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The brown planthopper (BPH) is the most destructive insect pest that threatens

rice production globally. Developing rice varieties incorporating BPH-resistant

genes has proven to be an effective control measure against BPH. In this study,

we assessed the resistance of a core collection consisting of 502 rice

germplasms by evaluating resistance scores, weight gain rates and honeydew

excretions. A total of 117 rice varieties (23.31%) exhibited resistance to BPH.

Genome-wide association studies (GWAS) were performed on both the entire

panel of 502 rice varieties and its subspecies, and 6 loci were significantly

associated with resistance scores (P value < 1.0e-8). Within these loci, we

identified eight candidate genes encoding receptor-like protein kinase (RLK),

nucleotide-binding and leucine-rich repeat (NB-LRR), or LRR proteins. Two loci

had not been detected in previous study and were entirely novel. Furthermore,

we evaluated the predictive ability of genomic selection for resistance to BPH.

The results revealed that the highest prediction accuracy for BPH resistance

reached 0.633. As expected, the prediction accuracy increased progressively

with an increasing number of SNPs, and a total of 6.7K SNPs displayed

comparable accuracy to 268K SNPs. Among various statistical models tested,

the random forest model exhibited superior predictive accuracy. Moreover,

increasing the size of training population improved prediction accuracy;

however, there was no significant difference in prediction accuracy between a

training population size of 737 and 1179. Additionally, when there existed close

genetic relatedness between the training and validation populations, higher

prediction accuracies were observed compared to scenarios when they were

genetically distant. These findings provide valuable resistance candidate genes

and germplasm resources and are crucial for the application of genomic

selection for breeding durable BPH-resistant rice varieties.
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Introduction

The cultivated rice (Oryza sativa L.) is a major staple crop and

feeds over half of the global population. Rice is highly diverse,

encompassing two major subspecies, indica and japonica, as well as

circum-aus and circum-basmati (Wang et al., 2018a). The brown

planthopper (Nilaparvata lugens Stål, BPH) is one of the most

devastating insect pests of rice, and widely distributed in South Asia,

Southeast Asia, East Asia, Northern Australia and the South Pacific

Islands (Jing et al., 2017). BPH, a phloem-feeding insect, causes

extensive wilting, yellowing and lethal drying of rice by sucking

susceptible rice phloem sap. BPH may also indirectly damage rice

plants by transmitting viruses such as grassy stunt and ragged stunt

(Zheng et al., 2021). Presently, insecticides are widely used to

manage pest infestations. However, this approach has damaged

natural enemies and led to insecticide resistance in the insects. The

most economical and effective strategy to control BPH pest is to

exploit resistance genes and cultivate BPH-resistant rice varieties.

Rice varieties carrying resistance genes Bph1 or bph2 have been

implemented extensively in Southeast Asia (Jairin et al., 2007).

Nevertheless, they have lost their resistance to BPH, and new BPH

biotypes developed (Kobayashi, 2016). Developing rice varieties

with durable resistance to BPH remains a major challenge.

The resistance mechanism of rice to BPH can be divided into

antibiosis, tolerance, and antixenosis from the physiological

perspective (Qiu et al., 2011). To date, over 49 BPH-resistant

genes/quantitative trait loci (QTLs) have been identified and 17

BPH-resistant genes have been isolated in rice (Shi et al., 2023).

Among the mapped genes, Bph14, Bph25, Bph30 and Bph32 were

reported to confer resistance via antibiosis (Du et al., 2009; Myint

et al., 2012; Ren et al., 2016; Wang et al., 2018b); bph7, Bph28 and

Bph37 were considered to confer tolerance to BPH (Qiu et al., 2014;

Wu et al., 2014; Yang et al., 2019); Bph6, Bph9, Bph18, Bph27, Bph27

(t), Bph33 and Bph36 confer resistance through a combination of

antibiosis and antixenosis (He et al., 2013; Huang et al., 2013; Ji

et al., 2016; Zhao et al., 2016; Guo et al., 2018; Hu et al., 2018; Li

et al., 2019); bph39(t), bph40(t) through a combination of antibiosis

and tolerance (Akanksha et al., 2019); and Bph31 through a

combination of antibiosis, antixenosis and tolerance (Prahalada

et al., 2017). The seedling bulk test is extensively used to evaluate

resistance scores of rice varieties to BPH. The resistance score

obtained from the seedling bulk test was a comprehensive

indicator of antibiosis, tolerance and antixenosis (Qiu et al.,

2011). Almost all of the BPH resistance genes were detected by

the seedling bulk test.

Bi-parental populations had a narrow genetic background,

restricting the detection of abundant genes. Genome-wide

association study (GWAS) is another strategy to identify genes

associated with resistance to BPH in natural population of rice

(Zhou et al., 2021). This method take advantage of ancient

recombination events to identify genetic loci underlying complex

traits at a relatively high resolution (Zhu et al., 2008). Previously, we

detected numerous loci associated with antibiosis to BPH from

1,520 rice varieties (Zhou et al., 2021). The antibiosis levels were

evaluated by measuring the bodyweight of insects on rice plants.

Since the antibiosis level can not fully reflect the resistance of rice. It
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is essential to utilize an comprehensive method to evaluate the

resistance to BPH and identify more resistance loci.

Genomic selection (GS), also known as genomic prediction

(GP), uses genome-wide molecular markers to train models for

populations with known phenotypes and genotypes. The trained

model predicts the phenotype of individuals possessing only known

genotypes, subsequently selecting the most performing individual as

a parent for the next generation (Crossa et al., 2017). Compared to

molecular marker assisted selection (MAS), which use a set of

selected markers to track target genes, GS incorporates molecular

markers throughout the genome to predict genomic estimated

breeding values (GEBVs) to avoid measurement bias and

information loss (Spindel et al., 2015). This strategy effectively

tracks and selects minor gene effects while maintaining focus on

major genes. Consequently, GS is an effective method for

incorporating both major and minor genes into new varieties.

Prediction ability (accuracy) is quantified via the correlation

between observed phenotypes and predicted GEBVs. The benefits

of GS are directly proportional to the prediction accuracy. When

the prediction accuracy is high enough, GS can shorten breeding

time by increasing the proportion of outstanding offspring in the

breeding population. Factors influencing prediction accuracy

include marker number, training population sample size, genetic

relationship between training and testing populations, statistical

models, trait heritability and genetic structure, population structure,

and so on (Desta and Ortiz, 2014; Wang et al., 2018c; Guo et al.,

2019; Voss-Fels et al., 2019; Xu et al., 2021). However, there is no

report of GP on BPH resistance, let alone study to explore the effects

of these factors on rice resistance to BPH.

In this study, the BPH resistance of 502 rice varieties was

comprehensively evaluated, including resistance score, weight

gain rate and honeydew excretion, and more BPH-resistant rice

varieties were identified. We also analyzed the correlation between

different resistance evaluation methods. GWAS were carried out to

identify significantly associated loci in the 502 rice panel and

subspecies. Eight resistance candidate genes predicted to encode

RLK, NB-LRR or LRR protein on chromosome 11 were identified.

Furthermore, we evaluated the predictive ability of GS for BPH

resistance and explored the effects of marker number, training

population sample size, genetic relatedness between training and

testing populations, and statistical models on the predictive

accuracy of BPH resistance. The results of our study provide

novel BPH-resistant candidate genes and germplasm resources.

Estimating the predictive accuracy of GS for BPH resistance are

of great importance for the application of GS in developing durable

BPH-resistant rice varieties.
Materials and methods

Plant materials and BPH insects

The rice materials used in this study comprised of 502 rice

varieties randomly selected from 1520 rice varieties (Zhou et al.,

2021); taking into account factors, such as the country of origin, eco-

cultural type and varietal grouping. The detailed information of these
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materials can be found in Supplementary Table 1. The majority of

them were indica (227), followed by circum-aus (146) and japonica

(102). There were only 8 accession of circum-basmati, and the

remaining ones belonged to the admixture type. BPH biotype I was

employed as the insect for assessing resistance among the 502

varieties, which were reared on Taichung Native1(TN1) within a

controlled greenhouse environment. The temperature inside the

greenhouse was maintained at 26 ± 2°C, with an alternating dark

period of 8 hours and a photoperiod of 16 hours.
BPH resistance scores evaluation

The resistance scores of 502 rice varieties against BPH were

determined using a modified bulk seedling test following the

method of Pathak et al. (1969). Twenty-five seeds of each variety,

including the susceptible control variety TN1, were individually

sown separately in a 18-cm row and 2-cm row spacing within a

58×38×9 cm seedbox. At the three-leaf stage, weak seedlings were

removed and the remaining seedlings were infested with ten

second- to third-instar nymphs per seedling. The damage degree

of each seeding was evaluated when more than 90% of the control

plants TN1 had died, and assigned a resistance score ranging from 1

to 9 based on criteria described by Huang et al. (2001). Higher

resistance score indicate susceptibility and lower score indicate

resistance. The average resistance score for approximately twenty

seedlings was recorded as the resistance score for each variety.
Evaluation of weight gain rates

Eight seeds of each variety were sown in a 9-cm-diameter plastic

cup. At the fifth-leaf stage, newly emerged female BPH adults were

weighed using an electronic balance (Shimadzu; Type : AUW120D)

and then placed inside a 2×2 cm parafilm bag that had beed securely

attached to the leaf sheath of the rice plant. Only insects with initial

weight ranging from 1.8 to 2.7 mg were selected for further

experimentation. After feeding on the sheath for 48 hours, the

insects were removed and reweighted. The weight gain rate was

calculated by dividing the insect’s weight gain at 48 hours by its

initial body weight. The average weight gain rates of approximately

12 insects was used as the final weight gain rate of a rice variety.
Honeydew excretion measurements

The honeydew excretion was simultaneously measured with the

insect weight. Firstly, the initial weight of the parafilm bag was

obtained using the electronic balance. Subsequently, the parafilm

bag was securely attached to the tested rice plant and a selected

insect was placed inside. After 48 hours, the parafilm bag was

reweighed to determine the change in weight, which represented the

amount of honeydew excretion. The amount of honeydew excretion

of BPHs on each variety was calculated as an average based on

approximately twelve insects.
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Statistical analysis

Phenotypic differences among subspecies were performed using

the function LSD.test in the R package agricolae (version 1.3-0). The

Pearson correlation coefficients (r) between resistance levels and

antibiosis levels were calculated in stat_cor function in the R

package ggpubr. Kurtosis and skewness analysis were conducted

using the R package psych.
Phylogenetic and population
structure analysis

The unweighted neighbor-joining tree of 502 rice accessions

was constructed based on the identity-by-state (IBS) distance

matrix, which was calculated using genome-wide SNPs by PLINK

(Chang et al., 2015; version 1.9). and visualized with iTOL software

(Letunic and Bork, 2021). The population structure of the 502

varieties was estimated using principal component analysis (PCA)

performed by PLINK.
Genome-wide association study

The SNPs of 502 varieties was filtered by PLINK (Chang et al.,

2015) with genotype call rate > 0.8 and minor allele frequency (MAF)

> 0.01. A total of 4,452,364 SNPs were used for the subsequent

analysis. For the 502 varieties (whole panel), the top seven principal

components (PCs) explain 80% of the variance and were used as fixed

effects, and the Balding-Nichols kinship matrix (Balding and Nichols,

1995) between each individual was used as random effect for

population structure correction. Genome wide association studies

was performed using the mixed linear model of software EMMAX

(Kang et al., 2010). For indica or japonica, the top five PCs were used

as fixed effects. The Bonferroni correction threshold for multiple tests

were used for detecting the genome-wide significant SNPs, which

defined as a/N (a = 0.05 and N is the number of SNPs). The p-value

thresholds for significance were 1.0×10−8 for whole panel and

subspecies. The manhattan plots and QQ plots were visualized with

the R package rMVP (Yin et al., 2021).
Identification of candidate genes

The linkage disequilibrium (LD) was analysed using

PopLDdecay software. The associated locus was defined as a 200

kbp region centered on each associated SNP. Multiple overlapping

associated loci were merged into a single locus. The genes within the

associated loci were identified through the MSU Rice Genome

Annotation Project database, utilizing the Nipponbare genome

release 7 (http://rice.plantbiology.msu.edu/). Based on the gene

annotation information, candidate genes were determined as

those predicted to encode proteins similar to thoes encoded by

cloned BPH-resistant genes, including CC-NB-LRR, CC-NB-NB-

LRR, CC-NB, LRR and lectin receptor kinase (Shi et al., 2023).
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Selection of marker subsets for
genomic prediction

The genotype data utilized the 404K core SNP subset of 3000

Rice Genomes (Wang et al., 2018a). SNPs with a missing rate

exceeding 5% and minor allele frequency below 1% were excluded.

Following quality control, a total of 268,936 SNPs were obtained.

Additionally, the missing SNPs were imputed using Beagle 5.2 with

default parameter settings. From the initial set of 268,936 (268K)

SNPs set, 12 subsets (0.04K, 0.08K, 0.16K, 0.33K, 0.67K,1.3K, 2.6K,

6.7K, 13K, 26K, 67K, 134K) containing randomly distributed

markers were selected utilizing a pseudo-random numbers

generator. To minimize the sampling error, the random selections

of each subset were repeated 50 times based on the number of SNPs

in that particular subset. The numbers of SNPs for the 12 subsets

were 42, 84, 168, 336, 672, 1344, 2689, 6723, 13446, 26893, 67234,

134468, respectively.
Estimation of the heritability

The heritability of the 268K SNPs set was estimated by

calculating the ratio of additive genetic variance to total

phenotypic variance (Wang et al., 2017). Firstly, the genetic

marker was utilized to calculate a genetic relationship matrix (G

matrix) using the A.mat function in R package rrBLUP.

Subsequently, this G matrix was employed as covariance to

estimate the additive genetic variance using the kin.blup function

in rrBLUP with the default parameters. The heritability of 268K

SNPs was calculated by averaging the results of the 50 random

selections. The method for estimating heritability for each marker

subset was the same as that of 268K SNPs.
Genomic prediction models

A total of eight statistical models with different statistical bases

were selected to predict the genomic estimated breeding values

(GEBVs) for resistance to BPH. Four linear methods, including

genomic best linear unbiased prediction (GBLUP), ridge regression

best linear unbiased prediction (rrBLUP), bayesian LASSO (BL) and

bayesian sparse linear mixed models (BSLMM), were employed.

The GBLUP model utilizes the genomic relationship matrix

estimated from SNPs and assumes that all SNPs follow a normal

distribution. The rrBLUP model is considered equivalent to the

GBLUP model (Habier et al., 2007), except that marker scores were

inputed into the model. BL and BSLMM represented Bayesian

approaches. The marker effects were assumed to follow a double-

exponential distribution in BL, and a mixture of two normal

distributions in BSLMM. Linear methods may not fully capture

non-linear effects such as epistasis and dominance for complex

traits (Monir and Zhu, 2018; Azodi et al., 2019). Therefore, three

non-linear machine learning methods were also utilized: support

vector machine (SVM), random forest (RF), and artificial neural
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networks (ANN). Additionally, a kinship-adjusted-multiple-loci

(KAML) linear mixed model was used, which selects SNPs with

big effects as covariates and simultaneously gives larger weights to

SNPs with moderate effects and smaller weights to SNPs with little

or no effects in the kinship matrix (Yin et al., 2020). These models

are the commonly used methods to estimate GEBVs. BSLMM and

KAML have been demonstrated to outperform a range of existing

methods; thus, we did not exhaustively include other prediction

methods into comparison in our study.
Genomic prediction and cross-validation

The individuals of rice panel was split into a training population

that contained 80% of individuals and a validation population that

contained the remaining 20%. This produced a training population

size of 1179. This procedure was repeated 5 times randomly, and we

ensured that the validation populations were the same for all

methods. The genomic prediction accuracy was calculated as the

average Pearson’s correlation between the GEBVs and observed

phenotypes of individuals in validation population. Most statistical

models was analysed in R packages. GBLUP and BL were

implemented in package BGLR (Pérez and De Los Campos,

2004). 100,000 iterations and 10,000 burn-ins were used to fit the

GBLUP and BL model. rrBLUP and BSLMM were implemented in

package rrBLUP (Endelman, 2011) and software GEMMA (Zhou

and Stephens, 2012), respectively. The three machine learning

methods RF, ANN and SVM were analysed in package STGS.

KAML were analysed in package KAML (Yin et al., 2020). The

default parameters were used for all methods.
Sampling methods for genetic
relatedness analysis

To determine the impact of the genetic relatedness between

training and validation population on prediction accuracy, two

sampling methods were created for cross-validation based on

known population structure, namely stratified sampling and

distant sampling. With stratified sampling, all the individuals

within each subspecies (indica, japonica, circum-aus and circum-

basmati) were partitioned into five datasets W1 to W5 with the

similar sample sizes. The individuals that fell into W1 were

combined across all the subpopulations to build the validation

population. In the similar way, each dataset were combined in

turn to act as the validation population, and the remaining datasets

were combined to act as the training population to estimate

prediction accuracy. In stratified sampling, training and validation

population contained similar patterns of population stratification,

and the genetic relationship between thetraining and validation

population was colse. With distant sampling, one subpopulation

acted as the validation population and the other subpopulations

were combined and served as the training population. These

analyses were performed using the 268K SNPs set.
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Selection of training population subsets for
genomic prediction

In order to investigate the impact of training population size on

prediction accuracy, we select nine subsets from the training

population based on proportions of 2%, 5%, 10%, 20%, 30%, 40%,

50%, 60% and 70% of the total training population size. The

corresponding individual numbers of the nine training population

subsets were 29, 74, 147, 295, 442, 590, 737, 884, and 1032. For each

subset, the remaining individuals of 1,520 inbred lines were used as

the validation population. Consider the presence of population

structure in rice, three training population design methods were

also applied in addition to random sampling, including PEVmean

and CDmean and stratified sampling (Guo et al., 2019). The

selections of subsets by PEVmean and CDmean were

implemented in R package STPGA (version 5.2.1) and

GenAlgForSubsetSelectionNoTest function. All parameters were

set as default. With stratified sampling, the individual number in

each subpopulation was determined by the proportion of

subpopulation to the whole panel. The sampling process of each

sampling method was repeated 50 times. Genomic prediction was

conducted using the 268K SNPs set with GBLUP model.
Results

Variations in resistance of rice to BPH

The results of the phenotypic data analysis for resistance scores

(RS), weight gain rates (WG) and honeydew excretions (HE) are

presented in Table 1. Extensive phenotypic variations were observed
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among 502 rice varieties in their resistance to BPH. The coefficients of

variation (CV) for RS, WG and HE were 0.28, 0.32 and 0.45

respectively, indicating that HE exhibited the highest degree of

variation. As indicated by the skewness, RS did not follow a

normal distribution but displayed two distinct peaks around values

of 6 and 9 on the distribution curve (Figure 1A). Among these

varieties, 146 (29.08%) varieties showed moderate resistance at RS

level 6, while 140 (27.89%) varieties showed extremely susceptible at

RS level 9. Both RS and WG demonstrated a right-skewed

distribution; however, WG exhibited a greater degree of right

skewness compared to RS (Figures 1A, B). On the other hand, the

distribution of HE was close to a normal distribution (Figure 1C).

According to the resistance intervals listed in Table 2, the

resistance levels of each rice variety were categorized. There were

28 (5.58%), 28 (5.58%) and 104 (20.72%) rice varieties with resistant

(R) levels in RS, WG and HE, respectively. Among these traits, eight

varieties showed R level to BPH simultaneously. A total of 117

(23.31%) varieties displayed resistance (R level) to BPH (Figure 1D).

Principal component analysis (PCA) revealed the presence of

population structure in the 502 rice varieties (Figures 2A, B).

Subsequently, least significant difference tests were conducted to

evaluate the resistance differences among the four subspecies. In

terms of RS, indica exhibited higher resistance compared to

japonica and circum-aus subspecies, and circum-basmati

displayed the highest susceptibility (Figure 2C). Similarly, for

WG, indica demonstrated significantly greater resistance than

other subspecies (Figure 2D). Regarding HE, both indica and

circum-aus along with circum-basmati showed significantly

resistant than japonica (Figure 2E). To summarize, rice varieties

of indica subspecies tend to be more resistant to BPH, which was

consistent with previous results (Zhou et al., 2021).
TABLE 1 Summary statistics of resistance of 502 rice varieties to BPH.

Trait Subspecies Number of individuals Range Mean ± SD Skewness Kurtosis CV

RS

Whole 502 1.44-9.00 6.63 ± 1.89 -0.38 2.68 0.28

indica 227 1.44-9.00 6.20 ± 1.90 -0.18 -0.31 0.31

japonica 102 3.61-9.00 6.96 ± 1.55 0.27 -1.30 0.22

circum-aus 146 1.70-9.00 6.94 ± 1.98 -0.62 -0.45 0.29

circum-basmati 8 7.00-9.00 8.36 ± 0.92 -0.93 -1.25 0.11

WG

Whole 502 -0.10-1.21 0.78 ± 0.25 -1.04 3.87 0.32

indica 227 0.01-1.21 0.73 ± 0.25 -0.71 -0.02 0.35

japonica 102 -0.10-1.19 0.85 ± 0.20 -1.85 6.04 0.24

circum-aus 146 -0.06-1.19 0.80 ± 0.20 -1.22 1.31 0.33

circum-basmati 8 0.39-1.06 0.86 ± 0.22 -1.48 2.10 0.26

HE

Whole 502 0.0003-0.12 0.05 ± 0.02 0.08 -0.51 0.45

indica 227 0.0003-0.10 0.05 ± 0.02 -0.02 -0.69 0.45

japonica 102 0.0097-0.12 0.06 ± 0.02 0.14 -0.43 0.39

circum-aus 146 0.0014-0.11 0.05 ± 0.02 0.06 -0.61 0.46

circum-basmati 8 0.0181-0.06 0.04 ± 0.02 -0.19 -1.36 0.38
frontiers
*SD, standard deviation; CV, coefficient of variation.
in.org

https://doi.org/10.3389/fpls.2024.1373081
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhou et al. 10.3389/fpls.2024.1373081
Correlation analysis between RS, WG
and HE

The results of the correlation analysis between different

resistance traits are presented in Figure 3. The correlation

coefficients between RS, WG, and HE were 0.38, 0.27, and 0.61,

respectively (Figure 3A). RS of the 502 rice varieties identified in the
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seedling bulk test exhibited significant correlations with two

antibiosis indicators: WG and HE. Specifically, the correlation

between RS and WG (r = 0.38, p < 2.2×10-16) was greater than

that between RS and HE (r = 0.27, p = 5.3×10-10). Furthermore, as

two indicators of antibiosis to BPH, the pearson correlation

coefficient (r) between WG and HE reached 0.61, indicating a

strong positive correlation between them (Figure 3A).
TABLE 2 Summary information of resistance levels.

Trait Resistance interval Resistance level Number Percentage of total

RS

(1,3] R 28 5.58%

(3,6] MR 232 46.22%

(6,9] S 242 48.21%

WG

(-0.10,0.30] R 28 5.58%

(0.30,0.60] MR 66 13.15%

(0.60,0.90] MS 223 44.42%

(0.90,1.21] S 185 36.85%

HE

(0,0.03] R 104 20.72%

(0.03,0.06] MR 231 46.02%

(0.06,0.09] MS 147 29.28%

(0.09,0.12] S 20 3.98%
*R, Resistant; MR, Moderate resistant; MS, Moderate Susceptible; S, Susceptible.
A B

DC

FIGURE 1

The resistance distribution of 502 rice varieties. (A-C) Density histogram of RS (A), WG (B), and HE (C). The skewness (g1) and kurtosis (g2) are labeled
on each plot. (D) Venn plot showing the number of varieties with resistant (R) levels in RS, WG and HE.
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The correlation patterns varied among the subspecies. There

were significant correlations between RS and WG, as well as RS and

HE in indica and circum-aus; however, no significant correlations

were observed in japonica and circum-basmati (Figures 3B-D).

Moreover, significant correlations were identified between the two

indicators of antibiosis in indica, circum-aus and japonica but not in

circum-basmati (Figures 3B-D).
Associated loci identified by GWAS

For RS, a total of 217 significant SNPs (p<1.0×10-8) were

detected on chromosome 2, 4, 6, 11, and 12. Notably, 212 (97.7%)

significant SNPs were clustered on chromosome 6 (Figure 4A). The

genome-wide LD decay rate was estimated at 100 kbp. The

associated locus was defined as the 100 kbp region on either side

of a significant SNP and multiple overlapping associated loci were

merged into a single locus. In total, five loci were associated with RS

of 502 varieties. Detailed information regarding these associated loci

can be found in Table 3.

Considering the potential influence of population structure,

separate GWAS were performed in subspecies. There were three

and two loci associated with RS of indica and circum-aus,

respectively (Figures 4B, D, Table 3). It was obvious that the

associated loci detected in 502 varieties were contributed by

indica and circum-aus. No associated loci were detected in

japonica (Figure 4C). Interestingly, one associated locus on

chromosome 11 (cA_2) was specific in circum-aus but not in 502
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varieties. Overall, six unique loci were significantly associated with

RS, and two loci (W_4 and cA_2) were novel loci that had not been

previously identified (Table 3).

No significant SNP was detected to be associated with WG and

HE in 502 varieties, as shown in Figure 5. However, in our previous

study with an expanded sample size of 1,520 individuals, we

identified 17 loci that were significantly associated with WG.

Among the six loci associated with RS, five loci (83.33%) were

also associated with WG, and one locus (W_4) is only associated

with RS. In addition, separate GWAS were performed in subspecies,

and no significant SNP was detected to be associated with WG

and HE.
Identification of resistance candidate genes

There were a total of 331 genes annotated in the associated loci

according to the Nipponbare reference genome (Supplementary

Table S2). These included the known BPH-resistant genes Bph6,

Bph32 and Bph37 on chromosome 4 and 6, confirming the

effectiveness of GWAS in identifying BPH-resistant gene. In

addition, candidate genes were identified based on their protein

domain similarity to the cloned BPH-resistant gene (Shi et al.,

2023), resulting in the identification of eight candidate genes

(Table 3). On chromosome 11, a significant cluster of SNPs was

observed in the region spanning from 16.64 to 16.88 Mbp

(Figure 4D). The local manhattan plot and LD heatmap

surrounding the peak SNPs showed that three candidate genes
A B

D EC

FIGURE 2

Resistance differences among four subspecies. (A) Unweighted neighbor-joining tree based on the IBS distance matrix of 502 rice varieties. Samples
are colored according to their subspecies. (B) The first two principal components are plotted to display the population structure of 502 rice varieties.
indica, japonica, circum-aus and circum-basmati varieties are clustered separately. (C-E) Boxplot of RS, WG, and HE of different subspecies. The
significant differences between subspecies are indicated by different lowercase letters (p < 0.05, least significant difference test).
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(LOC_Os11g29030, LOC_Os11g29050, LOC_Os11g29110) were

localized within a single LD block of approximately 100-kbp size

(Figure 6A). Another associated locus on chromosome 11 was

located in 20.99-21.19 Mbp, with four candidate genes

(LOC_Os11g35890, LOC_Os11g35960, LOC_Os11g35980 and

LOC_Os11g36020) localized within a 100-kbp LD block spanning

from 21.08 to 21.19 Mbp (Figure 6B). Notably, there was a

significant difference in resistance scores between the two

haplotypes based on peak SNP (Figures 6C, D). The presence of

clustered candidate genes encoding RLK, NBS-LRR or LRR protein

on chromosome 11 suggests their potential involvement in

BPH resistance.
Effect of marker number and statistical
model on GP accuracy

To validate the usefulness of associations identifed by GWAS in

molecular improvement programmes, we performed genomic

prediction (GP) and evaluated its predictive ability for BPH

resistance. Considering that a larger sample size of 1,520 allowed

for the detection of more association loci, we usedWG data of 1,520

rice varieties for GP.

To investigate the effect of marker number on prediction

accuracy and determine the minimum number of markers
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required for predicting resistance to BPH, we selected 12 subsets

with randomly distributed markers from the full set of 268,936

(268K) SNPs. This process was repeated 50 times for each subset.

The estimated heritability based on the full set (268K) and subsets

ranged from 0.069 to 0.312 (Figure 7A). The heritability value

increased as the number of markers increased. Specifically, there

was a rapid increase in estimated heritability when the marker

number increased from 2.6 K to 6.7 K, and then it tended to stabilize

when the marker number increased to 67 K. The average prediction

accuracies using eight statistical models under full set and twelve

subsets are shown in Figure 7B. The average prediction accuracy

ranged from 0.385 to 0.633 and increased as the marker number

increased from 0.04K to 26K, subsequently showing minimal

improvement. However, there were no significant difference in

the prediction accuracy between 6.7K SNPs and 268K SNPs

(p<0.05, t-test).

To investigate the effect of statistical model on prediction

accuracy, we used eight statistical models with different statistical

bases. Among these models, RF achieved an average prediction

accuracy of 0.633 when the marker number was 26K, while ANN

had the lowest prediction accuracy at 0.576. GBLUP, BSLMM and

BL showed similar prediction accuracies, as did KAML, rrBLUP and

SVM, which were in the middle level between RF and ANN in terms

of prediction accuracy. The average prediction accuracies of RF

were significant higher than that of other models (p<0.05, t-test).
A B

DC

FIGURE 3

Pearson correlation coefcient matrix among RS, WG and HE in 502 rice varieties (A), indica (B), japonica (C) and circum-aus (D).The dots (upper
triangle) and numbers (lower triangle) denote the correlation coefcients. Blank squares in the matrix indicate that the correlation between the two
corresponding traits are not signifcant (P>0.01).
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TABLE 3 Summary information of associated loci obtained by GWAS for RS.

Locus Population Chr
Locus
region
(Mbp)

Number of
significant

SNPs
Lead SNP

p
value

Var
(%)

Known
R genes

Candidate
genes (annotation)

W_1 whole 2 23.86-24.06 1 rs2_23955573
7.26E-
12

5.18

W_2 whole 4 21.27-21.52 2 rs4_21365665
5.78E-
10

9.34 Bph6

W_3 whole 6 0.81-1.58 212 rs6_922708
1.78E-
13

19.69
Bph32/
Bph37

LOC_Os06g03970 (receptor-
like protein kinase)

W_4 whole 11 20.99-21.19 1 rs11_21088754
9.88E-
09

4.14

LOC_Os11g35890 (leucine
rich repeat protein),
LOC_Os11g35960 (leucine
rich repeat protein),
LOC_Os11g35980 (leucine
rich repeat protein),
LOC_Os11g36020 (leucine
rich repeat protein)

W_5 whoe 12 1.96-2.16 1 rs12_2060801
1.11E-
10

10.03

(Continued)
F
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B

D

C

FIGURE 4

Manhattan plot and Quantile-Quantile (QQ) plot of RS to BPH of 502 rice varieties (A), indica (B), japonica (C) and circum-aus (D). The density of
SNPs are labeled below the chromosomes. The p-value threshold for significance is 1.0×10-8.
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Therefore, RF outperformed the other models in predicting rice

resistance to BPH.
Effect of training population sizes on
GP accuracy

In the studies of phenotypic prediction, the high cost of

collecting phenotypic data limits the size of training population.

To investigate the influence of training population size on accuracy

in predicting resistance to BPH, we successively reduced the size of

our training population and evaluated its predictive performance.

The prediction accuracies ranged from 0.414 to 0.614 using

different training population sizes by four sampling methods, all

lower than that achieved by utilizing the entire training population

(Figure 7C). Generally, an increase in training population size led to

improved accuracy. However, when reducing the sample size to
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737, there was no significant difference in prediction accuracy

compared to utilizing a larger training population consisting of

1179 varieties (p<0.05, t-test).

Among the four different methods employed for selecting the

training populations, namely CDmean, PEVmean, stratified

sampling and random sampling, comparable levels of prediction

accuracies were observed in CDmean, stratified sampling and

random sampling. Conversely, PEVmean consistently exhibited

lower accuracies.
Effect of genetic relatedness on
GP accuracy

The accuracy of genomic prediction can be influenced by the

genetic relatedness between the training and validation population

(Wang et al., 2017). To assess its effect on the prediction accuracy of
TABLE 3 Continued

Locus Population Chr
Locus
region
(Mbp)

Number of
significant

SNPs
Lead SNP

p
value

Var
(%)

Known
R genes

Candidate
genes (annotation)

I_1 indica 2 23.86-24.06 1 rs2_23955573
9.86E-
11

4.14

I_2 indica 6 0.81-1.58 256 rs6_922708
4.81E-
13

13.65
Bph32/
Bph37

LOC_Os06g03970 (receptor-
like protein kinase)

I_3 indica 12 1.96-2.16 1 rs12_2060801
8.89E-
10

6.26

cA_1 circum-aus 4 21.27-21.52 4 rs4_21393633
6.58E-
10

5.68 Bph6

cA_2 circum-aus 11 16.64-16.88 11 rs11_16777730
4.95E-
09

7.02

LOC_Os11g29030 (NBS-LRR
disease resistance protein),
LOC_Os11g29050 (NBS-LRR
type disease resistance
protein),
LOC_Os11g29110 (Leucine
Rich Repeat protein)
A

B

FIGURE 5

Manhattan plots and Quantile-Quantile (QQ) plots of WG and HE of 502 rice varieties to BPH. (A) WG. (B) HE.
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resistance to BPH, we designed stratified sampling and distant

sampling based on the known population structure. The

prediction accuracies of stratified sampling were significant higher

than those achieved with distant sampling (p<0.05, t-test).

Specifically, GBLUP estimated an average accuracy of 0.605 for

stratified sampling, while distant sampling yielded an average

accuracy estimate of only 0.056 (Figure 7D). Additionally, We

compared the prediction accuracies between stratified and

random sampling methods and found no significant differences,

suggesting that both training and validation population contained

similar patterns of population stratification in random sampling.
Discussion

BPH is the most destructive insect pest that threatens rice

production globally (Dyck and Thomas, 1979). BPH biotype II

and III with strengthened virulence emerged with the spread of

Bph1 and bph2, respectively (Claridge and Den Hollander, 1980;

Kobayashi, 2016). In this study, we evaluated the resistance of 502

rice varieties by evaluating the resistance scores (RS), weight gain

rates (WG) and honeydew excretions (HE). A wide range of

resistance was observed in the 502 rice varieties. A total of 117

(23.31%) of the 502 rice varieties displayed resistance to BPH. The

resistance score from the seedling bulk test was a comprehensive

indicator of antibiosis, tolerance and antixenosis (Qiu et al., 2011).

Our results showed that RS exhibited significant correlations with

the two antibiosis indicators:WG and HE. However, ten rice

varieties showed resistant (R) level in RS but moderately

susceptible (MS) or susceptible (S) level in WG and HE,

suggesting their tolerance or antixenosis to BPH. Generally,

tolerance has no selection pressure on BPH biotype (Panda and

Heinrichs, 1983). These ten varieties are of potential importance to
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exploit tolerance genes for controlling BPH and slowing down the

emergence of new BPH biotypes. Furthermore, there were thirty-six

and three rice varieties in the R level in HE and WG respectively,

while RS exhibited S level, indicating that RS is not simply a

combination of antibiosis, tolerance, and antixenosis.

The seedling bulk test has the advantage of large-scale and rapid

identification of resistance. Combined with its ability to

comprehensively assess the level of antibiosis, tolerance and

antixenosis, it is often employed for evaluating resistance to BPH

and maping resistance gene (Qiu et al., 2011). However, it is difficult

to differentiate between antibiosis, tolerance, or antixenosis in a

seedling bulk test. In addition, in seedling bulk test, rice varieties to

be tested are planted in the box with the susceptible control variety

and infested with second- to third-instar nymphs. It’s challenging to

maintain the same insect numbers across varieties, and damage

scores detection by human vision is less precise than the insect

weight in an antibiosis experiment. In the antibiosis experiments, the

insect weight was strictly controlled with a balance to ensure the

accuracy of the antibiosis. However, tolerance and antixenosis cannot

be simultaneously assessed in antibiosis experiment. Therefore, it is

necessary to use multiple methods to comprehensively evaluate rice

resistance to find more resistant resources.

GWAS were performed on the panel of 502 rice varieties and its

subspecies, and 6 loci were associated with RS. However, no loci

were significantly associated with WG and HE in these 502 rice

varieties. Notably, when the sample size was expanded to include

1,520 rice varieties in our previous study (Zhou et al., 2021), we

detected 17 loci assciated with WG. The limited sample size likely

contributed to the lower statistical power for detecting loci

associated with WG and HE. Among the six loci associated with

RS, five (83.33%) were also found to be associated with WG of 1,520

rice varieties, and one locus was newly discovered. These findings

suggest that increasing sample size can enhance detection power for
A B

D

C

FIGURE 6

Identification of candidate genes for the associated loci on chromosome 11. (A), (B) Local manhattan plots (top) and LD heatmaps (bottom)
surrounding the peak SNPs of associated loci cA_2 (A) and W_4 (B). The vertical dashed lines in the local manhattan plots indicate the LD blocks.
Red dots indicate significantly associated SNPs. All genes in the associated loci are marked at the bottom of the manhattan plots, and the candidate
genes are represented in red letters. (C, D) The resistance of the two haplotypes based on peak SNP of cA_2 (C) and W_4 (D). Significant differences
between haplotypes were analyzed by student’s t-test.
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identifying BPH-resistant loci; however, it is worth noting that

compared to WG and HE traits, RS exhibits higher detection power

when a small sample size population was used.

The two associated loci (cA_2 and W_4) on chromosome 11

harbored three and four candidate genes predicted to encode NBS-

LRR or LRR proteins. These loci were not mapped before and were

completely new loci. It is hypothesized that the two loci may confer

tolerance or antixenosis towards BPH infestation based on the fact

that they were associated with RS but not WG. The candidate genes

were located in close proximity, making it challenging to determine

which genes were responsible for BPH resistance. Alternatively, it is

possible that these candidate genes function collectively similar to

Bph3, a cluster of three genes (OsLecRK1-OsLecRK3) to confer

resistance (Liu et al., 2015). In conclusion, the identification of these

candidate genes within the newly discovered loci provides valuable

clues for validating their roles in BPH resistance and facilitating rice

breeding for BPH resistance.

We assessed the predictive accuracy of genome selection for

BPH resistance using natural populations of 1,520 rice varieties,

with the highest predictive accuracy reaching 0.633. The highest

prediction accuracy value ranged between 0.31 for rice yield

prediction and 0.80 for heading date and plant height prediction,

similar to the prediction accuracy of rice flowering time (Onogi

et al., 2015; Spindel et al., 2015). Typically, predictive accuracy

increases with an increasing number of markers until reaching a

platform (Xu et al., 2021). When the SNPs number increased to

26K, the prediction accuracy for BPH resistance remained stable,
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and there was no significant difference in the prediction accuracy

between 6.7K SNPs and 268K SNPs. Therefore, when predicting

BPH resistance using a training population consisting of 1179 rice

varieties, a minimum of approximately 6.7K SNPs displayed

comparable accuracy. Prediction accuracy varied among eight

different statistical models tested in this study. Random Forest

(RF) achieved the highest prediction accuracy at 0.633; while

GBLUP, BSLMM, and BL showed similar accuracies at around

0.618 with only slight differences Despite RF’s superior prediction

performance, its computational speed was slower compared to

others such as GBLUP and BSLMM.

In genome prediction studies, the high costs of phenotyping

restrict the size of training population. As we progressively

decreased the size of training population, we observed a

corresponding decline in its prediction accuracy, indicating that

increasing the size could enhance BPH resistance enhance.

However, there was negligible difference in prediction accuracy

between 737 and 1179 individuals. Therefore, a training population

consisting of 737 individuals is sufficient for predicting resistance to

BPH. The accuracy of genome prediction is affected by the genetic

relatedness between the training and the validation population

(Wang et al., 2017). When the genetic proximity is substantial,

the prediction accuracy for BPH resistance is considerably higher

compared to cases where it is distant. Hence, optimizing the

composition of the training population plays a crucial role in

achieving superior prediction accuracy even when there is

population stratification. Consequently, for high prediction
A B

DC

FIGURE 7

Genomic prediction accuracy for resistance to BPH. (A) The heritability of resistance to BPH estimated using 12 SNPs subsets. The standard deviation
of 50 repetitions is marked with error bar. (B) The prediction accuracy for resistance to BPH by eight statistical models under 268K SNPs set and 12
subsets with different SNP numbers. rrBLUP, ridge regression best linear unbiased predictor; GBLUP, genomic best linear unbiased prediction; BL,
bayesian LASSO; BSLMM, bayesian sparse linear mixed models; RF, random forest; ANN, artificial neural network; SVM, support vector machine;
KAML, kinship-adjusted-multiple-loci linear mixed model. (C) The prediction accuracy for resistance to BPH using different training population sizes
by four sampling methods. The training sets were selected by CDmean, PEVmean, stratified sampling and random sampling. Nine different training
population sizes (29, 74, 147, 295, 442, 590, 737, 884, and 1032) were used. (D) The prediction accuracy for resistance to BPH using random,
stratified and distant sampling by five statistical models.
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accuracy, it is important to have a broader genetic diversity within

the training population while maintaining close genetic relatedness

with the validation population. Additionally, to accurately predict

resistance to BPH, one should consider increasing SNP numbers

beyond 26K, expanding the training population size beyond 737

individuals, and employing RF models. These findings hold great

significance in guiding applications of genome selection towards

developing durable BPH-resistant rice.
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