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Sensitivity and responses of
chloroplasts to salt stress
in plants
Xuemei Wang †, Zengting Chen † and Na Sui*

Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal
University, Jinan, China
Chloroplast, the site for photosynthesis and various biochemical reactions, is

subject to many environmental stresses including salt stress, which affects

chloroplast structure, photosynthetic processes, osmotic balance, ROS

homeostasis, and so on. The maintenance of normal chloroplast function is

essential for the survival of plants. Plants have developed different mechanisms to

cope with salt-induced toxicity on chloroplasts to ensure the normal function of

chloroplasts. The salt tolerance mechanism is complex and varies with plant

species, so many aspects of these mechanisms are not entirely clear yet. In this

review, we explore the effect of salinity on chloroplast structure and function,

and discuss the adaptive mechanisms by which chloroplasts respond to salt

stress. Understanding the sensitivity and responses of chloroplasts to salt stress

will help us understand the important role of chloroplasts in plant salt stress

adaptation and lay the foundation for enhancing plant salt tolerance.
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Introduction

As sessile organisms, plants are subjected to various environmental stresses, including

salt stress. Salinity has become one of the most severe environmental stresses that limit

plant growth and development as well as crop yield (Munns and Tester, 2008; Acosta-

Motos et al., 2017). It is estimated that approximately more than 800 million hectares of

arable lands are affected by salinity worldwide, accounting for over 6% of the total lands

worldwide (Munns and Tester, 2008; Flowers et al., 2010; Liu and Wang, 2021). If soil

salinization continues, 50% of cultivable lands will be salinized by 2050 (Hasanuzzaman

et al., 2014; Hossain, 2019), resulting in a reduction of arable lands, which will inevitably

reduce crop productivity. Salinity affects most physiological and biochemical processes,

including photosynthesis, the biosynthesis of amino acid, lipid metabolism, protein

synthesis, and RNA metabolism (Munns and Tester, 2008; Yan et al., 2013; Abdelhamid

et al., 2020; Hameed et al., 2021). As the primary sites for photosynthesis and other

metabolic processes, chloroplasts are also damaged by salt stress.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2024.1374086/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1374086/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1374086/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2024.1374086&domain=pdf&date_stamp=2024-04-17
mailto:suina800101@163.com
https://doi.org/10.3389/fpls.2024.1374086
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2024.1374086
https://www.frontiersin.org/journals/plant-science


Wang et al. 10.3389/fpls.2024.1374086
Chloroplasts are specialized plastids found in plants and algae,

and their main function is photosynthesis, through which

chloroplasts produce energy for plant growth and crop yield. In

addition to photosynthesis, chloroplasts also carry out a variety of

other important roles, such as the biosynthesis of amino acids, fatty

acids, nucleotides, lipids, vitamins, phytohormones, the

manufacture of starch and pigments, as well as the reduction of

sulfates and nitrites (Neuhaus and Emes, 2000; van Wijk, 2000; Suo

et al., 2017; Li et al., 2022). Thus, any perturbation of chloroplast

function will impair plant growth and development, as well as

crop yield.

Chloroplasts are highly sensitive to salt stress (Nouri et al.,

2015). Photosynthesis, as the major function of chloroplasts, is

affected by salt stress. The initial impact of salinity on plants is

osmotic stress, which causes stomatal closure (Akyol et al., 2020;

Ben Amor et al., 2020). Stomatal closure in turn affects the carbon

fixation in photosynthesis by limiting CO2 supply (Chaves et al.,

2009; Yan et al., 2013; Singh and Roychoudhury, 2021). In addition

to CO2 fixation, photoreaction processes are also affected by salt

stress due to many non-stomatal limitations, including changed

activities of CO2 fixing enzymes (Delatorre-Herrera et al., 2021),

damaged photosynthetic apparatus (Maxwell and Johnson, 2000;

Huang et al., 2019), a reduction in photosynthetic pigments

(Demetriou et al., 2007), and the inhibition of electron transport

from PSII to PSI (He et al., 2021; Zahra et al., 2022). The excess

accumulation of Na+ and Cl- ions inside chloroplasts not only

affects photosynthetic components (Davenport et al., 2005), but also

inhibits the uptake of K+ and Ca2+ ions, which disrupts ion

homeostasis (Hu and Schmidhalter, 2005; Bose et al., 2017). In

addition, when plants are exposed to salt stress, the decline of

carbon assimilation and the reduced photosynthetic electron

transport rate will increase reactive oxygen species (ROS)

production, that leads to oxidative stress (Munns and Tester,

2008; Huang et al., 2019; Lu et al., 2023). Thus, salt stress induces

osmotic stress, ionic stress and oxidative stress to chloroplasts and

negatively affects the function of chloroplasts (Figure 1).

Chloroplasts have evolved sophisticated mechanisms to

acclimate to salt stress. For example, the xanthophyll cycle

participates in dissipating excess excitation energy in PSII.

Ascorbate and water-water cycle can protect photosynthetic

machinery from oxidative damage (Acosta-Motos et al., 2017).

Chloroplasts possess candidate Na+, K+, Cl- ion transporters that

can regulate ion concentrations, however the ion transport capacity

of chloroplasts differs between salt-tolerant and salt-sensitive plants

(Bose et al., 2017). In response to osmotic stress under salinity, plant

cells not only uptake inorganic ions from the external environment

(Zhao et al., 2002; Cui et al., 2007; Huang et al., 2019), but also

produce organic osmolytes such as sorbitol, mannitol, proline,

glycine betain, polyamines, etc., most of which are localized in the

chloroplast (Shen et al., 1997a, Shen et al., 1997b; Hameed et al.,

2021). Chloroplasts are major ROS production sites, and salinity

increases the ROS accumulation, causing oxidative stress to

chloroplasts. Certain enzymatic and non-enzymatic antioxidants

are present in chloroplasts to scavenge ROS (Mittler et al., 2004).

Tightly regulated levels of ROS can also function as retrograde
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signals for chloroplasts to communicate with the nucleus through

retrograde signaling (Uzilday et al., 2014; Hameed et al., 2021).

In this review, we summarize the effects of salt stress on

chloroplast structure and cellular processes occurring within

them. We also discuss the mechanisms through which

chloroplasts respond and adapt to salt stress. Together, these

studies suggest the significant roles of chloroplasts in plant

adaptation to salt stress. Furthermore, studies on the adaptive

mechanisms of chloroplasts in response to salt stress will

contribute to improving crop yield under salt stress, and the

genes that have been validated to be important for chloroplast

function are also valuable for developing salt-tolerant crops through

genetic engineering.
Chloroplast sensitivity to salt stress

Salt sensitivity of chloroplast ultrastructure

Chloroplasts are sensitive to salt stress, which affects chloroplast

size, number, lamellar organization, starch accumulation and so on

(Zahra et al., 2022). Under normal conditions, chloroplasts have

ellipsoidal shapes, with regularly organized grana stacks and dense

stromal thylakoid lamellae (Zhang et al., 2020). While salt stress

makes chloroplasts deform into irregular shapes, with reduced

grana stacks (Shu et al., 2015). Excessive salinity also led to

thylakoid swelling in the chloroplasts of Thellungiella salsuginea,

which was primarily caused by disruption of chloroplast osmotic

equilibrium (Goussi et al., 2018). Thus, high salinity changed

chloroplast shapes and lamellar organization.
FIGURE 1

Sensitivity of chloroplasts under salt stress. Salt stress causes
osmotic stress, ionic stress and oxidative stress to chloroplasts. The
initial osmotic stress causes stomatal closure, which in turn affects
the CO2 fixation of photosynthesis. Excess accumulation of Na+ also
disrupts ion homeostasis inside chloroplasts. Salt stress causes
excess ROS accumulation, which leads to oxidative stress to
chloroplasts and damages chloroplast structure and photosynthetic
machinery. Thus, salt stress negatively affects chloroplast structure
and function.
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Inmany studies, larger starch granules under salt stress have been

reported (Fidalgo et al., 2004; Barhoumi et al., 2007; Štefanić et al.,

2013; Goussi et al., 2018; Manaa et al., 2019). For instance, Štefanić

et al. (2013) reported that salt stress caused starch accumulation in

the chloroplast of wheat cultivars, resulting from the decreased

sucrose biosynthesis and increased starch biosynthesis. The starch

accumulation may also be related to the ionic composition changes of

starch-degrading enzymes (Salama et al., 1994). The accumulation of

starch granules in chloroplasts under salt stress is thought to play

important roles as osmolytes to help chloroplasts absorb water and

maintain structural integrity, while also providing energy for cells

(Queirós et al., 2011; Chang et al., 2015). Notably, studies have found

that the starch granules ultimately degrade under high salinity or

prolonged salt stress, possibly attributed to the large amount of

energy that plants require to sustain life (Gao et al., 2015; Huang

et al., 2019; Alkhatib et al., 2021; Vineeth et al., 2023). In addition, the

accumulation of plastoglobules under salt stress has also been

reported in many cases (Evelin et al., 2013; Barkla et al., 2018;

Manaa et al., 2019). Plastoglobules are sites for the synthesis of

tocopherols under oxidative stress, and an increased number of

plastoglobules can prevent salt-induced oxidative damage to the

thylakoid membrane (Evelin et al., 2013). Thus, the accumulation

and degradation of starch granules as well as the accumulation of

plastoglobules are for chloroplasts to adapt to salt stress.

Under salt stress, the degree of damage to chloroplasts varies

from plant to plant differing in their ability to cope with salinity. For

instance, chloroplasts of spinach (salt-tolerant) decreased in volume

in the presence of salt (Delfine et al., 1998), while chloroplasts of

Arabidopsis (salt-sensitive) showed an increase in volume under

salinity (Štefanić et al., 2013). Changes in chloroplast volume may

be attributed to alterations in stromal ionic composition (Hameed

et al., 2021). Bose et al. (2017) reported that salt entry into the

chloroplast stroma may be crucial for grana formation in

halophytes, whose chloroplasts use Na+ in functional roles.
Salt sensitivity of photosynthesis

The most important physiological process occurring in

chloroplasts is photosynthesis, which is the energy source for

plant growth and development and plays crucial roles in plant

productivity (Yang et al., 2020; Zahra et al., 2022; Lu et al., 2023).

Photosynthesis comprises light reaction and dark reaction phases.

The light reaction process involves the primary reaction and

photosynthetic electron transport (PET), through which the light

energy is converted into active chemical energy in the form of

reducing power and ATP (Arnon, 1959; Bowyer and Leegood,

1997). The dark reaction is the process of photosynthetic carbon

fixation, which reduces carbon dioxide to carbohydrates under the

catalysis of various enzymes (Nouri et al., 2015).

Photosynthesis is sensitive to salt stress. Photosynthetic activity

and photosynthetic rate, which are important factors affecting plant

productivity and crop yield, have been found to be decreased in

many plants under salt stress (Parida and Das, 2005; Hiyane et al.,

2010; Yan et al., 2013; MaChado and Serralheiro, 2017; Lekklar
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et al., 2019). The decrease of photosynthetic activity and

photosynthetic rate was caused by various reasons. The initial

effect of salt stress on photosynthesis is the decreased CO2

availability caused by stomatal limitation, resulting from elevated

osmotic pressure and leading to a decrease in carbon fixation

(Flexas et al., 2004; Parida and Das, 2005; Chaves et al., 2009;

Yan et al., 2013).

Besides CO2 fixation, photoreaction is also sensitive to salt stress

(Tseng et al., 2007; Flexas et al., 2012; Munns et al., 2019). The negative

effect of salt stress on photoreaction is mainly reflected in electron

transport chain (ETC) and photosystems (Huang et al., 2019). High

salinity blocks electron transport chain, resulting in excessive

accumulation of ROS which cause oxidative damage to thylakoid

membrane proteins, lipids, membranes, and photosynthetic enzymes

(Lu et al., 2023). The inhibition of electron transport and the oxidative

damage to photosynthetic apparatus under salt stress resulted in

photoinhibition to photosystems. PSII is considered to be more

susceptible to photoinhibition. Salt stress blocks PSII-mediated

electron transport, resulting in accumulation of electrons available

for charge separation that are prone to induce PSII photoinhibition

with excess ROS production (Murata et al., 2007; Ahanger and

Agarwal, 2017). The accumulation of ROS inhibits the repair of

PSII through suppression of the de novo synthesis of PSII proteins,

especially of the D1 protein, causing inactivation of PSII (Nishiyama

et al., 2001; Allakhverdiev et al., 2002; Takahashi and Murata, 2008).

Photoinhibition impacts the efficiency of photosystems. Under saline

conditions, a general decrease in the maximal photochemical

efficiency of PSII (Fv/Fm) occurs. For instance, under salt stress, the

Fv/Fm declined in P. granatum compared to the control (Khayyat

et al., 2014). The decrease in Fv/Fm was also reported in olives, which

probably indicates photodamage under salt stress (Loreto et al., 2003).

Compared to PSII, PSI is less sensitive to salt stress, but repairing the

damaged PSI is more difficult, thus, PSI photoinhibition is more

harmful (He et al., 2021).

CO2 fixation processes are generally considered to be more

sensitive to salt stress than photoreaction processes (Gulzar et al.,

2020). Besides stomatal limitation, photosynthetic enzymes also play

significant roles in CO2 assimilation and are affected by salinity.

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is a

crucial photosynthetic enzyme catalyzing CO2 fixation during the C3

pathway, and it has been reported that salt stress inhibits Rubisco

activity in most species (Hameed et al., 2021). However, increased

Rubisco activity under salt stress was also observed in Kalidium

foliatum (Gong et al., 2018). Rubisco activase (RCA) is important for

Rubisco activity. Salt stress enhanced RCA activity in many plant

species, such as alfalfa (Xiong et al., 2017) and S.salsa (Li et al., 2011).

Enhanced RCA activity can help activate the available Rubisco.

Phosphoenolpyruvate carboxylase (PEPC) is a crucial photosynthetic

enzyme catalyzing CO2 fixation during the C4 pathway. Under salt

stress, an increase in PEPC activity was reported in C4 species maize

(dos Santos Araújo et al., 2021) and Bienertia sinuspersici (Leisner et al.,

2010). Increased PEPC activity can help enhance CO2 fixation for C4

plants when atmospherical CO2 concentration is low or during

stomatal limitation (Huang et al., 2019; Hameed et al., 2021). In fact,

the effect of salinity on these enzymes varies among plants differing in
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their salt tolerance, and further studies are needed to explore the

relationship between these enzymes and plant salt tolerance.
Effects of salt stress on ion homeostasis
inside chloroplasts

Chloroplasts contain three types of membranes: the outer and

inner envelope membranes, and the thylakoid membrane. Ion

channels and transporters are located in these membranes to

transport ions in and out of them, however, our current

knowledge on specific chloroplast ion transporters that affect ion

concentrations under salt stress is limited (Hameed et al., 2021).

Salt stress causes increases in Na+ and Cl- concentrations and

decreases in K+ concentration inside chloroplasts (Robinson and

Downton, 1984, Robinson and Downton, 1985), resulting in ion

stress and osmotic stress (Munns and Tester, 2008).

Regulating ion (K+, Na+, Cl-) homeostasis is crucial for

maintaining chloroplast function. Under low salt conditions,

halophytes accumulate about 20-fold higher Na+ inside chloroplasts

than glycophytes (Robinson and Downton, 1984, Robinson and

Downton, 1985). Halophytes use Na+ in functional roles (Bose

et al., 2017). The lack of Na+ induced chlorosis in Atriplex vesicaria

(Brownell and Wood, 1957; Brownell, 1965), and reduced PSII

activity in Amaranthus tricolor and Kochia childsii (Grof et al.,

1989; Johnston et al., 1989). Furthermore, when the Na+

concentration of the growth medium exceeds 300 mM, but

halophyte chloroplast Na+ concentrations are still kept much lower,

and halophytes can complete their life cycle. In contrast, glycophytes

cannot tolerate so high salt concentration (Bose et al., 2017). Thus, it

is assumed that halophyte chloroplasts have Na+ transporters to

regulate Na+ concentrations in the optimal range. K+ promotes the

chlorophyll synthesis and Rubisco synthesis, and is necessary for

chloroplast development, ultrastructure, and volume regulation.

Maintaining optimal K+/Na+ ratio within chloroplasts is critical to

photosynthesis (Bose et al., 2017). K+ deficiency damages chloroplast

ultrastructure, for instance, the irregular lamella structure and

reduced numbers of grana and lamellae were observed in maize

under K+ deficiency stress (Du et al., 2019). It has also been reported

that K+ deficiency reduces the concentration of chlorophyll and the

activity and quantity of Rubisco (Tränkner et al., 2018). Salt stress

causes K+ loss from chloroplasts of both halophytes and glycophytes

(Robinson and Downton, 1984, Robinson and Downton, 1985). Cl- is

a cofactor of PSII complex, and it also contributes to stabilizing

chloroplast membrane potentials, thus, Cl- is crucial for

photosynthesis (Herdean et al., 2016a). It has been reported that

the excess accumulation of Cl- within chloroplasts affects

photosynthesis of many crop species (Teakle and Tyerman, 2010).

However, in other instances, high concentrations of Cl- inside

chloroplasts contribute to increasing electron transport in some

halophytes under salt stress (Critchley, 1982). It has been

considered that halophytes have mechanisms to maintain steady

Cl- concentrations and regulate Cl- homeostasis within chloroplasts.

Therefore, halophyte chloroplasts use Na+, K+, Cl- ions in functional

roles and have more efficient transport mechanisms to maintain ion

homeostasis than glycophyte chloroplasts.
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Effects of salt stress on chloroplast
ROS generation

Chloroplasts aremajor sites for ROS production in plants subjected

to environmental stresses, such as salt stress. In chloroplasts, the triplet

chlorophylls and the photosynthetic electron transport chains in PSII

and PSI, all produce ROS (Edreva, 2005). The reduction of CO2

assimilation rates under salt stress results in the over-reduction of PSII

along with electrons transporting tomolecular oxygen, which generates

ROS (Bose et al., 2013; Ozgur et al., 2013; Gulzar et al., 2020). Under salt

stress, electrons are prone to be transported from Ferredoxin to

molecular oxygen, rather than NADP+, the final electron acceptor in

PSI, and this pathway producesO2
.-, which is dismutated intoH2O2 and

O2 by SOD (Asada, 1999). Salt stress causes a decrease in photosynthetic

activity of plants and excess protons cannot be utilized, which leads to

photoinhibition of PSII and the production of ROS (Hideg et al., 2002).

In addition, ROS can be produced in chloroplasts through other ways,

for instance, singlet oxygen can be generated within chloroplasts by

energy transfer from the excited chlorophyll (1chl) to the ground state

chlorophyll (chl) (Liu et al., 2021).

There are differences in ROS levels between the chloroplasts of salt-

tolerant and salt-sensitive plants. An increase in H2O2 levels was

reported in chloroplasts of two pea cultivars under salt stress,

moreover, the salt-sensitive cultivar produced much higher H2O2

levels than the salt-tolerant one (Hernández et al., 1995; Acosta-

Motos et al., 2017). A substantially higher H2O2 level was observed

in chloroplasts of a halophyte T. salsuginea than glycophyte

Arabidopsis thaliana under normal growth conditions. However,

under salt stress, Arabidopsis produced a higher H2O2 level than T.

salsuginea (Wiciarz et al., 2015). The similar results were observed in

chloroplasts of two tomato cultivars with different salt tolerance (Ben

Hamed et al., 2020). The higher H2O2 levels in halophytes under stress-

free conditions may keep antioxidant system in the activated state, and

serve as a signal for adaptive responses, and this phenomenon may

indicate that the halophytes are pre-adapted to stress. The mechanism

of high H2O2 levels in halophytes in stress-free conditions, however,

still remains unclear. In contrast, salt stress increased H2O2 levels in

both species, but it was significant only in glycophtes, indicating that

salt-tolerant plants possess more efficient mechanisms to regulate ROS

homeostasis than salt-sensitive plants.

ROS functions as a double-edged sword, tightly controlled levels

of ROS can act as stress signaling molecules to trigger specific

protective responses (Mittler et al., 2004; Suzuki et al., 2012;

Lodeyro et al., 2016). However, if excess ROS accumulates in

chloroplasts, it can cause oxidative damage to chloroplasts and

reduce the photosynthetic efficiency of plants (Zheng et al., 2017).
Chloroplast adaptations to salt stress

Mechanisms for the protection of
photosynthetic machinery under salt stress

Under salt stress, the stomatal limitation and the decrease of

ETC lead to the accumulation of excess excitation energy in PSII

and the generation of ROS, which can damage the photosynthetic
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machinery. Plants have developed mechanisms to protect

photosystems (Acosta-Motos et al., 2017) (Figure 2). Xanthophyll

cycle is one of the mechanisms to dissipate excess excitation energy

of PSII in the form of heat by non-photochemical quenching

(NPQ), potentially preventing the production of ROS (Qiu et al.,

2003; Hameed et al., 2021). The violaxanthin de-epoxidase in the

xanthophyll cycle consumes NADPH, whose accumulation may

cause the over-reduction of PSII, thereby increasing ROS

production (Niyogi, 1999; Hameed et al., 2021). Zeaxanthin has

been reported to play a role in protecting photosynthetic

machinery, since it acts as an antioxidant that scavenges ROS in

the thylakoid membranes and relieves salt-induced photo-oxidation

(Zhang et al., 2012). In addition, ascorbate has also been reported to

play a role in protecting photosynthetic machinery under salt stress

(Huang et al., 2005), since ascorbate not only functions as a ROS

scavenger, but also acts as a cofactor of violaxanthin de-epoxidase,

contributing to the dissipation of excess light energy (Demmig-

Adams and Adams, 1992; Acosta-Motos et al., 2017).

Photorespiration is another mechanism for plants to protect

photosynthetic machinery. Under salt stress, stomatal limitation

makes it difficult for external CO2 to enter plant cells, leading to the

over-reduction of ETC. Rubisco operates as an oxygenase at this

time, and photorespiration is initiated to consume excess reducing

power (Huang et al., 2019). The photorespiration pathway produces

phosphoglycerate, which enters the Calvin-Benson cycle to

regenerate RuBP (Hodges et al., 2016). The photorespiration

pathway also produces recycled CO2, which is important for

CAM plants and C4 plants (Raghavendra and Padmasree, 2003).

Photorespiration not only provides substrates for the chloroplast,

but also consumes ATP, contributing to the dissipation of excess

excitation energy and decreasing the risk of photoinhibition under

salt stress (Hodges et al., 2016).

In addition, plant chloroplasts generate ROS during

photosynthesis under stresses. The cysteine residues of

photosynthetic proteins are susceptible to redox modifications,

which can influence protein structure and function, and further
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influence photosynthesis (Yu et al., 2020). Through redox

proteomics, lots of redox-responsive proteins were identified

under stresses. For instance, redox proteomics has revealed that

redox modified photosystem proteins, soluble electron carriers,

ATP synthase, enzymes in the Calvin-Benson cycle, and enzymes

in chlorophyll biosynthesis in response to various stresses. The light

and dark-dependent redox regulation of electron carriers ensures

efficient energy utilization. Redox regulation of chlorophyll

biosynthesis contributes to preventing oxidative damage (Yu

et al., 2020). Therefore, redox modification plays important roles

in photosynthesis.

The accumulation of ROS brings oxidative damage to

photosynthetic machinery, thus, scavenging ROS will relieve the

oxidative damage, other means to scavenge ROS will be

discussed below.
Ion transporters across
chloroplast membranes

Maintenance of chloroplast ion homeostasis is crucial for plant

growth. Halophytes are thought to possess transporters to maintain

ion homeostasis in chloroplasts (Figure 2). Through analyzing

online data and proteomic data verification, several nucleus-

encoded chloroplast proteins were identified to be candidate ion

transporters that may mediate Na+, K+, and Cl- transport through

chloroplast membranes (Kleffmann et al., 2004; Ferro et al., 2010;

Hooper et al., 2014; Bose et al., 2017). However, the transport

function and their role during salt stress of most of these ion

transporters still need to be verified.

The entry of Na+ into the chloroplast can be mediated by an

inner envelope membrane-localized Na+-dependent pyruvate

transporter (BASS2), which is more abundant in halophytes than

in glycophytes (Furumoto et al., 2011). Zhao et al. (2016) reported

that overexpression of TaBASS2 isolated from a salt-tolerant wheat

cultivar could enhance salt tolerance of wheat and Arabidopsis.
FIGURE 2

Responses of chloroplasts to salt stress. In response to salt stress, chloroplasts have evolved several mechanisms, such as protection of
photosynthetic machinery, ion homeostasis regulation, osmotic adjustment, ROS scavenging, and so on.
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The thylakoid membrane localized inorganic phosphate

transporters PHT4;1 and inner envelope localized PHT4;4, and

PHT4;5 can mediate Na+ - and/or H+ -dependent Pi transport

(Finazzi et al., 2015), thus changing Na+ concentrations inside

chloroplasts. The chloroplast envelope membrane localized Na+/

H+ antiporter (NhaD; hereafter NHD)-type transporters have

long been reported to mediate Na+ efflux from the stroma

(Furumoto et al., 2011). In Arabidopsis, NHD1 mediates Na+

export from chloroplast (Müller et al., 2014). In contrast, in

Mesembryanthemum crystallinum (a halophyte), salt stress

increased NHD1 transcript levels and caused Na+ accumulation in

chloroplasts, which suggests that NHD1 may function as a Na+

importer (Cosentino et al., 2010). Such opposite function of NHD1

in Na+ transport mechanism in different species requires

further verification.

In Arabidopsis, two inner envelope membrane-localized K+

efflux antiporters (KEA1 and KEA2) are involved in mediating K+

export out of the stoma in exchange for H+ influx (Kunza et al.,

2014). The two-pore K+ channel TPK3 has also been suggested to

function in K+ export out of the lumen (Carraretto et al., 2013). In

contrast, the thylakoid membrane localized KEA3 has been shown

to be involved in importing K+ into the lumen in exchange for H+

(Armbruster et al., 2014; Kunza et al., 2014), as well as increasing

PSII quantum efficiency and CO2 fixation under fluctuating light

conditions (Armbruster et al., 2014). Yet, it is unknown how KEA3

functions during salt stress.

In Arabidopsis, the thylakoid membrane-localized CLCe,

belonging to the Cl- channel CLC family, was suggested to

function as a Cl- channel participating in Cl- homeostasis after

transfer from light to dark (Herdean et al., 2016a). The loss-of-

function clce mutant showed altered photosynthetic electron

transport (Herdean et al., 2016a). The function of CLCe in

maintaining Cl- homeostasis during salt stress remains to be

established. A thylakoid membrane-localized bestrophin-like

protein from Arabidopsis was reported to function as a voltage-

dependent Cl- channel (AtVCCN1), mediating anion influx into the

lumen to fine-tune proton motif force, and adjusting photosynthesis

to variable light (Herdean et al., 2016b). The function of AtVCCN1

during salt stress remains to be established.
Osmoprotectants in chloroplasts

To resist salinity-induced osmotic stress, plants synthesize and

accumulate organic osmoprotectants to improve osmolality and

cellular water retention capacity. Major organic osmoprotectants

include glycine betaine (GB), proline, sugar alcohols/polyols (e.g.,

sorbitol and mannitol), and polyamines (Suo et al., 2017). These

organic osmolytes, also called compatible solutes, have long been

considered not to have a negative influence on cellular enzymes

and functions (Vineeth et al., 2023). The accumulation of these

organic osmolytes has been considered an adaptive response to

abiotic stresses.

Among the organic osmolytes, GB and proline are considered

the most important solutes during salt stress. They not only

function in osmotic adjustment, but also protect photosynthetic
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apparatus (Vineeth et al., 2023). GB is synthesized in chloroplasts

(Park et al., 2007), which can stabilize the protein complexes and

protect the integrity of membranes, and accelerate the PSII repair

under salt stress, thereby improving photosynthesis and salt

tolerance (Tian et al., 2017; Ahmad et al., 2018). Increased GB

concentration was observed in many salt-stressed plants, such as

sorghum (Sorghum bicolor) (Yang et al., 2003), spinach, and barley

(Papageorgiou and Murata, 1995). In plants, proline may be

synthesized in the chloroplast, cytoplasm, or mitochondria

(Szabados and Savouré, 2010; Planchet et al., 2014). In addition

to functioning as an osmolyte, proline also contributes to stabilizing

membranes and proteins, ROS scavenging, and cellular redox

homeostasis under salt stress (Ashraf and Foolad, 2007). Similar

to GB, salt stress also increased proline accumulation in many

plants, such as rice (Demiral and Türkan, 2004; Acosta-Motos et al.,

2017). Besides, exogenous application of proline to rice plants

improved their salt tolerance (Wutipraditkul et al., 2015). Sugar

alcohols, such as mannitol, sorbitol, and trehalose, regulate K+/Na+

ratio to a low level and protect membranes under salt stress, thus

improving photosynthetic rates (Garg et al., 2002; Hameed

et al., 2021).

In fact, the notion of osmotic adjustment through organic

osmolytes is still controversial. The main reasons include the high

cost of synthesis for organic osmolytes and their lower

concentration compared to the inorganic ions (Hameed et al.,

2021). Inorganic ions appear to be more cost-effective osmolytes

to maintain osmolality. However, excess Na+ is toxic and plant cells

need to maintain Na+/K+ balance, also studies showed that the

difference of salt tolerance between two rice genotypes was related

to the accumulation of organic osmolytes but not to Na+, K+

concentrations (Li et al., 2017). Thus, it seems that osmotic

adjustment is collectively achieved by organic osmolytes and

inorganic ions (Figure 2).
ROS scavenging

To cope with oxidative damage caused by ROS accumulation

under salt stress, chloroplasts have evolved enzymatic and

nonenzymatic scavenging mechanisms (Mittler et al., 2004). The

enzymatic scavenging mechanism mainly includes water-water

cycle and ascorbate-glutathione (AsA-GSH) cycle, which involve

many enzymatic antioxidants, such as superoxide dismutases

(SOD), ascorbate peroxidase (APX), monodehydroascorbate

reductase (MDHAR), dehydroascorbate reductase (DHAR) and

glutathione reductase (GR) (Hameed et al., 2021). Besides, the

enzymatic scavenging mechanism also include thioredoxin/

peroxiredoxin (Trx/Prx) and glutathione peroxidase (GPX)

pathways (Suo et al., 2017). Meanwhile, ascorbate, glutathione,

tocopherol, and carotenoids constitute the nonenzymatic

antioxidant system in chloroplasts (Mittler et al., 2004).

The water-water cycle is an important ROS scavenging pathway

in chloroplasts and plays a crucial role in salinity tolerance (Suo

et al., 2017). In this cycle, the thylakoid membrane-attached copper/

zinc superoxide dismutase (Cu/Zn SOD) converts O2
.- produced in

ETC into O2 and H2O2, which is then reduced to H2O by the
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thylakoid membrane-bound APX (tAPX) (Edreva, 2005). Many

studies have reported that the enzymatic antioxidants are

upregulated under salt stress and their transgenic plants show

enhanced salinity tolerance compared to wild type plants. For

example, overexpression of Cu/Zn-SOD in Arabidopsis (Wu et al.,

2016) and cotton chloroplasts (Luo et al., 2013) increased SOD

activity and enhanced the plants′ salinity tolerance. Similarly,

tobacco plants with an overexpression of APX showed higher

APX activity and enhanced salinity tolerance (Badawi et al.,

2004). The AsA-GSH cycle is an extension of the water-water

cycle in chloroplasts (Hameed et al., 2021), it leads to the full

scavenging of H2O2 at the expense of consuming NADPH. Besides

SOD and APX that directly scavenge ROS, this cycle also involves

other enzymes such as MDHAR, DHAR, and GR, which act as

antioxidant-regenerating enzymes that regenerate GSH and ASA

from their oxidized forms (Mittler, 2002; Yan et al., 2013).

Overexpression of MDHAR and DHAR in tobacco plants

increased enzyme activities and improved plant survival under

salt stress (Kavitha et al., 2010; Le Martret et al., 2011). In rice,

the expression of OsGR3 was greatly increased under salt treatment

(Wu et al., 2013), and the knockout of OsGR3 increased the plants′
salinity sensitivity (Wu et al., 2015). The Trx/Prx pathway and GPX

pathway primarily scavenge salinity-induced H2O2 in chloroplasts

(Suo et al., 2017). The Trx/Prx system scavenges H2O2 and is

reduced by thioredoxin reductase (TrxR) using NADPH as an

electron donor (Sevilla et al., 2015). GPX also reduces H2O2 using

GSH as an electron donor (Zhai et al., 2013). Therefore,

these enzymatic scavenging systems in chloroplasts are important

for redox homeostasis and contribute to improving plants

salinity tolerance.

OH• and 1O2, which are not targets of the enzymatic scavenging

system, can be solely scavenged by nonenzymatic antioxidants, such

as AsA, GSH, carotenoids, and tocopherol in chloroplasts (Edreva,

2005; Vineeth et al., 2023). Tocopherol and carotenoids scavenge
1O2 mainly by the electronic energy transfer mechanism

(Khorobrykh et al., 2020). Tocopherol is a thylakoid membrane-

localized lipid antioxidant, and carotenoids are components of the

thylakoid pigment-protein complexes, both tocopherol and

carotenoids are involved in protecting chloroplast thylakoid

membrane from oxidative damage (Suo et al., 2017; Liu et al., 2021).

In short, the enzymatic and nonenzymatic scavenging

mechanisms in chloroplasts collaborate to help prevent

chloroplasts from oxidative damage due to ROS accumulation

under salt stress (Figure 2), and to maintain ROS levels within a

“functionally useful” range for initiating stress responses. Many

genes encoding antioxidants have been shown to be helpful for

improving salinity tolerance in various plant species, and the ROS

scavenging systems in chloroplasts play a vital role in salinity

tolerance (Suo et al., 2017).
Conclusions and future prospects

Salinity is one of the severe abiotic stresses limiting the growth

and development of plants, especially crops, and poses a threat to

the sustainability of global agriculture. Salt stress impacts the
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structure and function of the chloroplast, which is the site for

photosynthesis and other metabolic reactions, thus chloroplast

dysfunction as a result of environmental stresses, including salt

stress, will affect plants (Bose et al., 2013). Chloroplasts are sensitive

to environmental stresses and act as sensors to sense stress signals

and help plants adapt to adverse environments. Understanding

the sensitivities and responses of chloroplasts to salt stress is

necessary for improving crop production. Increasing studies have

revealed the importance of chloroplasts in plant salt stress response

and adaptation (Song et al., 2021).

In this review, we have discussed the negative effects of salt stress

on the structure and function of chloroplasts, for example, salt stress

affects chloroplast size, shape, starch granules, and plastoglobules

accumulation. Salt stress also negatively affects photosynthesis

including CO2 fixation and photoreaction processes, as well as

disrupts ion homeostasis and leads to ROS accumulation

in chloroplasts. Chloroplasts have evolved fine-tuned pathways

to respond to salt stress. For example, xanthophyll cycle,

photorespiration, and ascorbate have been reported to play roles in

protecting photosynthetic machinery. Ion transporters across

chloroplast membranes are involved in ion homeostasis regulation.

Several organic osmolytes are synthesized in chloroplasts to function in

osmotic adjustment. Chloroplasts also possess enzymatic and

nonenzymatic scavenging systems to scavenge ROS. In addition,

proteomics studies under salt stress have revealed lots of chloroplast

proteins playing critical roles in photosystems, Calvin-Benson cycle,

energy supply, electron transport and ROS scavenging (Yin et al., 2019;

Suo et al., 2020), indicating that these pathways are critical for

chloroplasts in response to salt stress. Furthermore, proteomics also

provides new insights into the salt-responsive mechanism in

halophytes, for example, proteomics data have revealed that the

enhanced chloroplast protein synthesis and processing promote the

photosynthetic adaptation to cope with salt stress (Yin et al., 2019).

High throughput proteomics can help us acquire more detailed

quantitative information about the stress responsive proteins, and

will provide further valuable information toward understanding the

chloroplast response mechanisms to salt stress. This review tries to

collate the sensitivities and adaptive responses of chloroplasts to salt

stress, but the adaptive mechanisms are complicated and not

completely understood. Many questions remain unclear and need to

be further investigated (Isayenkov and Maathuis, 2019), for example,

tight regulated ROS can function as retrograde signals for

communication between chloroplasts and the nucleus, yet it is still

unclear how the chloroplast senses salt stress to initiate the retrograde

signaling. The precise details of how salt stress triggers chloroplast

response is also not yet clear. In addition, the functions of already

identified putative ion transporters in chloroplasts also need further

investigation. Answering these questions will help us understand the

roles of chloroplasts in plant adaptation to salt stress, and will lay the

foundation for genetically breeding more salt-tolerant cultivars.
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