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Tea leaf diseases are significant causes of reduced quality and yield in tea

production. In the Yunnan region, where the climate is suitable for tea

cultivation, tea leaf diseases are small, scattered, and vary in scale, making their

detection challenging due to complex backgrounds and issues such as

occlusion, overlap, and lighting variations. Existing object detection models

often struggle to achieve high accuracy in detecting tea leaf diseases. To

address these challenges, this paper proposes a tea leaf disease detection

model, BRA-YOLOv7, which combines a dual-level routing dynamic sparse

attention mechanism for fast identification of tea leaf diseases in complex

scenarios. BRA-YOLOv7 incorporates PConv and FasterNet as replacements

for the original network structure of YOLOv7, reducing the number of floating-

point operations and improving efficiency. In the Neck layer, a dual-level routing

dynamic sparse attention mechanism is introduced to enable flexible

computation allocation and content awareness, enhancing the model’s ability

to capture global information about tea leaf diseases. Finally, the loss function is

replaced with MPDIoU to enhance target localization accuracy and reduce false

detection cases. Experiments and analysis were conducted on a collected

dataset using the Faster R-CNN, YOLOv6, and YOLOv7 models, with Mean

Average Precision (mAP), Floating-point Operations (FLOPs), and Frames Per

Second (FPS) as evaluation metrics for accuracy and efficiency. The experimental

results show that the improved algorithm achieved a 4.8% improvement in

recognition accuracy, a 5.3% improvement in recall rate, a 5% improvement in

balance score, and a 2.6% improvement in mAP compared to the traditional

YOLOv7 algorithm. Furthermore, in external validation, the floating-point

operation count decreased by 1.4G, FPS improved by 5.52%, and mAP

increased by 2.4%. In conclusion, the improved YOLOv7 model demonstrates

remarkable results in terms of parameter quantity, floating-point operation
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count, model size, and convergence time. It provides efficient lossless

identification while balancing recognition accuracy, real-time performance,

and model robustness. This has significant implications for adopting targeted

preventive measures against tea leaf diseases in the future.
KEYWORDS

tea leaf diseases, dual-level routing dynamic sparse attention mechanism, FasterNet,
YOLOv7 algorithm, lightweight model
1 Introduction

Yunnan is internationally recognized as the birthplace of tea

trees, and the tea industry is a characteristic advantage industry in

Yunnan. Yunnan’s tea plantation area and the comprehensive

associated output value of the industry have consistently ranked

among the top in the country for many years. Yunnan has recently

listed it as the province’s top priority among its eight key agricultural

industries. The tea industry plays a crucial role in consolidating the

achievements of poverty alleviation efforts and promoting the

implementation of the rural revitalization strategy, which holds

significant political, social, and economic significance (Li et al.,

2022; Sun et al., 2023). Most of Yunnan’s tea gardens are located in

mountainous areas, where production conditions are poor and

mechanization levels are relatively low. The most serious issue is

the insufficient investment in tea leaf scientific research, which leads

to a low rate of transformation of research achievements.

Traditional agricultural producers often rely on manual

experience to determine tea diseases, which is inefficient and

prone to misjudging the disease cycle, resulting in the inability to

take targeted protective measures in advance. This greatly reduces

the accuracy and scientific nature of tea disease identification

(Zhang et al., 2023). During the growth period, diseases can

further intensify their spread, and new diseases are likely to

occur, leading to missing the optimal treatment period (Rajathi

and Parameswari, 2022).

In recent years, deep learning and image processing have been

widely applied in crop disease diagnosis (Waheed et al., 2020) and

gene identification (Hong et al., 2020). Applying artificial

intelligence methods to crop disease diagnosis can provide a new

solution for sustainable crop development and is of great

significance for ensuring healthy crop growth. Disease

identification generally involves four steps: image preprocessing,

image segmentation, disease image feature extraction, and disease

identification. Hossain et al. (Hossain et al., 2018) developed an

image processing method that can analyze 11 features of tea diseases

and used a support vector machine classifier to identify and classify

the two most common tea diseases: tea brown blight and tea leaf

spot. Sun et al. (Sun et al., 2018) improved the method of extracting

significant disease maps of tea diseases from complex environments

by combining simple linear iterative clustering (SLIC) and support
02
vector machines (SVM). Hu et al. (Hu et al., 2021) developed a

model for analyzing the severity of tea withering disease in natural

scene photos. They used an SVM classifier to segment the disease

spot location from tea withering disease leaf images to calculate the

initial disease severity (IDS) index. Xu et al. (Xu et al., 2020) used an

improved Faster R-CNN algorithm to identify tea bud images, but

the model had poor universality and slow segmentation speed. As

mentioned earlier, deep neural network technology has been proven

to be effective in detecting and identifying tea diseases, but most of

them are limited to diagnosing or classifying simple crop disease

images. With the complexity of background images in current

natural scenes, the upgrading of tea varieties, and the growth

changes of multiple diseases, some traditional deep learning

models have a large number of parameters and slow operation

speed, making it difficult to achieve an effective balance between

recognition efficiency and accuracy, which does not match the

actual scenario.

With the development of deep learning, target detection

algorithms are mainly divided into two categories: one-stage and

two-stage detection algorithms. One-stage algorithms, such as the

YOLO (Redmon et al., 2016; Zhang et al., 2022; Lin et al., 2023; Lv

et al., 2023; Soeb et al., 2023; Zhao et al., 2023) series, extract

features only once and are widely used in agriculture due to their

evolution in the era of deep learning. Bai et al. (Bai et al., 2024)

designed a lightweight and efficient T-YOLO model for the rapid

and accurate detection of tea vegetative buds. This model

incorporates the lightweight module C2fG2 and the efficient

feature extraction module DBS into the backbone and neck of the

YOLOv5 baseline model. Furthermore, the head network of the

model is pruned, effectively reducing the number of parameters.

Xue et al. (Xue et al., 2023) integrates self-attention and convolution

(ACmix) with the Convolution Block Attention Module (CBAM)

based on YOLOv5, enabling the improved YOLO-Tea model to

more effectively focus on tea diseases and insect pests.

Consequently, the detection results of the enhanced model are

significantly superior to those of the original.

Tea gardens often have complex environmental conditions,

with soil, pests, or diseases that have similar colors overlapping

and causing difficulties in target detection due to the presence of

irrelevant features. Therefore, several aspects need to be considered

during the recognition process: 1) in natural environmental
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conditions, tea leaves are often subjected to intense lighting and

moderate wind speeds, which can affect the extraction of disease

features; 2) the color and texture distribution of disease spots in tea

leaf images vary, and multiple disease spots may coexist and

overlap, causing uncertainty in the boundary between normal

pixels and diseased pixels; 3) the use of multi-scale convolution

and attention mechanism modules should effectively adjust the

receptive field size to enhance the ability of image feature extraction

by parameter tuning.

Due to the real-time image processing capability and superior

training efficiency compared to other models in the YOLO series,

the YOLOv7 model is considered for target detection in tea leaf

disease images. Considering the presence of a large number of

invalid background areas and redundant information in the

samples, as well as issues such as varying resolutions, leaf

deficiency, and non-uniform image quality in the same tea leaf

disease image, this paper adopts YOLOv7 as the base model for

object detection and conducts research and algorithm optimization

specifically for the real scenes of tea leaves to improve the accuracy

of tea leaf disease image recognition.
2 Data and methods

2.1 Image capture

In Yunnan region, large-leaf tea plantation covers more than

80% of the national plantation area. This article focuses on the

Hekai Base in Menghai County, Xishuangbanna Prefecture,

Yunnan Province (latitude 21.5, longitude 100.28) as the research

object. The tea plantation is shown in Figure 1. Due to the suitable

temperature and high humidity in Yunnan, the occurrence of large-

leaf tea diseases is highly seasonal, with the highest incidence in

autumn (Sun et al., 2020). Therefore, the shooting time for this

study was from July 1st to July 15th, 2022. Considering the

influence of light intensity on the disease dataset, photos were
Frontiers in Plant Science 03
taken respectively from 9 to 11 am and from 3 to 5 pm. The image

capture device used was a Canon EOS 800D, with a photo

resolution of 4608×3456, saved in.PNG format.

To meet the requirements of diverse pest detection in complex

environments and to ensure the authenticity of the growth

environment, the captured images have the following conditions:

slight occlusion, severe occlusion, overlap, natural light angles, side

light angles, back light angles, etc. Examples of tea disease samples

are shown in Figure 2.

2.1.1 Image preprocessing and
dataset partitioning

A total of 3,246 tea disease images were collected, which

included different diseases, lighting conditions, degrees of

occlusion, and overlapping diseases. After screening, 2,789

qualified images were selected. Among them, 10% of the images

were randomly chosen as the validation set to evaluate the

generalization of the detection model, while the remaining 2,510

images were randomly divided into a training set (2,259 images)

and a test set (251 images) in a 9:1 ratio. Care was taken to ensure

that there were no duplicate images among the training, validation,

and test sets to prevent overfitting of the model (Halstead et al.,

2018). The distribution of the sample dataset is shown in Table 1.

The annotation software, LabelImg, was used for manual

annotation of tea disease targets in the training set. The

annotations were made based on the minimum bounding

rectangle around the disease to minimize the inclusion of

background areas. The annotated files were saved in XML format

(Jintasuttisak et al., 2022). The visualization analysis of the

annotated tea disease files is shown in Figure 3. From Figure 3, it

can be observed that the sizes of the bounding boxes are uneven, but

the ratios are mostly distributed between 0.04 and 0.4. Small-sized

disease targets are more abundant and are not easy to detect.

In order to enhance the model’s generalization ability, data

augmentation was performed on the images of Yunnan large-leaf

sun-dried green tea diseases. Specifically, 1) image brightness
FIGURE 1

Tea plantation.
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adjustment was applied by increasing and decreasing the brightness

by 1.4 times and 0.6 times respectively. Through these brightness

transformations, the model becomes more suitable for complex tea

plantation environments with changing lighting conditions; 2)

image contrast adjustment was applied by increasing and

decreasing the contrast by 1.4 times and 0.6 times respectively.

This helps to improve the clarity, grayscale, and texture details of

the tea leaf images; 3) Gaussian blur and random rotation were

applied. Gaussian blur enhances the details in disease images and

increases image smoothness, while random rotation enhances the

adaptability of the detection model. After applying brightness and

contrast enhancement, Gaussian blur, and random rotation to the

selected disease images in the dataset, the total number of images

reached 15534. Figure 4 illustrates the results of data augmentation.
2.2 The improved YOLOv7 network model

In single-stage object detection algorithms, YOLOv7 performs

well and is the most optimized model in terms of inference speed

and recognition performance among the YOLO series. Due to its

shallow network depth and smaller feature map width, it achieves

fast inference speed and is widely used in real-time detection of

diseases in practical scenarios. YOLOv7 consists of four

components: Input, Backbone, Neck, and Head.
Frontiers in Plant Science 04
2.3 Optimize loss function

When solving object detection problems using CNNs,

regardless of whether it’s a regression or classification problem, a

loss function is essential and also a major factor affecting the

accuracy of the results. In this paper, the Mean Position-Density

IoU (MPDIoU) loss function (Xu and Jeongyoung, 2021; Ma and

Xu, 2023; Ma et al., 2023) is used to replace the original YOLOv7

network model’s object regression (CIoU) loss function. MPDIoU

includes regression of both overlapping and non-overlapping

bounding boxes, center point distance loss, and deviations in

width and height. During the training process, it accurately

optimizes the bounding box regression process when the

predicted box and annotated box have the same center point

overlap and proportional height and width deviations. This is

illustrated in Figures 5, 6

In the training phase, the objective of this model optimization is

to make each predicted box

Bprd½xprd , yprd ,wprd , hprd�T as close as possible to the annotated

box Bgt = ½xgt , ygt ,wgt , hgt �T , minimizing the loss function L as

shown below:

L =  min
Q oBgt∈Bgt

L(Bgt ,BprdjQ) (1)

Where Bgt is the set of annotated boxes, Q is the parameter of

the regression deep model. Based on this, the penalty term of the
FIGURE 2

Example of tea disease samples.
TABLE 1 Distribution of the sample dataset.

Types of Tea Plant Diseases Total Number
of Datasets

Train Set Test Set Validation Set

Tea Cloud Spot Blight 932 766 79 87

Tea Red Spot Disease 746 605 65 76

Tea White Star Disease 594 477 56 61

Tea Leaf Spot Disease 517 411 51 55
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bounding box regression (MPDIoU) loss function is formulated as

follows:

LMPDIoU = 1 −MPDIoU (2)

MPDIoU =
A ∩ B
A ∪ B

−
d21

w2 + h2
−

d22
w2 + h2

(3)

d21 = (xB1 − xA1 )
2 + (yB1 − yA1 )

2 (4)

d22 = (xB2 − xA2 )
2 + (yB2 − yA2 )

2 (5)

In Equations 2–5,MPDIoU represents the regression boundary,

A   and B represent the predicted box and the ground truth box,

 (xA1 , y
A
1 ) and (xA2 , y

A
2 ) represent the coordinates of the top-left and

bottom-right corners of box A, (xB1 , y
B
1 ) and (xB2 , y

B
2 ) represent the

coordinates of the top-left and bottom-right corners of box B.
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2.4 PConv
In addition to model accuracy, the calculation power (FLOPs)

and parameter size required during forward propagation are also

important factors in accelerating the inference speed of neural

networks. By reducing the demands on GPU performance and

memory usage, we can design a faster YOLOv7 neural network. In

this study, we introduced PConv and FasterNet to replace the

original network structure of YOLOv7.In the main network, we

introduced a new type of convolution called PConv (Partial

Convolution) (Chen et al., 2023), which reduces redundant

calculations and memory accesses. The structure of PConv is

shown in Figure 7. Compared to conventional convolutions

Figure 7A and depth-wise convolutions Figure 7B, PConv only

applies filters to a few input channels, while leaving the rest of the

channels unchanged. By exploiting the redundancy in feature maps,
FIGURE 3

Visualization analysis of annotated tea disease files. (A) Category Number (B) Length and Width of Label Frame (C) Distribution of Central Points (D)
Width and Height Distribution.
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we systematically apply regular convolutions (Conv) to a subset of

input channels while keeping the remaining channels intact.

PConv can be considered to have the same number of channels

in the input and output feature maps without loss of generality. The

floating point operations of PConv are shown in Equation 6, and

the memory access is relatively low, as shown in Equation 7.

Therefore, for a conventional ratio of r = Cp=C = 1=4, PConv has

only 1/16 and 1/4 of the floating point operations and memory

access compared to conventional convolution
Frontiers in Plant Science 06
h� w � k2 � c2p (6)

h� w � 2cp + k2 � c2p ≈ h� w � 2cp (7)

PConv has lower FLOPs and higher FLOPS compared to

conventional convolutions and depthwise convolutions. FLOPS stands

for Floating Point Operations per Second and serves as a measure of

effective computing speed. PConv better utilizes the computational

power of devices and is also effective in spatial feature extraction.
FIGURE 4

Image enhancement processing.
FIGURE 5

BRA-YOLOv7 network architecture.
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The ELAN module in the backbone network can effectively

improve the learning ability of the network without disrupting the

original gradient path. However, the ELANmodule heavily relies on

CBS convolutional layers, which have a large number of parameters.

Additionally, during feature extraction, the ELAN module can lead

to isolated feature channels, which affects the model’s detection

efficiency. To enhance the feature extraction capability of the ELAN

module, this paper replaces the CBS convolutional layers with

PConv, which has fewer parameters. The resulting ELAN-P

structure is shown in Figure 8.
2.5 Fusion of PConv with
FasterNet module

FasterNet is a new family of neural networks that run faster and

achieve higher accuracy on multiple processing platforms,

surpassing other neural networks. FasterNet is mainly composed

of four levels and its structure is shown in Figure 9. Each FasterNet

Block consists of a PConv layer and two PWConv layers, presenting

an inverted residual block. Stage 3 and Stage 4 layers have an

expanded number of channels and higher floating-point operation

efficiency per second. FasterNet performs well and is generally fast

on various devices, including GPUs, CPUs, and ARM processors.
2.6 Introduction of dual-level routing in
the dynamic sparse attention mechanism

In the visual Transformer, attention mechanism is a crucial

part. Considering the scalability issues in terms of model

computation and memory requirements, we noticed that the

multi-head self-attention mechanism can enable the model to

better capture discriminative features from different perspectives,
Frontiers in Plant Science 07
thereby improving the model’s performance (Gao et al., 2023; Li

et al., 2023). Taking reference from YOLOv7 in Tea Tree Disease

Detection training, the model performs poorly when there are

occluded disease parts. Therefore, we introduce a double-layer

routing-based dynamic sparse attention mechanism to achieve

more flexible computation allocation and content perception.

Double-layer routed attention (Kwan-Wu et al., 2016; Jiang

et al., 2023; Zhu et al., 2023) is a dynamic and query-aware sparse

attention mechanism. The main idea is to filter out most irrelevant

key-value pairs at a coarse-grained level and calculate coarse-

grained routing features through average pooling. After

computing and reading the relevance, scattered key-value pairs

are collected to calculate fine-grained attention from token to token,

leaving only a small number of fine-grained routing regions, as

shown in Figure 10.

First, the disease image is segmented into S×S non-overlapping

regions, where each region contains a feature vector of size H�W
S2 .

Here, H represents the height of the original image, and W

represents the width of the original image. The feature vectors are

then linearly mapped to obtain Q,K ,V , as shown in Equation 8. In

this equation, Xr ∈ RS2�HW
S2

�C epresents the sub-region of the

feature map, Wq 、Wk 、Wv represent the projection weights

for query, key, and value respectively. By calculating the mean

values of each region, Qr ,Kr ∈ RS2�C re obtained. The adjacency

matrix of the correlation between Qr and Kr is computed, as shown

in Equation 9. By multiplying the transposed matrices of Qr and Kr ,

Ar is obtained, which represents the level of correlation between two

regions. we obtain Ar as shown in Equation 10. Qr represents the

region-level query, Kr represents the region-level key, and T

represents the transpose operation. For coarse-grained region-

level routing computation, a routing index matrix Ir ∈ NS2�k is

used. This matrix stores the indices of the top k connections for

each region, while eliminating the weaker correlations. To efficiently

process the collected key K and value V tensors, a public key

normalization operation is applied, as shown in Equations 11, 12.

Here, Kg represents the aggregated tensor for keys, K represents the

original keys, Ir represents the routing index matrix, Vg represents

the aggregated tensor for values, and V represents the original

values. Finally, the attention mechanism is applied to Kg and Vg to

obtain the feature map O, as shown in Equation 13. O represents the

fine-grained attention from token to token, and LCE(V) represents

the local context enhancement term.

Q = XrWq,    K = XrWk,     V = XrWv   (8)

Ar = Qr(Kr) T (9)

Ir = topkIndex(Ar)  (10)

Kg = gather(K , Ir) (11)

Vg = gather(V , Ir) (12)

O = Attention(Q,Kg ,Vg) + LCE(V) (13)
FIGURE 6

Illustration of factors in MPDIoU calculation.
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3 Experiments and discussions

To verify the detection effectiveness of BRA-YOLOv7 on the

detection of tea leaf diseases, including tea leaf blight, tea red spot

disease, tea white spot disease, and tea gray blight, this study

conducted three comparative experiments with BRA-YOLOv7

and three popular network models: YOLOv7, Faster-RCNN, and
Frontiers in Plant Science 08
SSD. The experiments were performed on Ubuntu 18.04.5 LTS

operating system with an Intel® Xeon® Gold 5220RCPU@2.20GHz

CPU and an NVIDIA Quadro RXT 5000 GPU with 32GB memory.

The deep learning framework used was Pytorch 1.12.1 with CUDA

11.2. To ensure the scientific rigor of the model testing results, the

hardware devices and software environment used in this study

were identical.
FIGURE 7

Structures of different convolutional networks. (A) Standard Convolution (B) Depthwise Convolution (C) PConv.
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FIGURE 8

ELAN-P network structure diagram.
FIGURE 9

FasterNet architecture diagram.
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3.1 Training process and analysis

The loss function (Wen et al., 2021; Ali et al., 2023) is an

important indicator that measures the difference between the

predicted results and the actual results of a model. A smaller

value of the loss function indicates a better performance of the

model, as it means the predicted results are closer to the actual

results. As shown in Figure 11, during the initial stage of training,

BRA-YOLOv7 exhibits a fast descent in the loss function. However,

after 50 epochs, the descent speed slows down and the oscillation of

the curve becomes more pronounced. As the training continues, the

curve gradually flattens, indicating the convergence of the loss

function. Eventually, the total loss on the training set stabilizes

below 2%, while the total loss on the validation set stabilizes below

8%. By comparing the change in the loss function curves between

the original YOLOv7 and the improved YOLOv7, it is evident that

the improved YOLOv7 shows significant reductions in the loss of

predicted box position, predicted box confidence, and classification.

The most significant reduction is observed in the predicted box

position loss, which decreases by more than 20% in both the

training and testing sets.

The main model performance evaluation metrics used in this

article include precision, recall, F1 score, average precision (AP),

and mean average precision (mAP), as shown in Equations 14–18

(Lee et al., 2020; Han et al., 2024).

Precision =
TP

TP + FP
(14)

Recall =
TP

TP + FN
(15)
Frontiers in Plant Science 10
F1   = 2� Precision� Recall
Precision + Recall

(16)

AP =
Z 1

0
Precision(Recall)dRecall   (17)

mAP = o
C
i=1AP(i)

C
(18)

Where TP represents the number of test images in the tea

disease category that are correctly identified by the model as

belonging to that category, FP represents the number of test

images in other categories of tea diseases that are incorrectly

identified by the model as belonging to the current category, FN
represents the number of test images in the current category of tea

diseases that are incorrectly identified by the model as belonging to

other categories, and C represents the number of categories of tea

diseases in the test set.

From the perspective of prediction results, precision is a metric

used for statistics. It reflects the proportion of samples that are

predicted as a certain class and actually belong to that class, which is

also known as the ‘classification accuracy’. Recall, on the other

hand, measures the ability of the model to retrieve samples correctly

among all the samples in that class. The balanced score is a

comprehensive measure based on precision and recall, using their

harmonic mean. As shown in Figure 12, BRA-YOLOv7 has

achieved significant improvements in detection performance.

Compared to the YOLOv7 model, Precision, Recall, and F1 have

improved by 6.37%, 6.14%, and 6.25% respectively.

AP (Average Precision) represents the average accuracy of a

specific class at different IOU thresholds. mAP (mean Average
FIGURE 10

Bi-level routing attention mechanism.
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Precision) refers to the mean value of AP for various classes. As

shown in Figure 13, the BRA-YOLOv7 model demonstrates

improvements in tea disease recognition compared to YOLOv7,

Faster-RCNN, and SSD. For Single Target Unobstructed

recognition, the AP gains are 4.76%, 14.71%, 5.98% respectively.

For Single Target Occlusion recognition, the AP gains are 4.72%,

14.4%, 5.63% respectively. For Multiple Target Unobstructed

recognition, the AP gains are 5.69%, 15.7%, 7.93% respectively.

For a, the AP gains are 5.26%, 15.27%, 8.04% respectively. The

overall mAP improvements are 4.71%, 14.69%, 6.95% respectively.
3.2 Model validation experiment

In order to further verify the advantages of the improved model

in this study, different lighting intensities were used to detect and

identify Tea blight disease, Tea red star disease, Tea white star

disease, and Tea wheel spot disease under the conditions of single-

target and multi-target with and without occlusion. To ensure the

reliability of the results, BRA-YOLOv7, YOLOv7, YOLOv8 (Tian

et al., 2022), Faster-RCNN (Cheng and Li, 2023), and SSD (Wang

et al., 2023) networks were trained and tested using the same

external validation set, while the platform configurations for

training were also kept consistent. The final comparison results

are shown in Figure 14. A represents Tea blight disease, B represents
Frontiers in Plant Science 11
Tea red star disease, C represents Tea white star disease, and D

represents Tea wheel spot disease.

In the test, the four models can successfully detect single-

object occlusion and multi-object occlusion in both strong and

decreasing light conditions. It is observed that the confidence level

decreases as the light intensity decreases, indicating that light

intensity has an impact on the model’s detection. Among the

models, BRA-YOLOv7 and YOLOv7 exhibit the highest

confidence in the detection results. The BRA-YOLOv7 model

can address the issue of disease localization deviation and avoid

repeated detection, showing an average confidence improvement

of over 3% compared to the original YOLOv7 model. In the case of

multi-object occlusion, the Faster-RCNN model has the lowest

confidence in the detection results, leading to missed detections

and incorrect recognition. Although SSD can correctly recognize

tea diseases, its model accuracy is relatively low. Overall, BRA-

YOLOv7 performs better than the other three models in detecting

small target diseases.

Table 2 presents a comparison of external parameters for five

models in this experiment, including mAP value, floating-point

operation count (FLOPs), and frames per second (FPS) during

external validation. After incorporating FasterNet, dynamic sparse

attention mechanism, and MPDIoU loss function, this study reduced

the floating-point operation count by 15.5G compared to the original

model, increased the FPS by 5.51% compared to YOLOv7, and
FIGURE 11

Comparison of loss function change curves. (A) BRA-YOLOv7 (Training set); (B) BRA-YOLOv7 (Validation set); (C) YOLOv7 (Training set); (D) YOLOv7
(Validation set); Red: Val Box; Blue: Val Objectness; Purple: Val Classification; Green: Total loss value.
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improved the mAP value by 4.2% compared to YOLOv7. Overall,

BRA-YOLOv7 outperforms the original YOLOv7, YOLOv8, Faster-

RCNN, and SSD in terms of detection accuracy and speed. It provides

support for the intelligent recognition of edge devices and tea

plantation drones in future deployments.
3.3 Ablation experiment

To verify the effectiveness of different improvement modules in

the Neck layer of the YOLOv7 model proposed in this article, in the

same platform and parameter settings, ablation experiments were

conducted on the dataset set to compare the detection accuracy of

the BRA-YOLOv7 model with the RFE-YOLOv7 (Tian and Tian,

2023), FRCB-YOLOv7 (), and LW-YOLOv7; () models. The

experimental results are shown in Table 3.

From Table 3, it can be seen that in terms of detection speed

performance, there is not much difference between BRA-YOLOv7,

RFE-YOLOv7, and FRCB-YOLOv7. However, in comparison to

RFE-YOLOv7 and FRCB-YOLOv7, the BRA-YOLOv7 model has

improved mAP values by 15.46% and 6.416% respectively. The

higher mAP values of BRA-YOLOv7 compared to the other two

methods demonstrate the effectiveness of this approach. The

ablative experiments confirmed the effectiveness of the proposed
Frontiers in Plant Science 12
improvement strategy relative to YOLOv7. Therefore, considering

the detection accuracy, memory, and runtime requirements under

the same experimental conditions, the BRA-YOLOv7 algorithm was

selected for further research.
FIGURE 13

Comparison of AP and mAP for different models.
FIGURE 12

Curves depicting changes in accuracy, recall rate, and balanced score. (A) YOLOv7 precision; (B) YOLOv7 recall; (C) YOLOv7 F1 score; (D) BRA-
YOLOv7 precision; (E) BRA-YOLOv7 recall; (F) BRA-YOLOv7 F1 score. Different colored thin lines represent the values for Tea Cloud Spot Blight, Tea
Red Spot Disease, Tea White Star Disease, and Tea Leaf Spot Disease, respectively. The thick blue line indicates the average value of these
four diseases.
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4 Discussion

4.1 Impact of MPDIou on YOLOv7 network

Localization is an important part of object detection, usually

achieved through bounding box regression. When training deep

models for object detection and instance segmentation, we found

that the same disease exhibits similar shape and size characteristics,

making MPDIoU more suitable for measuring bounding box

similarity. Therefore, this study combines horizontal rectangle

geometry features and proposes a new MPDIoU loss function

based on minimum point distance. It overcomes the limitations

of common loss functions such as CIoU, DIoU, and EIoU. It can
Frontiers in Plant Science 13
still converge when the width and height values are different, and its

convergence speed is higher than the CIoU in the YOLOv7

network. This not only simplifies the computation process to a

certain extent and improves the model’s convergence speed, but

also makes the regression results more accurate.
4.2 Influence of PConv and FasterNet on
YOLOv7 network

In order to reduce the complexity of the model and achieve

faster running speed for the YOLOv7 model, the FasterNet block is

introduced in combination with partial convolution (PConv). This
TABLE 2 External validation parameters for comparing models.

Model mAP/% FLOPs/G FPS/Hz

BRA-YOLOv7 94.9 89.7 46.08

YOLOv7 90.7 105.2 43.67

YOLOv8 90.4 165.7 36.71

Faster-RCNN 81.3 346.6 7.03

SSD 88.6 285.4 18.97
FIGURE 14

Comparison of detection results for different models.
TABLE 3 Comparison of ablation results.

Model P% R% mAP@0.5% F1 FPS

BRA-YOLOv7 90.1 92.3 93.46 91.17 64

RFE-YOLOv7 81.9 80.2 78.0 81.04 69

FRCB-YOLOv7 86.7 83.2 87.3 84.91 74

LW-YOLOv7 89.3 85.5 93.2 87.36 90
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allows for maintaining high FLOPS and low FLOPs, utilizing the

redundancy in feature maps, and systematically applying

conventional convolution (Conv) only on a portion of input

channels to extract spatial features, while keeping the rest of the

channels unchanged. This helps to reduce information redundancy

and facilitate information aggregation. The YOLOv7 model

improves detection speed by incorporating the FasterNet Block

module into the backbone network.
4.3 The impact of dual-path routing
attention mechanism on the
YOLOv7 network

Traditional attention mechanisms require computing pairwise

interactions between tokens in all spatial positions, resulting in

significant computational and memory costs. Therefore, they excel

in capturing long-range object detection. However, in the case of

disease object detection, it is often difficult to obtain complete features

due to overlapping occlusions and smaller disease objects, leading to

potential omissions and recognition errors. With the proposed Dual-

route Attention mechanism, by leveraging BiFormer’s ability to

adaptively focus on a small subset of relevant tokens without

interference from irrelevant tokens, it enables more flexible

computation allocation and enhances content-awareness.
5 Conclusions

This article presents an improved BRA-YOLOv7 algorithm for

tea disease target detection in complex scenes. It introduces PConv

and FasterNet to replace the original backbone network structure,

improving floating point operation efficiency and detection speed.

Additionally, a dual-layer route attention mechanism is utilized to

filter out irrelevant key-value pairs at the coarse region level, making

use of sparsity to save computation and memory. Lastly, a more

efficient bounding box loss function called MPDIou is introduced to

accelerate model convergence. The experimental results show that:
Fron
1. BRA-YOLOv7 network has a total loss stable below 2% on

the training set and below 7% on the validation set, which is

a more than 2% decrease compared to the original YOLOv7

network. Additionally, in the improved network, there are

significant decreases in bounding box position loss,

bounding box confidence loss, and classification loss.

Among them, the decrease in bounding box position loss

is the most significant, with a decrease of over 20% in both

the training and testing sets.

2. From the perspective of detection performance, BRA-

YOLOv7 has achieved effective improvement in accuracy

while reducing the number of parameters. Compared to the
tiers in Plant Science 14
YOLOv7 network, the accuracy of BRA-YOLOv7 has

improved by 6.37%, the recall rate has improved by

6.14%, and the balanced score has increased by 6.25%. In

addition, BRA-YOLOv7 has improved the average

precision (AP) of four types of diseases by 4.76%, 4.72%,

5.69%, and 5.26% respectively, resulting in an overall mAP

improvement of 4.71%.

3. After external data verification, BRA-YOLOv7 network

reduces floating-point operations by 15.5G compared to

YOLOv7. The FPS is improved by 5.51% compared to the

original model, and the mAP value in actual detection is

increased by 4.2%.
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