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Proanthocyanidins (PAs), one of the most abundant natural polymers found in

plants, are gaining increasing attention because of their beneficial effects for

agriculture and human health. The study of PA biosynthesis has been active for

decades, and progress has been drastically accelerated since the discovery of key

enzymes such as Anthocyanidin Reductase (ANR), Leucoanthocyanidin

Reductase (LAR), and key transcription factors such as Transparent Testa 2

(TT2) and Transparent Testa 8 (TT8) in the early 2000s. Scientists raised some

compelling questions regarding PA biosynthesis about two decades ago in the

hope that addressing these questions would lead to an enhanced understanding

of PA biosynthesis in plants. These questions focus on the nature of starter and

extension units for PA biosynthesis, the stereochemistry of PA monomers and

intermediates, and how and where the polymerization or condensation steps

work subcellularly. Here, I revisit these long-standing questions and provide an

update on progress made toward answering them. Because of advanced

technologies in genomics, bioinformatics and metabolomics, we now have a

much-improved understanding of functionalities of key enzymes and identities

of key intermediates in the PA biosynthesis and polymerization pathway. Still,

several questions, particularly the ones related to intracellular PA transportation

and deposition, as well as enzyme subcellular localization, largely remain to be

explored. Our increasing understanding of PA biosynthesis in various plant

species has led to a new set of compelling open questions, suggesting future

research directions to gain a more comprehensive understanding of

PA biosynthesis.
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1 Introduction

Proanthocyanidins (PAs), or condensed tannins (CTs), are

oligomers of flavan 3-ols naturally produced in plants. Like other

polyphenols, PAs have shown promise of health benefits because of

their antioxidant activity. PAs, in particular, are believed to have

antidiabetic and anticancer functions and have beneficial effects in

preventing cardiovascular disease and reducing inflammation (Cos

et al., 2004). Many plant-based foods and drinks, such as rice,

sorghum, soybean, persimmon, grapes, tea and fruit juice, are rich

in PAs, making plants an important dietary source of PAs for

humans (Bhagwat and Haytowitz, 2015). PAs, while mostly

accumulated in seed coats, are found in almost all tissues,

including flowers, leaves, stems and roots, where they play a

pivotal role in protecting plants from UV damage, abiotic

stresses, as well as pest and fungal attack (Dixon and Sarnala,

2020; Figure 1). In agriculture, animal feeds are often supplemented

with PAs to reduce ruminal bloat, a lethal and costly disease, and to

decrease methane emissions from ruminants, a contributing factor

to global warming (Waghorn, 2008; Jonker and Yu, 2016).

The beneficial effects of PAs in human and animal health, as

well as their role in plant stress responses, have made decoding the

PA biosynthesis pathways a research area of interest. Initial progress

was made mainly by characterizing mutants with disrupted PA

accumulation in PA-rich plants such as barley (Hordeum vulgare)

and Arabidopsis thaliana. The first breakthrough discovery came

when Anthocyanidin Reductase (ANR), the enzyme that converts

anthocyanidins to flavan 3-ols, was identified and characterized by

Xie et al. (2003) in Arabidopsis, which specified the PA-specific
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branch in the general flavonoid biosynthesis pathway. Shortly after,

two review papers (Dixon et al., 2005; Xie and Dixon, 2005) raised a

series of open questions that were critical for advancing our

understanding of PA biosynthesis. These questions range from

functions of some key enzymes in the pathway to the

stereochemistry of PA precursors, as well as how and where PAs

are transported.

Now, almost two decades since these PA review papers were

published, I revisit the original questions, summarize major

advances made since then, and come up with a new set of

compelling questions, hoping to shed light on future studies

toward a better understanding of the regulation and mechanism

of PA biosynthesis in plants.
2 Milestones in understanding
PA biosynthesis

2.1 The extended functions of key enzymes
in PA biosynthesis in diverse plant species

In PA-rich plant species, ANR is fundamental in making the

building blocks (i.e., flavan 3-ols) for PA biosynthesis (Figure 1).

Loss of activity of ANR results in loss of PAs and increase of

anthocyanins in Arabidopsis, Medicago truncatula, cotton

(Gossypium hirsutum) and soybean (Glycine max) (Xie et al.,

2003; Kovinich et al., 2012; Zhu et al., 2015). Further studies of

PA biosynthesis demonstrated that the starter and extension units

for PA polymerization are actually generated by two parallel
FIGURE 1

Summary of environmental and intrinsic cues for PA biosynthesis, transcriptional regulation of PA biosynthesis, simplified conventional PA
biosynthesis pathway based on studies in Medicago, major PA precursors, and factors affecting PA polymerization. Arrows between groups indicate
cause-and-effect relationships. Dashed arrows between groups and in the PA biosynthesis pathway indicate processes that remain unclear. The
hormone structure in the “Environmental and Intrinsic Cues” group represents methyl jasmonate. ANR, anthocyanidin reductase; ANS, anthocyanidin
synthase; DFR, dihydroflavonol-4-reductase; LAR, leucoanthocyanidin reductase; LDOX, leucoanthocyanidin dioxygenase.
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pathways, both of which require the participation of ANR (Jun

et al., 2021). In Medicago, the branch leading to epicatechin starter

units also involves Leucoanthocyanidin Reductase (LAR) and

Leucoanthocyanidin Dioxygenase (LDOX), while the other

branch leading to PA extension units requires Anthocyanidin

Synthase (ANS) (Jun et al., 2018; Figure 1). Intriguingly, many

plant species, such as Arabidopsis, seem to only have ANS or LDOX

(i.e. LAR is not present), suggesting the complexity and diversity of

the PA biosynthesis pathway in various plant species.

In wheat (Triticum aestivum) and maize (Zea mays), two

species that do not accumulate PAs, ANRs preferably produce

(+)-epicatechin rather than the (-)-epicatechin stereoisomer

commonly found in PA-rich plants, suggesting that ANRs in

wheat and maize may have evolved distinct functions and may

contribute to the lack of PA oligomers in these two species (Jun

et al., 2021; Lu et al., 2023).

As mentioned before, one of the key enzymes at the branch

point of PA biosynthesis is LAR, which was initially known for

catalyzing the synthesis of catechin, a starter unit for PA

polymerization (Bogs et al., 2005). A decade later, a study of PA

biosynthesis in Medicago suggested a role of LAR in balancing the

ratio of PA starter and extension units (Liu et al., 2016; Figure 1).

Loss of LAR activity in Medicago seeds led to significantly increased

levels of insoluble (highly polymerized) PAs and reduced levels of

soluble PAs, indicating that the LAR-dependent ratio of starter and

extension units is a crucial factor for determining the degree of PA

polymerization. However, as mentioned above, there is no evidence

so far suggesting the existence of any LAR-like enzymes in some

PA-rich plant species like Arabidopsis, raising the question of how

PA chain length is controlled in these species.
2.2 Identification of key intermediates in
PA biosynthesis

Identification and characterization of intermediates in the

biosynthesis of PA monomers has been a focal point of research

interest, as the reaction intermediates are key to understanding the

mechanistic details of PA biosynthesis. While much effort has been

made to search for intermediates in PA biosynthesis, only a few

compounds, such as 4b-(S-cysteinyl)-epicatechin and 2,3-cis-

leucocyanidin, have been identified so far as possible

intermediates in PA monomer biosynthes is and PA

polymerization (Liu et al., 2016; Wang et al., 2020; Jun et al.,

2021; Yu et al., 2022; Figure 1). Identifying intermediates in PA

biosynthesis reactions can be challenging, because of the instability

of flavonoid carbocations. Thus, developing new approaches that

can effectively “capture” these compounds will be key to elucidating

the mechanisms of PA biosynthesis in plants.
2.3 The role of TT19 (AtGSTF12) beyond
anthocyanin deposition

While TT19 has long been considered involved in both

anthocyanin and PA biosynthesis, the exact function of TT19
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beyond the role in anthocyanin deposition has been a mystery

ever since its homologous genes were first discovered in maize

(McLaughlin and Walbot, 1987) and petunia (Alfenito et al., 1998).

It was proposed the oxidized anthocyanins were the reason for the

bronze phenotype in maize seeds (Marrs et al., 1995). In

Arabidopsis tt19 mutant, besides the loss of anthocyanins in the

stem tissue, its seeds show small vacuoles, and the mechanism

causing this phenotype is not clear (Kitamura et al., 2010). In the

last few years, progresses have been achieved in understanding the

role of TT19 in PA biosynthesis. Loss of TT19 activity in

Arabidopsis seeds leads to significant reduction of PA starter

units (i.e., epicatechin), but not PA extension units (i.e.,

epicatechin-cysteine), which consequently results in disrupted

ratio of soluble and insoluble PAs (Lu et al., 2022). Another study

suggests that TT19-like enzymes possess catalytic functions in vitro

(Eichenberger et al., 2023). It will be interesting to further

investigate how this new role helps explain the TT19 function in

PA biosynthesis, and how this mechanism is correlated with the

altered vacuole phenotype in the tt19 mutant.
2.4 Engineering PAs in crops

The beneficial effects of PAs in health and agriculture have

attracted increasing attention of plant scientists to engineering PAs

in crops. As more regulatory factors and key enzymes of the PA

biosynthesis pathway are identified and characterized, a number of

strategies have been developed to engineer economic crops for

enhanced PA production. The most straightforward approach to

increase PA production is manipulating master transcription

factors regulating the expression of PA biosynthesis genes. Similar

to the regulatory machinery controlling anthocyanin biosynthesis, a

conserved complex involving multiple classes (MYB, bHLH, WD40

etc.) of transcription factors activates PA biosynthesis genes and

initiates PA biosynthesis by binding to promoters of genes in both

early and late stages of the pathway (Figure 1). Besides, WRKY

family of TFs have been shown to involve in the transport of PAs in

Arabidopsis and grape (Gonzalez et al., 2016; Amato et al., 2017).

Other transcriptional activators and repressors can influence the

stability of the complex or its ability to bind on promoters,

determining when and where PAs are synthesized in plants (Jun

et al., 2015).

Ectopic expression of TaMYB14-1, a TT2-type transcription

factor from Trifolium arvense (Hancock et al., 2012), in white clover

(Trifolium repens) significantly improved the level of soluble PAs to

over 2% of dry matter, and the PAs in white clover leaves were able

to bind to forage proteins and reduce ammonia and methane

emissions (Roldan et al., 2022). Cotton plants over-expressing

GhTT2L-3A produced brown-colored fibers accumulating

substantial amounts of PAs, and the fiber quality was also

improved in transgenic plants compared to wild-type control

plants (Yan et al., 2018). Given that the increased accumulation

of PAs in some tissues may cause negative effects on plant growth

and development, new approaches using tissue-specific promotors

have been proposed for precisely controlled accumulation of PAs

(Cui et al., 2022). These achievements in engineering PAs will likely
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inspire future studies to develop novel strategies for improving PA

production in other economically useful crops.
3 Rising questions to be addressed
and future perspectives

3.1 What is the next model species for
studying PA biosynthesis?

Arabidopsis and Medicago have long been used as model

species to study anthocyanin and PA biosynthesis. This was

driven by the early release of their genomes, the generation of

tens-of-thousands of mutants, and the easy-to-observe PA

phenotype since the wild-type plants naturally accumulate

colored PAs in seeds. However, it has come to our attention that

there is no one-model-fits-all for PA biosynthesis. Getting

knowledge from more species is key to better understanding the

“core” enzymes and the “expendable” enzymes in the pathway.

With more genomes becoming available on a monthly basis and the

transformation efficiency dramatically increasing with new

technology emerging, the pool for finding the next model plant

species is getting larger. As previously mentioned by Dixon and

Sarnala (2020), poplar (Populus tremula) is one good candidate

model species, because, among other reasons listed, PAs naturally

accumulate in various tissues rather than being limited in seeds.

Another candidate would be cotton, which is an economically

important crop worldwide. Similar to poplar, cotton accumulates

PAs in various tissues, including seeds, fibers, leaves, and stems (Lu

et al., 2017). In addition, a highly efficient Virus-Induced-Gene-

Silencing (VIGS) system makes it easy to test the function of PA-

related genes in a timely manner (Zhu et al., 2015). These

technologies could also apply to major fruit crops with PA and/or

anthocyanin presence such as strawberry and grape (Xie et al., 2020;

Yang et al., 2022).

In contrast to the extensively studied PA biosynthesis in dicots,

details about the PA biosynthesis pathway and its regulatory

mechanism in monocots remain largely unknown with only a few

candidate genes identified so far. In rice (Oryza sativa), Rc and Rd

were identified as genes encoding a bHLH-type transcription factor

and a dihydroflavonol-4-reductase (DFR), respectively (Furukawa

et al., 2007). The tannin1 locus in sorghum encodes a WD40

protein that belongs to the transcription factor ternary complex

necessary for activating PA biosynthesis in sorghum (Wu et al.,

2012). In barley (Hordeum vulgare), the ant13, ant17 and ant18 loci

encode WD40, flavanone 3-hydroxylase (F3H), and DFR,

respectively (Olsen et al., 1993; Himi and Taketa, 2015; Shoeva

et al., 2023). Notably, those genes identified from mutants with

significant PA deficiency phenotypes are either major

transcriptional regulators or enzymes at relatively early steps of

the PA biosynthetic pathway. Despite these discoveries, the lack of

an accessible and saturated mutant pool is still the bottleneck for

studying PA biosynthesis in monocots. A recent release of an ethyl

methane sulfonate (EMS)-induced sorghum mutant library (Jiao
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et al., 2023) offers another promising opportunity for studying PA

biosynthesis and regulation in monocots.
3.2 Will PAs exist in other non-
traditional forms?

Because of the reactive nature of the PA precursors, it is not

surprising that PAs exist in various forms of oligomers and

conjugates. In maize, some purple-colored seeds accumulate

anthocyanin-catechin conjugates (Lu et al., 2023). In Arabidopsis

ans mutant seeds, trans-leucocyanidin, as extension units, attacks

ascorbate to form catechin-ascorbate oligomers (Yu et al., 2022).

Recently, a new form of PA-like oligomers involving flavan 3-ols,

named papanridin, was discovered by Zhu et al. (2023). It will be

interesting to find out whether additional non-traditional PA-like

oligomers or polymers exist in different plant species, and more

importantly, to demonstrate the role of these compounds in plants

and their beneficial bioactivities.
3.3 What determines the level of
PA polymerization?

PA polymerization in Arabidopsis and Medicago is currently

considered as a spontaneous process that does not require enzyme

catalyzation. However, the level of PA polymerization can be

affected by many factors, such as the stoichiometry of starter and

extension units and the stereochemistry of PAmonomers (Liu et al.,

2016; Lu et al., 2023). It will be a necessary next step to learn how

PA polymerization is determined and how to regulate the level of

PA polymerization for different application purposes. Since the PA

starter units and extension units are generated in two separate

pathways, it would be interesting to know whether it is possible to

manipulate enzymes in one branch of the pathway but not the other

branch, and whether it is possible to control how and when

extension units “find” starter units.
3.4 What are other factors affecting
PA biosynthesis?

Some well-studied transcription factors (e.g., TT2, TTG1, TT8)

can activate or repress the expression of PA-related genes and

subsequently affect PA and/or anthocyanin biosynthesis (Lu et al.,

2021). Are there other factors that can turn on or off these

transcription factors? Recently, several microRNAs that target

PA-related transcription factors or enzymes have been identified

in grape berry (Vale et al., 2021), apple (Malus domestica) (Zhang

et al., 2022), persimmon (Yang et al., 2020), kiwifruit (Actinidia

deliciosa) (Wang et al., 2023) and cotton (Mei et al., 2023). Notably,

the miR858 family members target TT2-type MYBs, a key activating

regulator of PA biosynthesis functionally conserved in many plant

species (Figure 1). The involvement of these small RNAs in PA

biosynthesis opens a new avenue for PA engineering in crops.
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Plant hormones participate in almost all aspects of plant growth

and development, but whether or not they play a role in PA

biosynthesis remain largely unknown. Recent studies indicated

that plant hormones could affect PA biosynthesis. Applying

methyl jasmonate induced PA accumulations in apple calli by

influencing the interactions between Jasmonate ZIM-domain

(MdJAZ) proteins and the MYB-bHLH-WD40 transcription

factor complex that regulates PA biosynthesis (An et al., 2015;

Figure 1). It will be interesting to find out whether and how other

families of plant hormones might be involved in regulating PA

accumulation in plants.
3.5 How is PA biosynthesis related to
lipid metabolism?

TT8 has been known for its role in the transcriptional

regulation of PA biosynthesis, as disruption of TT8 results in loss

of PA in Arabidopsis seed coats (Nesi et al., 2000). A study of lipids

in the Arabidopsis tt8mutant showed that the accumulation of fatty

acids was significantly enhanced in tt8 seeds, and further transcript

analysis showed that TT8 might function as a repressor to down-

regulate genes required for lipid biosynthesis (Chen et al., 2014;

Figure 1). Later on, similar enhanced lipid accumulation

phenotypes were observed in seeds of Brassica napus and tobacco

(Nicotiana tabacum) when TT8-like genes were disrupted (Zhai

et al., 2020; Tian et al., 2021). These findings suggest crosstalk

between flavonoid biosynthesis and central metabolism pathways.

Future studies of the crosstalk between PA and lipid biosynthesis

may focus on deciphering the regulatory mechanism for

maintaining the homeostasis of PAs and lipids, exploring its

biological significance in plant growth and development, and

developing new strategies for PA and lipid engineering in crops.
4 Concluding remarks

Unlike many other metabolite biosynthesis pathways that are

conserved among plants, the pathways of PA biosynthesis are

complex and divergent in different plant species. Substantial
Frontiers in Plant Science 05
progresses have been made over the past two decades in

advancing our understanding of the PA biosynthesis pathway,

particularly in proposed diverse and expanded roles of key

enzymes branching from anthocyanin pathway and in successful

isolation of extension units for PA polymerization, but questions

still need to be addressed to elucidate the mechanistical details of

how PAs are synthesized, transported and regulated in various plant

species. I envision that this will stimulate more studies and lead to

new discoveries in this area.
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