, especially when sequencing depth is 10X or


less. The main reason is that iterative pooling gathered all


unmapped or poorly mapped reads for assembly, comparable to


increasing the sequencing depth.


Map-to-pan has the highest recall value, and the other two


iterative strategies have nearly identical lower recall values


(Figure 3C). Specifically, the recall value of both novel genes and


insertions from the validated data set is lower than 0.25 for two


iterative strategies under all sequencing depths. For map-to-pan, the


recall value of novel genes from the validated data set is around 0.5,


and of insertions from the validated data set is around 0.75 under


50X sequencing depth.


Conversely, map-to-pan has the lowest precision value, and the


other two iterative strategies have almost identical precision values


(Figure 3D). Those sequences that are not precisive, are mainly


from short sequences for map-to-pan and have a consistent


distribution across all lengths for the other two iterative


strategies (Figure 3E).


Overall, higher sequencing depths improve map-to-pan


performance, including its coverage and recall for novel


sequences from the validated data set (Figure 3A ï¿½ C), and


precision (Figure 3D). However, there needs to be obvious


evidence to support the influence of sequencing depth on the


other two iterative strategies.
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3.3 Impact of sample size on three
pan-genome construction strategies


In pan-genome research, including more samples will introduce


more genomic diversity and biological information unless the


current pan-genome of certain species is closed. A closed pan-


genome means adding new genomes or samples will not induce the


increase in pan-genome size, which depends on the frequency of


gene exchange between subspecies and whether enough samples are


included. Therefore, the number of samples included is vital in pan-


genome construction.
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For sequences from the map-to-pan strategy, the difference in


their coverage for novel genes from the validated data set is


significant among different sample sizes with all sequencing


depths. At the same time, there is no significance for both


iterative strategies (Figure 4A). Conversely, for sequences from


these three strategies, their coverage for insertions from the


validated data set is similar among different sample sizes, except


for the map-to-pan strategy under 50X sequenc ing


depth (Figure 4B).


Recall and precision values are further used to evaluate sample


size influence on these three strategies. For map-to-pan, their recall

A


B D


E


F G


C


H


FIGURE 2


(A) The average and maximum lengths of assembled contigs for three strategies across varied sequencing depths. (B) A heatmap of the overlapping
number of insertions between paired samples in the group consisting of 8 samples. (C) A pie chart showing the percentage of insertions found in
genic versus intergenic regions and the distribution of insertion numbers as samples increase in the group consisting of 8 samples. (D) A heatmap of
the presence and absence profile for insertions across samples in the group consisting of 8 samples. The distribution for the repeat content
percentage (E) and length (F) of novel sequences from the validated data set for the group consisting of 8 samples. The distribution for the count of
novel genes (G) and insertions (H) with different lengths and repeat content percentages in the group consisting of 8 samples.
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value for novel genes decreases as sample size increases, while for


insertions, their recall value increases as sample size increases


(Figure 4C). For two iterative strategies, the sample size does not


significantly influence their recall value for both novel genes and


insertions from the validated data set. There is no obvious difference


between iterative individual and iterative pooling.


Higher sequencing depth can improve the coverage and recall


for novel sequences from the validated data set of map-to-pan with


an expanded sample size but does not affect both iterative strategies.


This indicates the limited capability of iterative strategies for novel


sequence identification, no matter the sample size or sequencing


depth. Map-to-pan has the lowest precision value under different


sample sizes, while there is a positive correlation between precision


value and sample size, such a relationship is not observed for the


two iterative methods (Figure 4D).

3.4 Comparison of three pan-genome
construction methods ï¿½ performance with
the different novel sequence length


Novel sequences from the validated data set are divided into four


length-based categories: SS, S, M, and L for both novel genes and


insertions (Supplementary Table 8). SS-tagged novel sequences have


lengths from 50 bp to 100 bp, S-tagged novel sequences have lengths


from 100 bp to 1000 bp, M-tagged novel sequences have lengths from


1000 bp to 10000 bp, L-tagged novel sequences have lengths larger


than 10000 bp. Most novel genes fall in the M category, whereas most


insertions are in the S category.


For sequences from all three strategies, there is a negative


relationship between their coverage for novel sequences from the


validated data set and the length of the novel sequences from the


validated data set for both novel genes and insertions


(Supplementary Figure 3A, B). Increased sequencing depth


improves the recovered coverage of sequences from map-to-pan


for novel sequences from the validated data set (Supplementary


Figure 3A, B) and the length of recovered novel sequences from the


validated data set, especially for insertions (Supplementary
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Figure 3C). The overall recall value is lower for the SS and L


categories than the S and M categories for all three strategies


(Supplementary Figure 3D). The recall value drops as the length


of novel sequences from the validated data set increases for two


iterative strategies under all sequencing depths and for map-to-pan


under 10X or less sequencing depth. Increased sequencing depth


improves the map-to-pan ï¿½ s recall for novel sequences with different


lengths but has no significant effect on the two iterative methods.


Regarding recall value, the map-to-pan strategy outperforms


the other two iterative strategies for different length categories


except for L. Additionally, no significant difference exists between


the individual and pooling iterative strategy across all


length categories.

3.5 Diverse efficiency of three pan-genome
construction methods in response to novel
sequences ï¿½ repeat content percentage


Novel genes and insertions from the validated data set are


divided into ten groups based on their repeat content percentage,


using intervals of 0.10. The majority of these genes and insertions


are found within the [0, 0 .1] and (0.9 , 1] intervals


(Supplementary Table 9).


For sequences from all three pan-genome construction


strategies, their recovered coverage of novel sequences from the


validated data set decreases as the repeat content percentage


increases (Supplementary Figure 4A, 4B). Novel sequences with


repeat percentages in the ranges of [0, 0.25] and [0.75, 1] are more


easily identified by these three methods (Supplementary Figure 4C).


The recall value is negatively associated with the repeat content


percentage for the two iterative strategies under all sequencing


depths and for the map-to-pan technique under 10X or less


sequencing depth (Supplementary Figure 4D). Sequencing depth


can improve the recall value of map-to-pan for novel sequences


with different repeat content percentages but has no significant


effect on the two iterative methods. Overall, the map-to-pan


strategy has a higher recall value than the other two iterative

TABLE 1 Statistics of novel genes and insertions from the validated data set for each of the 5 groups.


Type Sample Number # Seqs Total Size (bp) Mean Length (bp) Repeat Percentage


Novel Genes


5 9,697 39,114,313 4033.70 46.02%


8 13,078 51,527,357 3940.00 46.19%


10 15,306 59,557,869 3891.10 46.30%


15 19,901 79,273,953 3983.40 46.38%


20 24,792 98,210,643 3961.40 46.38%


Insertions


5 13,082 12,528,436 957.70 44.44%


8 15,047 16,504,941 1096.90 44.77%


10 17,109 20,891,729 1221.10 45.11%


15 18,756 25,039,572 1335.00 45.24%


20 19,959 27,876,840 1396.70 45.37%
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strategies, especially for those novel sequences with higher repeat


percentages. The distinction between the iterative individual and


iterative pooling strategies is subtle under different repeat


content percentages.

3.6 Time and memory consumption
comparison among three pan-genome
construction methods


The map-to-pan strategy demands considerably greater


computational resources regarding memory and time than the


other two iterative methods (Table 2). The main computational


burden for the map-to-pan strategy arises from assembling the


whole genome for every sample included. At a sequencing depth of
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30X, it uses about 62GB of memory and takes approximately 212


minutes for each sample, utilizing 4 CPUs. Assembling unmapped


or poorly mapped reads for the iterative individual strategy uses


only around 10MB and takes about 18 minutes per sample. For the


iterative pooling strategy, assembling pooled unmapped or poorly


mapped reads consumes nearly 10MB of memory and takes about


115 minutes to construct a pan-genome with 8 samples, operating


on 4 CPUs. The second highest computational demand for the


map-to-pan strategy comes from aligning the assembled genome of


each sample to the reference genome. In the case of the two iterative


methods, only the assembly of unmapped or poorly mapped reads is


aligned to the reference genome, thus requiring significantly less


memory and time than map-to-pan.


For both two iterative methods, the most resource-intensive


step is the alignment of whole-genome sequencing reads from each

A B


D
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FIGURE 3


The impact of sequencing depth on three strategies. (A) The distribution for recovered coverage of sequences from the testing dataset to novel genes
from the validated dataset for the three strategies across varied sequencing depths. (B) The distribution for recovered coverage of sequences from the
testing dataset to insertions from the validated dataset for the three strategies across varied sequencing depths. (C) Recall distribution for the three
strategies across various sequencing depths. (D) Precision distribution for the three strategies across various sequencing depths. (E) Distribution of
assembled length, categorized by false and true tags, for the three pan-genome construction strategies of the plant. NS means P > 0.05, * means
P ≤ 0.05, ** means P < 0.01, *** means P < 0.001.
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sample included in the pan-genome construction to the reference


genome. This step requires about 5.4GB of memory and an


estimated 202 minutes per sample when using 4 CPUs for


each sample.

4 Discussion


The pan-genome study proves effective for plant genomic


studies because it aims to encompass all genomic diversity of a


certain species, which is important for the deep understanding of


evolution and providing more novel genomic targets for breeding. It
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aids in identifying crucial novel non-reference genes or sequences


associated with signaling (Golicz et al., 2016), defense mechanisms


(Gordon et al., 2017), resistance pathways (Bayer et al., 2019), vital


agricultural attributes (Gao et al., 2019), and heterosis (Zhang et al.,


2016). Currently, three strategies based on next-generation


sequencing short-reads are utilized for constructing the plant


pan-genome, they can be summarized as iterative individual,


iterative pooling, and map-to-pan. They have different


performances under different conditions. This diversity


complicates the integration or comparison of pan-genome


information for the same species from different projects and


makes it difficult for users to select the optimal pan-genome

A B
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FIGURE 4


The impact of the number of samples included on three strategies. (A) The distribution for recovered coverage of sequences from the testing
dataset to novel genes from the validated dataset for the three strategies across various sample numbers included. (B) The distribution for recovered
coverage of sequences from the testing dataset to insertions from the validated dataset for the three strategies across various sample numbers
included. (C) Recall distribution for the three strategies across various sample numbers included. (D) Precision distribution for the three strategies
across various sample numbers included. NS means P > 0.05, * means P ≤ 0.05, ** means P 0.01, *** means P < 0.001.
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construction strategy. Hence, we performed the first comprehensive


evaluation of these three strategies considering the sequencing


depths, sample sizes, length and repeat content percentage of


novel sequence, and computational resource consumption.


Our findings indicate that: (1) map-to-pan has the highest recall


but lowest precision value, whereas the two iterative strategies have


lower recall but higher precision values; (2) the number of samples,


the length of novel sequences, and the percentage of repeat content


are inversely related to the recall value of these three pan-genome


construction strategies, primarily because an increased number of


samples brings more complexity, and new sequences with larger


length and a higher percentage of repeat content are challenging to


be assembled just based on next-generation short-reads; (3) higher


sequencing depth can enhance the performance of map-to-pan, but


it doesn ï¿½ t affect the other two iterative strategies; (4) regarding the


consumption of computational resources, map-to-pan requires


significantly more than the other two iterative strategies,


particularly at higher sequencing depths. Generally, the iterative


method, particularly the iterative pooling method, is optimal when


the sequencing depth is lower than 20X, considering recall and


precision value. However, map-to-pan performs better with


sequencing depths greater than 20X, even though it demands


more computational memory and time.


However, there are some limitations in our evaluation. First, we


only included a single species (rice) in our assessment. These three
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short-reads-based strategies for plant pan-genome construction


may perform better in species with simpler genomes, such as


Arabidopsis thaliana, and worse in species with more complex


genomes, such as barley. Secondly, certain assembly and mapping


software are used for these three strategies in our evaluation, while


the choice of different software may also impact the evaluation


results. Thirdly, we only used a synteny-based method for gene-


based pan-genome construction. The core gene ratio differs slightly


between these two methods of OrthoFinder and synteny-based.


Fourthly, the choice of assessment data also influences the


evaluation results. Here, we selected simulated data for evaluation,


which needs to fully characterize the real data results. Meanwhile,


we evaluated the performance of pan-genome construction


strategies based on short reads. Still, it would be better to


construct the pan-genome by a combination of short and long


reads, such as in rice (Qin et al., 2021), soybean (Liu et al., 2020),


sorghum (Tao et al., 2021), maize (Hufford et al., 2021), and


Raphanus sativus (Zhang et al., 2021).

Data availability statement


Publicly avaliable datasets were analyzed in this study. This data


can be found here: Whole genome sequences, gene annotation files,


gene sequences, and protein sequences of 20 rice samples are from Qin

TABLE 2 Memory and time requirements for three pan-genome construction strategies at the sequencing depth of 30X for the 9311 sample.


Steps


Map-to-pan Iterative Individual Iterative Pooling


Mem Time CPU Mem Time CPU Mem Time CPU


Filter low-quality reads
1.3M/
sample


~47mins/
sample


1/
sample


1.3M/
sample


~47mins/
sample


1/
sample


1.3M/
sample


~47mins/
sample


1/
sample


Map to reference genome and extract
unmapped reads


ï ¿ ½ ï ¿ ½ ï ¿ ½
5.4G/


sample
~208mins/


sample
4/


sample
5.4G/


sample
~208mins/


sample
4/


sample


MEGAHIT assembles individual unmapped reads ï ¿ ½ ï ¿ ½ ï ¿ ½
10M/


sample
~18mins/
sample


4/
sample


ï ¿ ½


Individual unmapped reads pooling and assemble for
8 samples


ï ¿ ½ ï ¿ ½ ï ¿ ½ ï
10M/


sample
~115mins/


sample
4/


sample


Pool assembled contigs from individual unmapped
reads and remove redundancy


ï ¿ ½ ï ¿ ½ ï ¿ ½
350M/
sample


~2mins/
sample


4/
sample


ï ¿ ½


Whole genome assembly
~63G/
sample


~212mins/
sample


4/
sample


ï ¿ ½ ï ¿ ½ ï


Map whole genome assembly to reference
~480M/
sample


~29mins/
sample


4/
sample


ï ¿ ½ ï ¿ ½ ï


Extract unaligned contigs ï¿½
~1min/
sample


1/
sample


ï ¿ ½ ï ¿ ½ ï


Pool unaligned contigs and remove redundancy
~860M/
sample


~13mins/
sample


4/
sample


ï ¿ ½ ï ¿ ½ ï


In total
63G/


sample
~5hrs/
sample


4/
sample


5.4G/
sample


~4.5hrs/
sample


4/
sample


5.4G/
sample


~4hrs/
sample


4/
sample

frontie

The computational resources are evaluated based on 9311 samples with 30X sequencing depth if a single sample is considered. If population statistics are needed, 8 samples, including 9311, G8,
IR64, J4155, R527, S548, Y3551, and Y58S, are evaluated. All information is just based on 30X sequencing depth; if more sequencing depth and more samples are analyzed, then the time and
memory will increase correspondingly. At 20X sequencing depth, for whole genome assembly mapping to reference, time and memory are also larger than that with 30X sequencing depth due to
its large assembled genome size with a high false positive rate.
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et al. (Qin et al., 2021). They can be downloaded from the RiceRC


database via https://ricerc.sicau.edu.cn/. The PacBio long reads and real


next-generation short reads of the 9311 sample are obtained from GSA


under Project ID (PRJCA002103) via https://ngdc.cncb.ac.cn/gsa/. The


Perl script used for data preprocessing is available via https://ngdc.cncb.


ac.cn/biocode/tools/BT007415.
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SUPPLEMENTARY FIGURE 1


The optimal k-mer used in the whole genome assembly for each of the 20


rice samples using eupan assemble linearK model from the EUPAN toolkit.


SUPPLEMENTARY FIGURE 2


The heatmap of the overlapping number of insertions between paired
samples in groups consisting of 5 (A), 10 (B), 15 (C), and 20 (D) samples.


The heatmap of the presence and absence profile of insertions across
samples in the group consisting of 5 (E), 10 (F), 15 (G), and 20 (H) samples.


The distribution of insertion numbers as samples increase in the group
consisting of 5 (I), 10 (J), 15 (K), and 20 (L) samples. The pie chart shows


the percentage of insertions found in genic versus intergenic regions in the


group consisting of 5 (M), 10 (N), 15 (O), and 20 (P) samples.


SUPPLEMENTARY FIGURE 3


The effect of the length for novel sequences on three strategies. (A) The


distribution for recovered coverage of sequences from the testing dataset to
novel genes from the validated dataset for the three strategies across various


lengths. (B) The distribution for recovered coverage of sequences from the


testing dataset to insertions from the validated dataset for the three strategies
across various lengths. (C) Density of recovered length of sequences from the


testing dataset to novel genes and insertions from the validated dataset for
the three strategies across various lengths of novel sequences from the


validated date set. (D) Recall distribution for the three strategies across
various lengths of novel sequences from the validated data set. Length


categories are defined as SS: 50-100bp; S: 100-1,000bp; M: 1,000-


100,000bp; L: >100,000bp.


SUPPLEMENTARY FIGURE 4


The effect of repeat content percentage for novel sequences on three


strategies. (A) The distribution for recovered coverage of sequences from the
testing dataset to novel genes from the validated dataset for the three strategies


across various repeat content percentages of novel sequences from the


validated dataset. (B) The distribution for recovered coverage of sequences
from the testing dataset to insertions from the validated dataset for the three


strategies across various repeat content percentages of novel sequences from
the validated dataset. (C) Density of recovered repeat content percentages


across the three pan-genome construction strategies. (D) Recall distribution for
the three strategies across various repeat content percentages of novel


sequences from the validated data set. 0 means novel sequences from the


validated data set have repeat content percentage [0,0.1], 1 means novel
sequences from the validated data set have repeat content percentage


(0.1,0.2], 2 means novel sequences from the validated data set have repeat
content percentage [0.2,0.3], 3 means novel sequences from the validated data


set have repeat content percentage [0.3,0.4], 4 means novel sequences from
the validated data set have repeat content percentage [0.4,0.5], 5 means novel


sequences from the validated data set have repeat content percentage [0.5,0.6],


6 means novel sequences from the validated data set have repeat content
percentage [0.6,0.7], 7 means novel sequences from the validated data set have


repeat content percentage [0.7,0.8], 8 means novel sequences from the
validated data set have repeat content percentage [0.8,0.9], 9 means novel


sequences from the validated data set have repeat content percentage (0.9,1].
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