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The zinc/iron-regulated transporter-like proteins (ZIP) family acts as an

important transporter for divalent metal cations such as Zn, Fe, Mn, Cu, and

even Cd. However, their condition is unclear in Tartary buckwheat (Fagopyrum

tataricum). Here, 13 ZIP proteins were identified and were predicted to be mostly

plasma membrane-localized. The transient expressions of FtZIP2 and FtZIP6 in

tobacco confirmed the prediction. Multiple sequence alignment analysis of FtZIP

proteins revealed that most of them had 8 putative transmembrane (TM) domains

and a variable region rich in histidine residues between TM3 and TM4, indicating

the reliable affinity to metal ions. Gene expression analysis by qRT-PCR showed

that FtZIP genes were markedly different in different organs, such as roots, stems,

leaves, flowers, fruits and seeds. However, in seedlings, the relative expression of

FtZIP10 was notably induced under the CdCl2 treatment, while excessive Zn2+,

Fe2+, Mn2+ and Cd2+ increased the transcript of FtZIP5 or FtZIP13, in comparison

to normal conditions. Complementation of yeast mutants with the FtZIP family

genes demonstrate that FtZIP7/10/12 transport Zn, FtZIP5/6/7/9/10/11 transport

Fe, FtZIP12 transports Mn and FtZIP2/3/4/7 transport Cd. Our data suggest that

FtZIP proteins have conserved functions of transportation of metal ions but with

distinct spatial expression levels.
KEYWORDS
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1 Introduction

Zinc (Zn), as a vital micronutrient, is essential for the functions of numerous proteins,

and physiological processes in prokaryotes and eukaryotes (Mondal et al., 2013). It has been

demonstrated that Zn deficiency is one of the most widespread minerals nutritional

problems affecting the development and health of plants under field conditions, whereas

excessive amounts of Zn inhibit the plant’s growth and development (Briat and

Lebrun, 1999). For example, excessive Zn may be highly toxic, and in some cases, may

cause damage by the production of harmful reactive oxygen species (Sinclair et al., 2018).
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To maintain the intracellular and extracellular metal

concentration (Jiang et al., 2021), plant cells have evolved

multiform transport networks to balance the absorption,

utilization, and storage of trace metal elements, including iron

(Fe), manganese (Mn), copper (Cu), and Cadmium (Cd) (Ajeesh

Krishna et al., 2020). Studies have demonstrated that HMA (Heavy

Metal ATPase) proteins, CDF (Cation-Diffusion Facilitator), and

ZIP (Zrt/Irt-like protein family) act as important regulators in these

processes (Bari et al., 2021). For example, AtHMA2 and AtHMA4

are required for Cd translocation in Arabidopsis thaliana (Wong

and Cobbett, 2009). A member of the Mn-cation diffusion facilitator

(CDF) family, MTP8.1 (METAL-TOLERANCE PROTEIN), plays a

central role in high Mn tolerance by sequestering Mn into vacuoles

(Tsunemitsu et al., 2018). Overexpression of HvZIP7 in barley

plants would increase Zn uptake (Tiong et al., 2014).

The ZIP family has a major role in Zn transportation and metal

homeostasis in planta (Wang et al., 2017). Both ZIP1 and ZIP3 in

Arabidopsis are involved in Zn input from soil to root (Grotz and

Guerinot, 2006). In grapevines, a deficit of Zn results in abnormal

leaves, showing reduced area, mottled and shortened internodes

(Gainza-Cortés et al., 2012). The VvZIP3 is involved in Zn uptake

and distribution during the early reproductive development of Vitis

vinifera (Gainza-Cortés et al., 2012). The expression of NtZIP4B

from tobacco (Nicotiana tabacum) is upregulated by Zn deficiency,

however, downregulated by Zn excess (Barabasz et al., 2018).

Overexpressing ZmZIP5 would increase the accumulation of Zn

and Fe in the roots and shoots of maize (Zea mays), whereas

decreases in the seeds (Li S et al., 2019). The expression of OsZIP4 is

upregulated by low Zn and regulates the transportation of Zn to the

tiller bud in rice (Oryza sativa) (Ishimaru et al., 2005; Mu et al.,

2021). In barley (Hordeum vulgare), HvZIP3, HvZIP5 and HvZIP8

act as Zn transporters involved in Zn2+ homeostasis, but not Fe or

Mn transporter (Pedas et al., 2009).

Besides Zn, ZIP transporters have been reported to regulate the

transport other transition metal cations, including Mn, Fe, Cd, Cu,

cobalt (Co)and nickel (Ni). For example, OsZIP9 can take up Zn

and Co from external media into root cells (Yang et al., 2020).

Interestingly, OsZIP6 in Xenopus laevis oocytes could mediate the

uptake of Co, Fe, and Cd but not Zn, Mn, and Ni (Kavitha et al.,

2015). Knockout of OsZIP7 shows retention of Zn and Cd in roots

and basal nodes, resulting in the inhibition of their upward delivery

to upper tissues (Tan et al., 2019). The HvIRT1 from Hordeum

vulgare, with a high similarity to OsIRT1 from Oryza sativa,

controls Mn uptake in the root (Pedas et al., 2008).

Studies show that there are 15 members of the ZIP family in A.

thaliana (Grotz et al., 1998), 23 in bean (Phaseolus vulgaris L)

(Astudillo et al., 2013), 15 in rice (Narayanan et al., 2007), 14 in

wheat (Triticum aestivum) (Evens et al., 2017) and 12 in maize

(Mondal et al., 2013). Although ZIP genes have been extensively

studied in crops, such as rice, genome-wide analysis of the members

of this family has yet to be uncovered in Tartary buckwheat

(Fagopyrum tataricum). The F. tataricum has been widely

popularized as a food and ornamental crop in East Asian

countries, particularly, in Southwestern China (Li and Zhang,

2001). Buckwheat is widely adaptable to low-fertility soils and

some mountainous regions, in particular, exhibiting short growth
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cycles (Fan et al., 2021; Li et al., 2022). Recently, F. tataricum is

recognized as a good source of nutritionally valuable proteins,

lipids, dietary fibers, minerals, and other health-promoting

compounds, such as phenolic and sterols (Noreen et al., 2021; Lin

et al., 2023). Thus, it has received increasing attention as a potential

functional food. Due to the importance of ZIPs in metal ion

absorption, transport and distribution, recent studies have

focused on cloning and characterizing their functions in the

important plants such as Arabidopsis thaliana or rice, as well as

major food and horticultural crops. However, limited information is

available on ZIPs in Tartary buckwheat. Cloning and functional

analysis of Tartary buckwheat ZIPs can significantly promote the

understanding of potential metal element absorption mechanisms.

Furthermore, the sequencing and assembling of the buckwheat

genome provides an opportunity to identify and isolate these

genes at the genomic level (Zhang et al., 2017). Here, we used

protein and gene structure analysis, phylogenetic analysis, and

sequence alignment, to identify ZIP family in F. tataricum. We

also analyzed the spatial expression including root, stem, leaf,

flower, fruits and seed, and also checked the inducible expression

of FtZIP genes in response to Zn, Cd, Fe and Mn. In addition, the

ability of FtZIPs to transport four metal ions was tested by the yeast

complementation assay.
2 Materials and methods

2.1 Plant materials and stress treatments

The Tartary buckwheat cultivar (XiQiao #7) was used in this

study. In the indicated stages, we collected tissues of roots, stems,

leaves, flowers, fruits and seeds in Tartary buckwheat, frozen in

liquid N2, and stored at -80°C. For investigating the expressions of

FtZIPs, after 21 days of growth, the XiQiao #7 seedlings were

removed from the flowerpot to avoid damaging the roots. The

soil in the roots was meticulously cleaned. The seedlings were

treated with Hoagland medium containing di fferent

concentrations of metal ions, specifically 100 mM CdCl2, 75 mM
ZnSO4, 100 mM MnCl2 or 100 mM FeSO4 for 6 h, collected treated

seedlings and frozen in liquid N2, and stored at -80°C. Seedlings and

Nicotiana benthamiana plants were grown in a growth chamber

under 60% relative humidity and with a day/night cycle of 16 hr

light 114/8 hr dark and 120 mmol m–2 s–1.
2.2 Identification and bioinformatics
analyses of FtZIP genes

The sequence of the Tartary buckwheat proteins was

downloaded from the Tartary buckwheat database (TBD, http://

www.mbkbase.org/Pinku1/), after which the HMM profile was

downloaded from the Pfam protein family database (http://

pfam.sanger.ac.uk/). The ZIP gene family was searched by

BLASTP methods. HMMER3.1 was used to search against the

buckwheat protein sequence with a threshold of E < 1e-5 (Finn

et al., 2016). NCBI BLAST was used, and manual corrections were
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then performed to remove alternative events and redundancy. We

analyzed the amino acid lengths, molecular weight (MW) and

isoelectric points (PI) on the ExPasy website (http://

web.expasy.org/protparam/). ZIP proteins from Arabidopsis and

rice were aligned using CLUSTAL_X2 program. Then, the NJ

phylogenetic tree was constructed using MEGA7 program with

1,000 bootstrap replicates. Evolutionary distances were calculated

using the Poisson correction method and are expressed in terms of

the number of amino acid substitutions per site. Potential

transmembrane domains in each FtZIP protein were identified

using the TMHMM program (Krogh et al., 2001; Qian et al.,

2019). Conserved motifs of proteins were predicted using the

MEME Suite web server (http://meme-suite.org/) and the number

of motifs was set as 10, at a width range from 5 to 200 amino acids.
2.3 mRNA expression analysis

The expression levels of FtZIP transcripts were analyzed using

quantitative real-time PCR (qRT-PCR) assay. Total RNA was

extracted from the roots (7-d seedlings), stems (10-d seedlings),

leaves (10-d seedlings), flowers, fruits and seeds using an RNAprep

Pure Plant Kit (Tiangen, Beijing, China). Then, cDNA synthesis was

performed in a 20 ml reaction mixture containing 1 mg of total RNA
and a mixture of Hifair® cDNA Synthesis Kit (Yeasen, Shanghai,

China). The real-time PCR mixture contained 1 ml cDNA, 1 ml
forward and reverse primers, and 10 ml 2 x SYBR Green (TaKaRa,

Beijing, China). The qRT-PCR was performed using a CFX96

Touch™ Real-Time PCR detection system (Bio-Rad, Hercules,

California, CA, USA). All reactions were performed in three

triplicates with the following cycling conditions: 95°C for 3 min;

30 cycles each at 95°C for 10 s and 56°C for 30 s, and 72°C for 20 s.

The 2−DDCt method was used for the analysis of qRT-PCR (Livak

and Schmittgen, 2001). The housekeeping gene FtH3 (ID:

HM628903) was used as an internal control (Li C et al., 2019).

All primers are shown in Supplementary Table S1.
2.4 Localization of FtZIPs in
N. benthamiana

To identify the localization of FtZIPs, The coding regions of the

two FtZIP representative genes, FtZIP2/6 (without stop codons)

with XhoI cleavage sites were cloned into pEasyGate100 containing

a 35S promoter for enhanced green fluorescence protein (EGFP) by

homologous recombination. EGFP was linked to the C-terminus of

the ZIP protein. The primers are listed in Supplementary Table S1.

The pEasyGate100-EGFP was used as a control, and mCherry-

labeled AtPIP2A was used as a PM marker. The constructs were

introduced into the GV3101 strain of Agrobacterium tumefaciens

and then were incubated overnight at 28°C. Cells were harvested,

resuspended in infiltration buffer (0.2 mM acetosyringone, 10 mM

MgCl2, and 10 mM MES), and then infiltrated into 4-week-old N.

benthamiana leaves with a needleless syringe. After 3 d incubation,

the green fluorescence was observed in transformed leaf epidermal

cells using a confocal laser-scanning microscope (DMI6000B; Leica,
Frontiers in Plant Science 03
Mannheim, Germany). The fluorescence signal was observed at

excitation wavelengths of 488 nm or 561 nm and emission

wavelengths of 500–572 nm or 605–635 nm. Three or four leaves

per time were observed for three biological replicates.
2.5 Yeast complementation assay

The cDNA fragments of FtZIP2, FtZIP3, FtZIP4, FtZIP5,

FtZIP6, FtZIP7, FtZIP9, FtZIP10, FtZIP11 and FtZIP12 were

amplified and cloned into the pYES2 vector. Then, the

constructed plasmids were transformed into the zrt1zrt2 yeast

mutant ZHY3, fet3fet4 yeast mutant DEY1453, smf1 and ycf1

yeast mutant BY4741, respectively (Fu et al., 2017; Yue et al.,

2021). The lithium acetate/PEG transformation method was used

for yeast transformation. Galactose as the glycogen. Yeast strain

expressing empty vector or FtZIPs were pre-cultured in SD liquid

medium lacking Ura at 30°C for16 h. Precultured cells were diluted

to an OD600 of 1.0, and 5 mL aliquots were spotted onto synthetic

complete medium without Uracil (SD-Ura) plates supplemented

with or without 1 mM EDTA, 10 mM and 20 mM BPDS, 12 mM

EGTA or 40 mMCdCl2 as indicated. Plates were incubated 3 days at

30°C and photographed.
3 Results

3.1 Identification and classification of ZIP
genes in Tartary buckwheat

Although the ZIP family has been reported in various species,

the genes of this family have not been reported in Tartary

buckwheat. In this study, a total of 13 putative ZIP genes were

identified from the Tartary buckwheat genome. Here, these ZIP

genes were provisionally named as FtZIP1 to FtZIP13 (Table 1)

according to their locations on chromosomes. We found that ZIPs

were unevenly distributed on the chromosomes. There were three

genes positioned on the second and third, two genes on the first,

seventh and eighth, and one gene on the fifth chromosome, but no

genes locating on the fourth chromosome, respectively

(Supplementary Figure S1). The amino acid (aa) length of FtZIPs

varied from 200 aa (FtZIP9) to 426 aa (FtZIP1), and the PI ranged

from 5.21 (FtZIP2) to 8.10 (FtZIP13) (Table 1). In addition, most of

FtZIPs had 8 TM domains, except for FtZIP9 (4 TM) and FtZIP11

(7 TM). In addition, most of the FtZIP proteins were predicted to be

localized on the plasma membrane (Table 1), which is consistent

with the known characteristics of the ZIP gene (Fu et al., 2017),

while FtZIP9 might be also localized in cytoplasm. Next, we checked

the localizations of FtZIP2 and FtZIP6 in tobacco leaves. The results

confirmed that both of them localized in the membrane (Figure 1;

Supplementary Figures S2, 3), which is in line with the

predicted results.

We constructed a phylogenetic tree using 13 FtZIPs and 30 ZIPs

from rice and Arabidopsis to identify the phylogenetic relationship

between FtZIPs and other ZIPs in planta (Figure 2). The result

showed that these ZIPs could be divided into four groups: group 1,
frontiersin.org
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group 2, group 3 and group 4 (Figure 2). Groups 2, 3 and 4

contained the most ZIPs, while group 1 contained little AtZIP and

OsZIP. The result shows that these ZIPs proteins may have a

conserved function in plants. Except for FtZIP5, the other FtZIPs

are evenly divided into groups 1, 2 and 3, indicating that FtZIP5 has
Frontiers in Plant Science 04
different functions from other FtZIPs. The ZIP proteins in the same

cluster often shared a similar gene structure. Additionally, we found

that the FtZIP7 exhibited a close relationship with AtZIP6,

indicating that FtZIP7 shared a similar function with AtZIP6,

both of which are involved in Zn transportation (Lee et al., 2021).
FIGURE 1

Analysis of the subcellular localization of FtZIP2 and FtZIP6. Confocal images of N. benthamiana leaves expressing FtZIP2 and FtZIP6. An mCherry-
labeled plasma membrane marker (AtPIP2A) was coexpressed to visualize the plasma membrane. An empty vector was used as a positive control.
Bars = 50 mm.
TABLE 1 Localization and physicochemical characteristics of FtZIPs.

Gene
name

ID Subcellular
Localization

MW
(KDa)

Protein
length

PI TMD Grand average
of hydropathicity

FtZIP1 FtPinG0005816600.01.T01 PlasmaMembrane 45.29 426 5.84 8 0.36

FtZIP2 FtPinG0001701300.01.T01 PlasmaMembrane 42.81 403 5.21 8 0.345

FtZIP3 FtPinG0006268600.01.T01 PlasmaMembrane 37.87 367 5.58 8 0.563

FtZIP4 FtPinG0003390700.01.T01 PlasmaMembrane 41.13 387 7.67 8 0.44

FtZIP5 FtPinG0006885600.01.T01 PlasmaMembrane 36.73 343 6.35 8 0.564

FtZIP6 FtPinG0004012100.01.T01 PlasmaMembrane 37.99 359 6.62 8 0.558

FtZIP7 FtPinG0003990300.01.T01 PlasmaMembrane 39.58 371 6.26 8 0.533

FtZIP8 FtPinG0007900700.01.T01 PlasmaMembrane 34.31 328 6.08 8 0.815

FtZIP9 FtPinG0005140200.01.T01 PlasmaMembrane/
Cytoplasmic

21.15 200 6.07 4 0.376

FtZIP10 FtPinG0007555000.01.T01 PlasmaMembrane 36.4 342 6.09 8 0.518

FtZIP11 FtPinG0004751000.01.T01 PlasmaMembrane 29.56 285 5.78 7 0.664

FtZIP12 FtPinG0007186800.01.T01 PlasmaMembrane 32.17 297 7.65 8 0.586

FtZIP13 FtPinG0007186600.01.T01 PlasmaMembrane 38.26 355 8.1 8 0.492
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3.2 Domains, motif structure, and gene
structure analysis

To further understand the function of FtZIPs, we analyzed gene

structure and conservedmotifs. Using theMEME tool, we identified 10

conserved motifs with lengths ranging from 6 to 50 amino acids

(Figure 3B). The protein structure was different among the members of

FtZIPs. The distribution features of the 10 predicted motifs in FtZIPs

were in line with the phylogenetic analysis (Figure 3A). Most of FtZIPs

contained 7-9 motifs, while FtZIP9 had 4 motifs and FtZIP5 had only 2

motifs (Figure 3B). The exon–intron structure analysis by the Gene

Structure Display Server online program exhibited that the number of

introns varied from 1 to 3, and exons ranged from 2 to 4 among 13

FtZIP genes (Figure 3C). In addition, we observed that the length

between TMD3 and TMD4 varied, which is usually related to the

binding and transport of metal ions (Figure 4). Most of FtZIPs

contained various histidine-rich domains (HRDs) such as H(XH)2,

HXH, H(XH)5, H(HXH)2, and glycine (G) residue is accompanied by

HRDs. According to these identified characteristics of the FtZIPs, we

had reliable reasons to believe that they are the ZIP family regulating

ion input or transport in Buckwheat.

To test the possible response patterns of the FtZIP family genes to

various stress treatments, cis-regulating elements including ABA-, auxin-

, MeJA-, drought-, and Zn deficiency-responsive elements were analyzed

in the promoter region (2000bp) of these genes (Supplementary Figure
Frontiers in Plant Science 05
S4). We observed that all FtZIPs contained light-responsive elements,

suggesting that ZIP proteins may play an important role in cellular

reactions as a catalyst for photosynthesis in planta. In addition, most of

FtZIPs genes could respond to MeJA, except for FtZIP2, FtZIP3, FtZIP8

and FtZIP11 genes. We also found that Zn deficiency response elements

in the promoters of FtZIP1, FtZIP2, FtZIP6, FtZIP8 and FtZIP10.
3.3 Expression analysis of FtZIP genes in
various tissues and response to
stress treatments

Next, we investigated the expression levels of 13 FtZIP genes in the

root, stem, leaf, flower, fruit and seed organs, using qRT-PCR assay

(Figure 5). The results revealed that FtZIP1, FtZIP6 and FtZIP7 were

wide expressions in all indicated tissues. In addition, we found that the

transcript of FtZIP8 in reproductive tissues, including flowerers and

fruits, was over 100-fold times compared with that in leaves and FtZIP4,

FtZIP6 and FtZIP13 were specially expressed in flowers. Thus, FtZIP4,

FtZIP6, FtZIP8 and FtZIP13 are predicted to play a key role in both

flower and fruit development. FtZIP3 and FtZIP10 were specially

expressed in roots, indicating that they may be involved in ion intake.

Notably, only FtZIP1, FtZIP6, FtZIP12, FtZIP13 had higher level of

expression in seeds than in leaves, while others FtZIPs were

hardly detected.
FIGURE 2

Phylogenetic tree of ZIPs from plants. Based on the full-length protein sequences, the phylogenetic tree was constructed using the neighbor joining
method. The plants included Fagopyrum tatarium (Ft), Arabidopsis thaliana (At) and Oryza sativa (Os).The four different groups are indicated by
different colors.
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B CA

FIGURE 3

Gene structures and conserved motifs of these identified 13 FtZIP proteins. (A) Phylogenetic relationship of these FtZIP genes; (B) Conserved protein
motifs of these FtZIP proteins. The boxes in different colors represent different motifs; and the gray lines represent non-conserved sequences;
(C) Exon-intron structures of FtZIP genes. Green boxes, yellow boxes, and gray lines represent UTRs, exons, and introns, respectively, and their
lengths are shown proportionally.
FIGURE 4

Alignment of FtZIP proteins. FtZIP proteins were aligned using ClustalW. The conserved amino acids are indicated by dark and similar amino acids
are shaded with pink color. Transmembrane (TM) domains are shown as lines above the sequences and numbered TM1 to TM8.
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Considering that the ZIP gene family has been reported to be

involved in transporting zinc, iron and other metallic ions, we also

measured the transcriptional levels of FtZIPs under ZnSO4, FeSO4,

MnCl2 and CdCl2 treatments (Figure 6). For FtZIP1, its relative

transcriptional level was also induced by Mn2+, with 3-fold increase

compared with the normal conditions, while other treatments did

not have an effect on its mRNA level. Both of Mn2+ and Cd2+ could

significantly trigger relative expressions of FtZIP2, FtZIP6 and

FtZIP10. Interestingly, FtZIP11 was up-regulated by Zn2+ and

Fe2+, while down-regulated by Mn2+ and Cd2+. In contrast,

FtZIP4 was upregulated by Mn2+, while down-regulated by Zn2+

and Fe2+. For FtZIP5, we found that it was highly induced by heavy

metals, over 150-fold augment compared with that under the

normal conditions. Notably, all treatments markedly repressed

the transcripts of FtZIP3, FtZIP7 and FtZIP12.
3.4 Functional complementation analysis
of the FtZIP family in yeast mutants

To identify whether FtZIPs were able to transport metals, the

important metal transport proteins, we employed defective metal
Frontiers in Plant Science 07
uptake systems. The zrt1zrt2 and fet3fet4mutants are defective in in

both low- and high-affinity Zn and Fe uptake system, respectively

(Eide et al., 1996; MacDiarmid et al., 2000). The smf1 mutant is

sensitive to EGTA, a Mn chelator (Cohen et al., 2000; Zhang et al.,

2017). The ycf1 yeast system is defective in pumping Cd into

vacuoles (Meng et al., 2017).

We found that the Dzrt1zrt1 yeast cells expressing of FtZIP7 and
FtZIP12 displayed well-growth as the positive control (AtZIP4), and

expression of FtZIP10 could also slightly improve the growth of yeast

under Zn-deficient conditions, while other members of the FtZIP

family could not restore normal growth (Figure 7A). These results

suggest that FtZIP7 and FtZIP12 are able to complement zrt1zrt2

mutant and transport Zn. The expression of FtZIP5/6/7/9/10/11

notably improve the growth of the Dfet3fet4 mutant yeast on SD-

Ura solid medium in presence of 20 mM Fe2+ chelating agent, 4,7-

diphenyll,10-phenanthroline disulfonic acid (BPDS), while the

growth of yeast expressing of FtZIP2/3/4/12 was similar with the

negative control (pYES2, the empty vector) (Figure 7B). These results

suggest that FtZIP5/6/7/9/10/11 are able to complement fet3fet4

mutant, but FtZIP2/3/4/12 could not. In addition, the smf1 mutant

yeast expressing the FtZIP family were grown on the SD-Ura solid

medium supplemented with or without EGTA. The results showed
FIGURE 5

qRT-PCR based relative expression analysis of 13 F. tataricum ZIP (FtZIP) genes in root, stem, leaf, flower, developing fruit, and mature seed tissues.
The relative expression levels of the FtZIP genes were normalized by the expression levels of FtH3. The expression of FtZIPs in leaves were set 1.
Values are the means ± SD (n = 3). Statistical significance was determined by ANOVA in combination with post-hoc tests; significant differences
(P ≤ 0.05) are indicated by different lowercase letters.
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that only expressing FtZIP12 significantly improved the growth of

yeast, in consistent with the positive control AtZIP7, suggesting that

FtZIP12 is capable of complementing smf1 mutant, but other

members are not (Figure 7C). In the ycf1 mutant, all transformants

were well grown on the SD-Ura solid medium. After 40 mM Cd

treatment, cells expressing FtZIP5, FtZIP6, FtZIP9, FtZIP10, FtZIP11

or FtZIP12 displayed no significant difference with the negative

control, while FtZIP4 had slight ability of complementing ycf1

mutant (Figure 7D). However, yeast cells after transformants of

FtZIP2, FtZIP3 or FtZIP7 could hardly grow on the SD-Ura

medium supplemented with 40 mM Cd, indicating that these

proteins could intake of excessive Cd.
4 Discussion

Zn transporter proteins, ZIPs regulate Zn homeostasis, which is

necessary for all living organisms. Although the ZIP family has been

well reported in many species, such as rice and wheat, the ZIP

family has not been well studied in F. tataricum. Here, we

characterized 13 FtZIPs in buckwheat (Table 1), equal to the

number of ZIPs in rice, but less than that in Arabidopsis. In

addition, most of FtZIP proteins contained 8 putative TMs which

is consistent with that proposed by Guerinot (Guerinot, 2000).
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In this study, we found that FtZIP2 and FtZIP6 localized in the

plasma membrane (Figure 1; Supplementary Figures S2, 3). Normally,

the N. benthamiana transient expression system was used to co-express

genes of interest with fluorescent organelle markers. However, when

using tobacco epidermal cells to study proteins localized to the plasma

membrane, it might be challenging to distinguish their location from the

cytoplasmic background. The utilization of native species at the

endogenous expression level might yield better results. Additionally,

we also analyzed the characteristics of FtZIPs, with results showing a

high degree of conservation with Arabidopsis thaliana, but not

homologous to OsZIP (Figure 2). The variable residue length between

TM3 and TM4 were found in FtZIP proteins, which is predicted to be

directed toward the cytoplasmic side of the plasma membrane, and it

was rich in histidine residues, thus providing a cytoplasmic metal ion

binding site (Eng et al., 1998; Guerinot, 2000; Zeng et al., 2021).

However, FtZIP7 only contained one histidine residue and was

predicted to be located in cytoplasmic, but had the conserved G

residue (Table 1; Figure 4). Glycine residues near the TM mediate

TM packing (Zhang et al., 2017).

Plant ZIP transporters are partially conserved with BbZIP. For

example, functional residues His177 and Gly182 actively participate In

the metal (Cd/Zn) released from the metal binding site of BbZIP. vast

majority Conservative His117 residue found in plant ZIP protein

sequence in BbZIP (Ajeesh Krishna et al., 2020). Undoubtedly, we
FIGURE 6

Relative expressions of FtZIPs from Tartary buckwheat under various treatments. 21-d seedlings were treated with indicated treatments for 6-h. CK,
Hoagland solution; Zn, 75 mM ZnSO4 treatment; Cd, 100 mM CdCl2; Mn, 100 mM MnCl2; Fe,100 mM FeSO4. Values are the means ± SD (n = 3).
Statistical significance was determined by ANOVA in combination with post-hoc tests; significant differences (P ≤ 0.05) are indicated by different
lowercase letters.
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have also discovered these two conserved sites in members of the FtZIP

family of Tartary buckwheat. The His177 and Gly182 are involved in

the metal release from the metal-binding site of the BbZIP. Similarly,

Glu211 and Gly212 are metal-binding residues in BbZIP. Glu211 of

BbZIP is conserved in FtZIP proteins expect for FtZIP5 (Ala232),

where Glu is replaced by Ala. Additionally, Gly212 of BbZIP is

conserved in FtZIP proteins except for FtZIP5 (Ala233), where Gly is

replaced by Ala. The metal-binding site residue that G181 is conserved

only with FtZIP5 (Figure 4). FtZIP5 is closely related to OsZIP2

(Figure 2). Previous studies have shown that OsZIP2 is involved in

iron absorption (Pradhan et al., 2020). Our yeast experiments have

confirmed that FtZIP5 can grow on iron-deficient culture media

(Figure 7). It is possible that FtZIP5 also plays a role in iron

absorption in Tartary buckwheat.
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The cis-regulatory elements present in the promoter region have

an important role in gene expression regulation since it harbors various

signals/factors responsive elements. Here, we found that the FtZIP

family contains biotic and abiotic responsive elements, which is in line

with the previous reports. In addition, light responsive elements were

found in each member of FtZIP genes. Studies have revealed that ZIPs

are usually involved in a wide range of cellular processes, such as

protein synthesis and photosynthesis (Sinclair and Krämer, 2012).

Thus, FtZIPs may have respective functions in various stresses and as a

catalyst for cellular reactions.

The analysis of the expression profiles indicates that FtZIP3 and

FtZIP10 were expressed in root (Figure 5), which is similar to

NtZIP5B which is primarily tested in the root to mediate the

absorption of Zn directly from the soil solution (Palusińska et al.,
B

C D

A

FIGURE 7

Complementation of yeast metal uptake-defective mutants with FtZIP genes on selective medium. (A) zrt1zrt2 yeast mutant ZHY3 containing empty
(pYES2, empty vector) or members of the FtZIP family, was grown on SD-Ura medium containing with 0.6 mM ZnSO4 (CK), or 1 mM EDTA.
(B) fet3fet4 yeast mutant DEY1453 containing empty (pYES2, empty vector) or members of the FtZIP family, was grown on SD-Ura medium
supplemented with or without BPDS. (C) The smf1 yeast mutants containing empty (pYES2, empty vector) or members of the FtZIP family, were
grown on SD-Ura medium supplemented with or without 12 mM EGTA. (D) The ycf1 yeast mutant cells transformed with pYES2 empty vector
containing with or without FtZIPs, and grown on SD-Ura solid medium supplemented with or without 40 mM CdCl2. Serial dilutions (10 x) of cultures
were spotted. Images were taken after 3 days.
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2020). In addition, the expressions of FtZIP4, FtZIP6 and FtZIP13

and were mainly detected in the flowers (Figure 5), which is

consistent with VvZIP3 which is mainly transcribed in developing

flowers (Gainza-Cortés et al., 2012).

Transition metals such as Zn, Mn, Fe, and Cu can be toxic when

present in excess. The ZIP family transports not only Zn, but also other

ions, such as Fe, Mn, Cd, and Cu. The qRT-PCR analyses showed that

FtZIP5 and FtZIP10 were significantly induced by Cd2+, with over 150-

fold and 15-fold high expressions compared with the control,

respectively (Figure 6). However, the ability of Cd transport is

moderate (Figure 7). These data indicate that FtZIPs are evolutionally

conserved, while are also divergent, which is consistent with ABA

receptors in Arabidopsis (Fuchs et al., 2014). Rice overexpressing

OsIRT1 plants are sensitive to excess Zn and Cd, indicating that

OsIRT1 also transports those metals (Lee and An, 2009).

Overexpression of VsRIT1 (root iron transporter 1) in Arabidopsis

increases Cd2+ accumulation in Arabidopsis seedlings (Zhang et al.,

2020). However, FtZIP genes were suppressed in seedlings after MnSO4

treatment, indicating that a decrease in FtZIP expressions abolishes

excessive absorption of Mn2+ in plants (Zhang et al., 2018).

The complementary abilities of the FtZIP family members vary

among the four yeast mutants. FtZIP12 has abilities of complementing

zrt1zrt2 and smf1 mutant; FtZIP7 and FtZIP10 complements zrt1zrt2

and fet3fet4 mutant; FtZIP5, FtZIP6, FtZIP9 and FtZIP11 only can

complement fet3fet4 mutant; FtZIP2, FtZIP3 and FtZIP7 show

complementation with ycf1 mutant (Figure 7). One of the subgroups

mainly transports Cd and the other transports Fe. The expression of

FtZIP7 is markedly down-regulated by heavy metals (Figure 6), thereby

inhibiting the preference of transportation, which is in consistent with

BcZIP2 in Brassica chinensis (Wu et al., 2021).

5 Conclusion

In this study, we have identified and characterized FtZIP family

for the first time in the agronomically important plant F. tataricum.

Our results show that the FtZIP proteins and genes share the

conserved structural and organizational features with other

plants. Our results predict the possibility that FtZIPs could be

targeted for genetic engineering in order to enhance the resistance

against various metal stress.
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