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Drought stress is one of the most important abiotic stresses which causes many

yield losses every year. This paper presents a comprehensive review of recent

advances in international drought research. First, themain types of drought stress

and the commonly used drought stress methods in the current experiment were

introduced, and the advantages and disadvantages of each method were

evaluated. Second, the response of plants to drought stress was reviewed from

the aspects of morphology, physiology, biochemistry andmolecular progression.

Then, the potential methods to improve drought resistance and recent emerging

technologies were introduced. Finally, the current research dilemma and future

development direction were summarized. In summary, this review provides

insights into drought stress research from different perspectives and provides a

theoretical reference for scholars engaged in and about to engage in

drought research.
KEYWORDS

drought stress, physiological response, molecular mechanism, drought-resistant
strategies, experimental methods
1 Introduction

There are many types of drought. TheWorldMeteorological Organization has defined six

types of drought: (1) Meteorological drought: caused by insufficient precipitation, it is

indicated as the absolute value of a specified length of precipitation; (2) Climate drought:

caused by insufficient precipitation, not by a specific number, it is represented by the ratio of

the average or normal value; (3) Atmospheric drought, which is influenced by temperature,

humidity, wind speed, air pressure, and other meteorological variables in addition to

precipitation; (4) Drought in agriculture, which is mostly associated with soil moisture

content, plant ecology, and maybe the behavior of a specific crop; (5) Drought in hydrology,
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which is primarily associated with a decline in river flow, a reduction

in lake or reservoir capacity, and a decline in groundwater level; (6)

Water management drought, which is defined as a lack of water

resulting from either the actual usage of water management or the

devastation of infrastructure (WMO, 1975). At present, we often say

that drought usually refers to agricultural drought and meteorological

drought. For example, Heilongjiang Province is a concentrated

soybean producing area in China, and it is one of the areas with

the highest frequency of spring drought. The frequency of spring

drought is as high as about 70% (Zhu et al., 2020), which often refers

to meteorological drought. The occurrence of agricultural drought is

a complex process. The term “agricultural drought” describes the

situation when a lack of water in crops due to outside environmental

causes interferes with their regular growth and development,

resulting in lower yields or a loss of harvest (Zhang et al., 2021a);

in academic research, it is usually based on the specific research of

agricultural drought. In crop production, due to different

environmental conditions often suffer biotic or abiotic stress, these

factors will cause a certain loss of yield, is the main factor affecting

crop production (Feng et al., 2020); among these abiotic stresses,

drought is one of the main limiting factors for crop production, and

the loss of crop yield caused by drought alone exceeds the sum of all

pathogens (Gupta et al., 2020). Therefore, improving the drought

resistance of crops has been a research hotspot for many years.
Frontiers in Plant Science 02
2 Drought research methods

To better study the response of plants to drought stress,

researchers have developed a variety of different methods to

simulate drought stress. In this section, the current drought

research methods and their advantages and disadvantages are

further summarized.

The first is the soil pot water control method, which is also one

of the main drought simulation methods (Figure 1A). Researchers

usually use weighing method or soil moisture meter to control the

soil moisture content (Du et al., 2020; Dong et al., 2023). In the

study of Dong et al. (2023), the GB/T 32136-2015 (China national

standard) classification method was used to determine the drought

level, that is, typical irrigation involves a soil relative water content

of 65-75%; mild drought, moderate drought, and severe drought,

corresponding to a soil relative water content of 50-60%, 40-50%,

and 30-40%, respectively. An obvious advantage of this method is

that it is very close to the natural environment and the situation in

field production, which is a process of progressive water loss. The

research based on this method can basically show the real state of

the plant which is close to the nature. However, the disadvantages of

this method are also obvious. The biggest problem is the water

potential (yw); A physical measurement of the condition of free

energy in water is called water potential. It can accurately
B

C D

A

FIGURE 1

Experimental drought models. (A), soil drought pot experiment based on water control method; (B), drought experiment based on sand culture +
PEG; (C), agar-based PEG infusion Arabidopsis thaliana model, established by overlaying solidified agar medium with PEG8000 solution for five days
(Osmolovskaya et al., 2018). (D), Schematic view of the hydroponic system used to induce drought stress to roots of leafy vegetables. Five-day-old
seedlings in growing medium cubes (A) were transferred to a hydroponic system. The seedlings were supported by a plastic foam bed (B) and
irrigated with a nutrient solution (C) that was aerated with an air stone (D). After 23 d, seedlings were exposed to stress treatment by lowering the
water level from 0 to 4 cm (E) in the solution tub for various periods before harvesting. Conditions for growth and treatments were as follows: 20°C
(68.0°F), 14-h light/10-h dark photoperiod with light provided by cool-white fluorescent lamps (photosynthetic photon flux of 60/140 mmol·m−2·s−1

for germination/cultivation) (Koyama et al., 2012).
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characterize the water state of plants when used in conjunction with

associated physiological data and is appropriate for a variety of soil

types and environmental circumstances. By providing a

fundamental description of plant water status, yw fosters data

integration and exchange across research disciplines and deepens

our understanding of trials linked to drought (Juenger and Verslues,

2023). However, soil drought usually controls the soil moisture

content within a certain range, which also leads to the fact that yw
is always in a dynamic change, which greatly reduces the

repeatability of the experiment and is affected by many factors,

including soil type, sampling time, etc. Zhou et al. (2022a)

investigated how various soil conditions affected the physiology of

soybeans throughout their flowering stage in response to drought

stress. When there was enough water available, soybean

performance in chernozem, albic soil, and black soil was nearly

identical, but there were differences under drought stress, especially

the soybean growing in black soil showed the strongest drought

resistance. In addition, the use of soil drought for root research is

actually very unfriendly. Drought may cause soil to agglomerate,

and it is bound to cause different degrees of damage when obtaining

roots, which also leads to large errors in root phenotypic data.

Zhang et al. (2022a) used 30% sandy loam and 70% fine sand as

experimental soil in the study of soil drought on the root

morphology of ryegrass and brome, which could reduce the

damage of root sampling to a certain extent, but, at the same

time, the difference of soil type was changed. Some scholars have

proposed to use the combination of vermiculite and perlite to

replace the soil to simulate drought, which is indeed an effective

measure, but because this soil does not contain nutrients, water

control will inevitably lead to the lack of nutrients in the plant, thus

interfering with the experimental results (Seminario et al., 2017). In

field studies, drought research is limited to irrigation facilities. In a

study of wheat, different drought treatments were set up: (1) no

irrigation at all from seed to harvest; (2) limited irrigation, with just

one irrigation at the jointing stage; and (3) sufficient irrigation, or

well irrigation with one irrigation at the jointing stage and proper

irrigation at the filling stage (Zhou et al., 2022b). This experiment is

usually highly reliable, based on a large number of phenotypic data

can reflect the true state of the plant, but the premise is that the

natural precipitation between seasons should be relatively stable.

Plants that experience soil drought reveal dehydration of both

their cell walls and their cells. Consequently, in order to replicate the

dehydration effects of soil dryness, osmotic agents must possess a

molecular weight that is large enough and be able to pass through

cell walls. The study problem will get more complex if the osmotic

pressure passes through the cell wall, enters the cell through the cell

membrane, and is metabolized or has other impacts. Common

osmotic substances include mannitol, PEG6000 (polyethylene

glycol 6000), PEG8000, etc, the drought stress caused by these

substances can be collectively referred to as “osmotic stress”

(Figure 1B) (Noman et al., 2019; Chen et al., 2022a; Luo et al.,

2023). Different osmotic substances have different effects. He et al.

(2019) studied the effects of mannitol and PEG6000 on maize

seedlings under the same osmotic potential, and found that

PEG6000 as an osmotic agent was less harmful to plants than

mannitol. At present, PEG is still the most widely used substance in
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the experiment. The molecular formula of PEG, an ethanol

polymer, is HOCH2-[CH2-O-CH2]
n-CH2OH. There are 200–

20,000 molecular weights in the range. PEG is a perfect regulator

of water potential for imitating soil dryness since molecules with a

molecular weight of 6000 or higher cannot pass through cell walls

(Zhang et al., 2004). The biggest advantage of using PEG is that it

can accurately control the water potential and reflect the state of the

plant under a specific osmotic potential (Guan et al., 2022). In the

experiment, PEG can be used in combination with nutrient solution

to measure the phenotypic changes of plants under hydroponic

conditions, or PEG and nutrient solution combined with sand

culture to simulate drought stress for a long time (Zhou et al.,

2022; Wei et al., 2023); many plant drought-responsive signature

metabolites, proteins, or genes have been studied based on PEG

models (Li et al., 2020; Cao et al., 2022; Yao et al., 2022). However,

the biggest controversy at present is that PEG is essentially an

osmotic stress that can quickly cause water loss in plants. In fact, the

decrease of soil water content during natural drought is a slow

process, so whether PEG and soil drought can be collectively

referred to as drought stress remains to be confirmed. It can

usually be called ‘simulated drought’. In addition, in the use of

PEG, long-term application may cause salt accumulation in the

sand culture environment, and thus produce toxic effects.

Therefore, water is usually irrigated every three days to remove

excessive accumulation of PEG in the sand (Wang et al., 2022c).

Verslues et al. (2006) reported that the nutrient solution containing

PEG has the characteristics of high viscosity, which affects the

diffusion of oxygen to the roots and may lead to hypoxia (based on

medium culture conditions), but combined with sand culture and

regular irrigation of water can alleviate this situation to a certain

extent. They also proposed the use of PEG injection into agar plates

for treatment to simulate drought, but this use condition is usually

limited by plant species or organs, such as seeds, germinated

seedlings, or Arabidopsis thaliana (Figure 1C). PEG, mannitol

and other substances belong to osmotic stress, which can lead to

oxidative stress in plants, resulting in a large amount of reactive

oxygen species (ROS). High sugar (high glucose or sucrose) can also

be used to simulate osmotic stress, but due to the particularity of the

material may lead to changes in other pathways. Some scholars have

found that the antioxidant system of yeast is activated under high

glucose conditions and affects the accumulation of trehalose (Shi

et al., 2019). In general, we believe that the use of PEG to simulate

drought stress is still an effective method to study plant drought

response under fixed water potential conditions.

Hydroponic drought method (also known as drought

dehydration method) is also a method to study drought stress,

but it is not often used. Suspended the leaves in a uniform flow of air

for dehydration treatment, dehydrated at a constant temperature

for a fixed time and detected the relative water content of the leaves

to define the degree of drought stress (Liu et al., 2018), which is

simply to regulate the water status of the leaves (Campany et al.,

2021; Luo et al., 2022); the main advantage of this method is that the

water potential can be accurately controlled by real-time

monitoring of the machine, and it has high repeatability. The

study of trees can also predict their drought tolerance through

leaf hydraulic traits (Oliveira et al., 2022). The disadvantage is that
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the experiment on the leaves needs to be carried out in the dark,

because the reactive oxygen species mediated by the photosynthetic

electron transport chain may cause damage to the plants. This

method has great limitations on the experimental site and is only

allowed to be carried out under indoor fixed experimental

equipment (Liu et al., 2018). A model of drought stress on

vegetable roots brought on by a hydroponic system was presented

by Koyama et al. (2012)(Figure 1D). First, the five-day-old seedlings

were moved to a hydroponic system where they were irrigated with

an aerated nutritional solution and supported with a plastic foam

bed. Following 23 days, the water level in the solution bucket was

adjusted to subject the seedlings to stress treatment at various stages

before harvest. An obvious advantage of this method is that the

phenotypic changes of roots can be observed intuitively, and no

additional equipment is needed, which may be easier to fine-tune

the stress level. Its disadvantage is that long-term root soaking in

water may cause root hypoxia, increase the susceptibility to pests

and diseases and a series of adverse factors affecting growth.
3 Research progress of the study of
drought stress response

Drought often occurs at various developmental stages of crops,

such as seed germination, seedling growth, flowering, pollination,

and seed setting, and is particularly sensitive to water changes

(Dietz et al., 2021). Consequently, plants have adapted by

developing a comprehensive array of responses at various levels,

including morphological, physiological, biochemical, cellular, and

molecular mechanisms, to mitigate the adverse effects of drought

stress. These responses usually include photosynthesis and gas

exchange, plant relative water content, ion absorption and

transport, as well as reactive oxygen species (ROS) -related

antioxidant systems, osmotic adjustment systems, and hormone

regulation. In addition, various drought-related traits, including

root traits, leaf traits, osmotic adjustment ability, water potential,

ABA content, and cell membrane stability, have been used as

indicators for assessing plant drought resistance (Fang and Xiong,

2015; Sallam et al., 2019; Bandurska, 2022). At present, there have

been published a number of plant drought research papers, these

studies for different aspects (such as plant hormones, signal

perception, etc.) were specifically addressed (Zhu, 2016; Qi et al.,

2018; Waadt et al., 2022; Wang et al., 2022a; Zhang et al., 2022c). In

this section, we reviewed the morphological, physiological and

molecular studies of plant drought response.

Phenotype can directly reflect the state of plants (De Vienne,

2022). In the above-ground part, drought led to curling and

accompanied by partial yellowing of the soybean leaf edge, with

signs of water loss (Figure 2A) (Wang et al., 2022b); in the

underground part, drought causes root development to be blocked

(Figure 2B). Drought stress also reduced plant height, biomass, leaf

area and many other phenotypic traits (Tan et al., 2023). In the

underground part, drought led to a decrease in the number of root

surface area, root tips, root volume, root activity and root dry weight

of rice, thereby inhibiting root growth (Jing et al., 2024). In general,
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drought-induced long-term changes inhibit the morphological

parameters of plants, but short-term stress may be beneficial to

plant growth. Within the range of plant self-regulation ability,

drought induces an increase in morphological parameters within a

certain period of time (Yang et al., 2021).

Drought involves a large number of physiological and

biochemical processes, which can be divided into photosynthesis,

antioxidant system, osmotic regulation system, membrane lipid

peroxidation, hormone signal transduction, ion signal

transduction and so on (Bashir et al., 2021). According to Zhang

et al. (2022b), flag leaves of wheat with varying drought resistance

showed a decrease in the net photosynthetic rate, transpiration rate,

stomatal conductance, maximum photochemical efficiency of PSII,

and actual photochemical efficiency of PSII (FPSII), but the range

of the decrease varied from variety to variety. Drought stimulates

the physiological response of soybean, such as the single peak

change trend of antioxidant enzymes, the accumulation of

osmotic adjustment substances, and the increase of MDA content.

According to Wang et al. (2022d), T-AOC, antioxidant enzyme

activity, osmotic adjustment compounds, and the degree of

membrane lipid peroxidation rose most under black soil

conditions when the soil moisture content was 15.5%. Plant

species and cultivars, as well as the length of time they are

exposed to stress, all affect how resistant a plant is to drought.

The production and build-up of osmoprotectants, or osmotic

pressures, such as soluble proteins, sugars and sugar alcohols,

quaternary ammonium compounds, and amino acids, is what

controls a plant’s osmotic regulation at low water potential. One

of the most crucial amino acids for plants in response to drought is

proline (Ozturk et al., 2021). It has powerful functions in

maintaining cell homeostasis, regulating plant development and

promoting stress adaptation. It is an indispensable and important

indicator in drought research (Alvarez et al., 2022). In addition,

various plant hormones are induced by drought stress, and ABA is

the core to form crosstalk to regulate various processes in response

to drought stress (Verma et al., 2016). Ou et al. (2023) reported that

drought stress led to the decrease of IAA/ABA, SL/ABA and ACC/

ABA values in the aboveground part of tall fescue, indicating that

the aboveground part resisted drought by inhibiting growth and

delaying organ abscission. The values of IAA/ABA, IAA/GA, IAA/

SL and IAA/ACC in the underground part decreased, and the value

of SL/ABA increased, indicating that the underground part mainly

resisted drought stress by increasing the synthesis of strigolactone.

Drought is mediated by abscisic acid to carry out the whole plant

perception and signal transmission. Plants produce ABA in a

variety of organs in response to stress and start defense processes.

Plants are endowed with resistance to environmental stress through

the regulation of stomatal aperture and the expression of defense-

related genes (Lim et al., 2015; Mukarram et al., 2021). Along with

being crucial in regulating stomatal closure through the use of

abscisic acid and reactive oxygen species, the calcium ion (Ca2+)

signal is another vital component in drought response. The receptor

kinase HPCA1 (HYDROGEN PEROXIDE-INDUCED CA2+

INCREASES1) can directly sense the apoplastic H2O2, which

causes the activation of Ca2+ channels on the guard cell

membrane and an increase in Ca2+ in the guard cytoplasm,
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ultimately resulting in stomatal closure (Ketehouli et al., 2022; Liu

et al., 2022). Additionally, exogenous calcium ion therapy can

increase antioxidant enzyme activity, which can somewhat

increase plant resilience to drought (Xu et al., 2019).

Under drought stress, plants also remove excessive ROS by

accumulating biochemical substances to alleviate oxidative stress.

Plants resist drought stress by developing various biochemical,

structural and molecular strategies, including the accumulation of

certain osmolytes, such as proline, protein, sugar and glycine

betaine (Wahab et al., 2022). Under water limitation, H2O2

(hydrogen peroxide), total soluble protein, glycine betaine, AsA
Frontiers in Plant Science 05
(ascorbic acid) and total phenols are usually accumulated in plants

(Kosar et al., 2021). These indicators have been considered as one of

the characteristics of plant drought resistance, and genomic loci for

proline and hydrogen peroxide accumulation have also been

identified (Kamruzzaman et al., 2022). In addition to this, there is

glutathione (GSH), which removes ROS through AsA-GSH cycle,

GRX (glutaredoxin), GST (glutathione S-transferase) and other

enzymatic reactions (Gill et al., 2013). In recent years, more and

more studies have confirmed the important role of

phenylpropanoid and flavonoid metabolites in drought response,

such as the significant increase of afrormosin-7-O-(6’’-malonyl)
B

C
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FIGURE 2

Response of plants under drought stress. (A), leaf state (Wang et al., 2022b); (B), root state; (C) preliminary response mechanism of plants (Wang et
al., 2022c).
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glucoside (iso1) and glycitein under drought stress. On the other

hand, the terminal oxidase POD of the phenylpropanoid pathway is

related to the synthesis of lignin (Wang et al., 2024). The

accumulation of lignin in leaves and roots is conducive to

enhancing the drought tolerance of plants, and some regulatory

genes for lignin synthesis have also been identified (Jung et al.,

2022). In summary, with the continuous updating of technical

means, more and more drought-resistant biochemical reactions

have been discovered, and these findings will be further used to

assist drought-resistant breeding.

The intricate process of plant drought tolerance is too complex

to be entirely explained by changes at the physiological level.

Specific genes or small molecule metabolites typically mediate the

creation of specific enzymes or hormones. With the deepening of

research, the molecular mechanisms of various drought responses

have been continuously revealed. Some genes or metabolites have

been shown to have the effect on regulating drought. Common

metabolites, like isoflavones, have potent antioxidant qualities and

can shield DNA from damage caused by free radicals; two

significant and potent antioxidants found in soybean isoflavones

are genistein and daidzein (Shen et al., 2022). There are also various

amino acids that can be degraded to provide ATP sources for the

TCA cycle of plants, which can help improve drought stress

tolerance (Karami et al., 2023). For example, proline is often used

as an penetrant, which can regulate redox balance and energy state

(Zheng et al., 2021); the serine family plays a role in sugarcane

response to drought stress (Diniz et al., 2020). There are also some

phenolic acid metabolites that scavenge reactive oxygen species by

activating the phenylpropanoid pathway (Sharma et al., 2019;

Köhler et al., 2020). It has also been demonstrated that a few

transcription factors, such as AREB/ABF, DREBs, AP2/ERF, bZIP,

NAC and MYB, are the primary players in water stress signals,

which react to drought by altering stomatal movement or certain

metabolic pathways (Lata and Prasad, 2011; Baldoni et al., 2015;

Joshi et al., 2016). It has also been discovered that drought-treated

tobacco leaves exhibit either up- or down-regulated levels of heat

shock protein, thioredoxin, ascorbic acid, glutathione, and

hydrogen peroxide-related proteins (Xie et al., 2016). Here, based

on the omics data, taking soybean as an example, we summarized

the preliminary response pattern of cellular response to drought.

Sensors on the cell membrane, such as cell surface pattern

recognition receptors (PRRs), activate the MAPK signaling

pathway in response to drought stress, activating the defense

genes of antimicrobial substances. Furthermore, the synthesis and

modification of cell walls occurs outside the cell membrane as a

result of the activation of drought resistance pathways based on the

TCA cycle, EMP pathway, and glycolytic process (in terms of

transcription and metabolism), which includes photosynthesis,

hormone metabolism, amino acid synthesis, phenol and flavonoid

metabolism, and lipid metabolism (Figure 2C). Different varieties

may also have distinct mechanisms for drought resistance, such as

sulfur, vitamin B6, butyrate metabolism, etc., depending on how

they differ from one another (Wang et al., 2022c).

In terms of genetic breeding, researchers have also achieved

some gratifying results. The construction of transgenic plants

overexpressing MYB14 in soybean not only produces a semi-
Frontiers in Plant Science 06
dwarf and compact plant structure, but also increases yield and

drought resistance under high-density planting conditions in the

field (Chen et al., 2021). Overexpression of some transcription

factors such as GmMYB84 also contributes to drought resistance in

soybean (Wang et al., 2017). By coordinating the expression of a set

of genes related to drought stress and the nitrate transporter

NRT2.5, Zhou et al. (2022) found that overexpression of

GmTDN1 enhanced the photosynthetic and osmotic adjustment

ability, antioxidant metabolism, and root quality of wheat plants.

This was achieved through heterologous expression of the soybean

TDN1 gene in wheat. In other words, transgenic wheat containing

GmTDN1 has improved drought tolerance and nitrogen uptake.

Grain yield increased, membrane damage decreased, osmotic

adjustment and photosynthetic efficiency were enhanced,

according to another study that also discovered that

overexpression of GmDREB1 from soybean in wheat varieties,

transgenic plants grown under restricted water conditions in the

field, yield performance and a variety of physiological traits were

significantly improved (Zhou et al., 2020). Due to the complexity of

drought stress and the continuous innovation of technology, the

research on drought stress will continue, and more deep-seated

mechanisms will be further revealed.
4 Methods to improve
drought tolerance

In production, researchers have improved the drought resistance of

plants in many ways. In this section, the main methods to improve the

drought resistance of crops are summarized.
4.1 Plant-microbe interaction

Plant drought stress is significantly reduced by plant growth-

promoting rhizobacteria (PGPR). PGPR has a wide range of

functions. It can not only ensure the survival of plants during

drought, but also promote the growth of plants through various

mechanisms such as osmotic adjustment, increased antioxidant

activity, and plant hormone production (Sati et al., 2023a). By

producing extracellular polysaccharides (EPS), plant hormones, and

1-aminocyclopropane-1-carboxylate (ACC) deaminase, these

advantageous microbes infiltrate the rhizosphere and inner

rhizosphere of plants and give them drought tolerance. In

addition, PGPR can also produce volatile compounds, regulate

osmotic pressure, accumulate antioxidants, and up-regulate or

down-regulate the expression of stress-responsive genes; at the

same time, PGPR can also change root morphology and further

enhance the drought tolerance of plants (Vurukonda et al., 2016;

Zhang et al., 2021). With the deepening of research, more functions

of PGPR have been reported, including nitrogen fixation, phosphate

solubilization, siderophore and extracellular polysaccharide

production, enhancing root and shoot systems, increasing

photosynthetic rate and carotenoid content (Ahluwalia et al.,

2021). Some strains, such as Bacillus and Pseudomonas, have
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high levels of proline, protein, IAA and GA. Under drought stress,

plants are endowed with certain drought tolerance through

interaction with roots (Carlson et al., 2020; Umapathi et al.,

2022). Other researchers have reported that some drought-

tolerant PGPR strains are beneficial to plants, which can

effectively mobilize nutrients and improve plant material

accumulation under drought conditions (Sati et al., 2023).
4.2 Genetic engineering for
crop improvement

Targeted genome editing has only been accomplished thus far

using three methods: zinc finger nuclease (ZFN), transcription

activator-like effector nuclease (TALEN), and clustered regularly

interspaced short palindromic repeat-Cas9 nuclease (CRISPR-

Cas9) (Gupta et al., 2019). Among different genome editing

methods, CRISPR-Cas9 has a wider applicability to crop plants

and has been used for crop improvement, especially in drought

tolerance, yield and domestication (Bhat et al., 2021; Sami et al.,

2021). Liu et al. (2021) designed quantitative variations of maize

yield-related traits by using CRISPR-Cas9 genome editing to

produce weak promoter alleles of the CLE gene and newly

identified partially redundant compensated null alleles of the CLE

gene, supporting the great potential of genome editing in crop

improvement. In addition, there is transgenic technology, which

regulates the drought tolerance of crops by promoting the

overexpression or heterologous expression of a gene. The specific

case has been introduced in the literature (Wang et al., 2017; Zhou

et al., 2020; Chen et al., 2021; Zhou et al., 2022). Through molecular

breeding or transgenic methods, it provides significant phenotypic

and genetic information for the production of drought-tolerant

crop varieties (Arya et al., 2021). In summary, multiplex CRISPR/

Cas9 should be mentioned as a useful tool to study protein function

in crop plants with large polyploid genomes and large families of

homoeologous genes.
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4.3 Chemical regulation to enhance
drought resistance

Chemical regulation is the most commonly used method in

production. Commonly used chemical regulators include various

plant hormones and their derivatives, plant growth regulators, etc.

For example, indole butyric acid, abscisic acid, gibberellin,

melatonin, salicylic acid, 6-benzylaminopurine (6-BA) and

brassinolide, etc. These exogenous hormones can usually promote

seed germination, seedling growth and development, increase the

content of osmotic adjustment substances in leaves, antioxidant

enzyme activity and chlorophyll content, reduce the relative

conductivity and malondialdehyde content of seedling leaves,

thereby improving the drought resistance of crops (Arnao and

Hernández-Ruiz, 2018; Ahmad et al., 2023; Liu et al., 2023). Some

plant growth regulators, such as mepiquat chloride, are commonly

used to regulate cotton plant type, but can also increase soluble

protein content and antioxidant enzyme activity (Zhang et al.,

2022d). It can also promote the accumulation of flavonoids in

soybeans to enhance drought resistance (Figure 3) (Wang et al.,

2023a). There are also some other regulators, such as 24-

epibrassinolide·triacontanol, indolebutyric acid·triacontanol,

indolebutyric acid·S-abscisic acid, kinetin and triacontanol·6-

benzylaminopurine, which have similar ways to improve drought

resistance (Lv et al., 2023).
4.4 Emerging nanomaterials for enhanced
drought resistance

The application of nanotechnology is to respond to climate

change-mediated environmental stressors through nanomaterials

(such as pesticides, nanobiosensors, nanoclays, and nanoseed

priming techniques). In recent years, some nanomaterials have

played a significant role in the improvement of crop agronomic

traits. Functional carbon nanodots (FCNs) have positive effects on
FIGURE 3

The mechanism of mepiquat chloride regulating soybean response to drought (Wang et al., 2023a).
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many physiological processes in plant vegetative and reproductive

growth stages, including photosynthesis, antioxidant system,

osmotic regulation, soil physical and chemical properties and

microbial environment improvement (Chen et al., 2022b).

Hatami et al. (2017) reported that low concentrations of single-

walled carbon nanotubes (SWCNT) treatment can induce plant

tolerance to low-to-moderate drought by enhancing water uptake

and activating plant defense systems. Some metal nanomaterials

have also been used to cope with drought stress. Zinc oxide

nanoparticles (ZnONPs) promoted the increase of plant height,

total chlorophyll content, plant fresh weight and dry weight, seed

and straw yield of rice under drought, reduced MDA content,

increased proline level and antioxidant enzyme activity (Waqas

Mazhar et al., 2022). Calcium oxide nanoparticles (CaO_NPs)

maintain the redox state of Trachyspermum ammi L. Sprague by

regulating non-enzymatic antioxidants and enzymatic antioxidants,

and significantly improve the morphological-agronomic traits of

plants (Mazhar et al., 2023). Nanomaterials have great potential in

the application of plants.
5 New methods and techniques for
studying plant adversity

With the continuous progress of science and technology, some new

methods and new technologies are emerging. This section introduces

some emerging technologies in recent years for plant stress research.
5.1 Crop phenomics and high-throughput
phenotypic analysis

With the completion of genome-wide sequencing of many crop

species and the rapid development of high-throughput phenotypic

technology, the genetic information and functional characteristics

of plants have been further identified, which has laid a suitable

foundation for advanced precision agriculture and improved

genetic benefits (Li et al., 2022). However, one of the primary

obstacles impeding crop breeding and functional genomics research

is the gathering of large-scale phenotypic data. We can now

investigate novel approaches for large-scale phenotypic data

collection and processing in the upcoming years in order to

potentially relieve this bottleneck, thanks to recent technical

advancements (Yang et al., 2020). Crop phenomics and high-

throughput phenotypic analysis techniques can accurately

measure the required traits of thousands of field-grown plants in

diverse environments (Figure 4). This is a key step in selecting lines

with better yield, disease resistance and stress resistance to

accelerate crop improvement programs. It helps to reveal the

genetic basis of complex traits and targeted traits related to plant

growth and development, and provides more in-depth insights and

more effective strategies for crop improvement (Jangra et al., 2021).

Precise high-throughput phenotypic analysis will hasten genetic

advancement of plants and foster the upcoming green revolution in

agricultural breeding.
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5.2 Drought monitoring model based on
machine learning

Due to its superior performance in prediction tasks, machine

learning (ML) is widely applied in scientific research. Nonetheless,

in real-world scenarios like catastrophe tracking and evaluation, the

consequences of model malfunction, particularly incorrect negative

forecasting, could greatly affect the community. Consequently,

stakeholders can improve their understanding of the multifaceted

effects of the drought at the regional level and implement suitable

countermeasures by utilizing interpretable machine learning to

highlight the possibility of broad social benefits (Zhang et al.,

2023). A machine learning system called DroughtCast was created

by Brust et al. (2021) to forecast US drought monitoring (USDM).

In order to accurately estimate USDM over the next one to twelve

weeks, DroughtCast uses satellite-observed soil moisture and

simulated weather as inputs to a recurrent neural network. A

supervised machine learning framework that supplements the rice

gene regulation and association network (GRaiN) was proposed by

Gupta et al. (2021). The role of OsbHLH148 transcription factors is

predicted with accuracy by this approach. In addition to aiding in

the genetic engineering of optimal rice varieties, this network and

complementing machine learning techniques anticipate important

regulatory genes underlying other agricultural features. In addition,

hyperspectral images of drought phenotypes, combined with

relevant physiological indicators for modeling to predict the

drought tolerance of plants, can also be used as a new screening

method for evaluating drought-tolerant germplasm resources

(Chen et al., 2022c).
5.3 The rise of single cell sequencing and
spatial omics

In order to fully and deeply understand the function of

organisms, we need to conduct in-depth research on their basic

unit ‘cells’ in their natural space environment. Single cell

sequencing technology provides us with a method to study
FIGURE 4

Operation mode of plant phenotype platform.
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intracellular dynamics at the single cell level and to answer

biological questions through high-dimensional data sets of

millions of cells (Mo and Jiao, 2022). Single-cell transcriptomics

provides an in-depth understanding of single-cell transcriptomes,

while spatial transcriptomics helps to preserve information on

spatial relationships between cells. In recent years, these

techniques have made significant progress. Giacomello (2021)

reviewed modern advances in single-cell RNA sequencing and

outlined techniques for moving the plant field into spatial

transcriptomics, while describing available spatial transcriptomics

methods and specific application examples. However, there are

certain drawbacks to these technologies as well, such as their limited

applicability, lack of spatial information, or poor resolution; single-

cell transcriptomics, spatial transcriptomics, and spatial element

distribution together can offer more fruitful avenues for plant

research (Chen et al., 2023).

Without requiring any chemical modification or labeling, mass

spectrometry imaging (MSI) is a potent method that may directly

describe the chemical characteristics and spatial distribution of

various substances (Dong and Aharoni, 2022). It maps certain

molecules to specific tissue distribution of the original sample,

integrates quantitative and qualitative molecular information with

spatial information, and enhances conventional chemical analysis

(Dong et al., 2016). Simultaneously, the integration of MSI with

additional analytical methods has significantly broadened the

comprehension of sample data, which is essential for clarifying

the processes of endogenous drug synthesis, accumulation, and

control (Dong and Aharoni, 2022). For example, Xia et al. (2023)

employed a combination of mass spectrometry imaging techniques

and metabolomics to examine the spatial distribution of

diterpenoids in two types of Salvia miltiorrhiza. They also

identified the precise tissue distribution and mechanism of

diterpenoids in the leaves, phloem and xylem, root periderm, and

root epidermis.

Understanding the potential heterogeneity of complex

biological systems is aided by single-cell RNA sequencing. Protein

measuring has also been made feasible by technological

advancements, which has helped to clarify the different cell types

and states found in complicated tissues. Mass spectrometry has

advanced on its own recently, bringing us one step closer to defining

the single-cell proteome. It is still difficult to identify proteins in

single cells using mass spectrometry and sequencing-based

techniques (Bennett et al., 2023). However, single cell proteomics

is still in the preliminary research stage and has been constructed in

the medical field (Wang et al., 2023). In the future, it may provide a

new perspective for plant stress research.
6 Outlook

With the deepening of research on various types of plants, many

drought resistance mechanisms have been revealed. In the current

research, there are still some problems to be solved. First, due to the

rapid development of high-throughput technology, a large number

of drought-responsive genes have been discovered, but in fact, the

genes that can be used for genetic improvement are very limited,
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and there are still many known genes that have not been used. In the

future research, in addition to the development of new genes, we

should also pay attention to the in-depth study of discovered genes.

Second, linked to yield, the ultimate goal of drought research is to

reduce yield loss. Therefore, in the study of gene function, it is

necessary to move from the laboratory to the field, at least to ensure

that the yield is not reduced. Thirdly, root research was carried out

to evaluate the overall situation of plants and integrate data (based

on data integration, the mechanism of root and leaf synergistic

response to drought was analyzed). In the existing research, a large

number of experiments are based on the ground, and little is known

about the root system. As the primary water sensing organ, the role

of roots in drought resistance should not be ignored. Zia et al.

(2021) reviewed the integrated rhizosphere management strategies

for plant drought stress alleviation, including rhizosphere

engineering by adding drought-tolerant bacteria, nanoparticles,

liquid nanoclay, nutrients, organic matter, and plant modification

using next-generation genome editing tools (such as CRISPR/Cas9),

providing theoretical support for further deepening root research in

the future. Researchers should pay attention to the comprehensive

response of aboveground and underground parts, and clarify the

overall dynamic changes or transport patterns of plants through

data mining and integration. Of course, this work is complex and

still requires a lot of time to explore. Finally, innovative thinking is

particularly important. The heterologous expression of genes in

different species provides us with new ideas and directions. A gene

may have unexpected effects in other species, which is worthy of our

continuous exploration.

In conclusion, this paper provides drought researchers with

specific viewpoints from methodology to consequentialism, and

further deepens the understanding of drought stress. These

viewpoints provide theoretical support for researchers to design

drought-resistant crops and improve drought tolerance.
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