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Independent Researcher, Jaú, Brazil
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Sugarcane is the most important sugar and energy crop in the world. During

sugarcane breeding, technology is the requirement and methods are the means.

As we know, seed is the cornerstone of the development of the sugarcane industry.

Over the past century, with the advancement of technology and the expansion of

methods, sugarcane breeding has continued to improve, and sugarcane production

has realized a leaping growth, providing a large amount of essential sugar and clean

energy for the long-term mankind development, especially in the face of the future

threats of world population explosion, reduction of available arable land, and various

biotic and abiotic stresses. Moreover, due to narrow genetic foundation, serious

varietal degradation, lack of breakthrough varieties, as well as long breeding cycle

and low probability of gene polymerization, it is particularly important to realize the

leapfrog development of sugarcane breeding by seizing the opportunity for the

emerging Breeding 4.0, and making full use of modern biotechnology including but

not limited to whole genome selection, transgene, gene editing, and synthetic

biology, combined with information technology such as remote sensing and deep

learning. In view of this, we focus on sugarcane breeding from the perspective of

technology andmethods, reviewing themain history, pointing out the current status

and challenges, and providing a reasonable outlook on the prospects of

smart breeding.
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Introduction

Sugarcane (Saccharum spp. hybrids) is one of the most promising industrial crops in

the world (Kandel et al., 2018), originating in southern Asia in India, China, and New

Guinea in the South Pacific, with a history of cultivation dating back about 10,000 years to

New Guinea (Zhang et al., 2018). Initially, it was only grown in a few tropical countries, but
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with the recent breeding of superior varieties such as ‘POJ2878’,

‘NCo310’, ‘Co281’, ‘F134’ and ‘ROC22’, the cultivation has rapidly

expanded to subtropical and even warm-temperate regions (Bhatt,

2020; Cursi et al., 2022a). Sugarcane is now cultivated in more than

one hundred countries and regions, covering a total area of about 26

million hectares, with an annual production of 1.9 billion tons of

fresh sugarcane, occupying nearly 80% sugar and 40% bioethanol of

the world, with a total output value of $80 billion (FAO, 2021). In

addition, sugarcane produces ethanol at an output-to-input ratio

five times higher than that of maize (Waclawovsky et al., 2010) and

can even be used for production of high-value chemicals (Rossi

et al., 2021), and its by-products are highly exploitable for ethanol,

animal feeds, cultivated substrates, and direct-fired power

generation (Sindhu et al., 2016; Huang et al., 2020).

Variety is the “chip” of sugarcane industry. According to the

International Society of Sugarcane Technologists (ISSCT), the

scientific and technological contribution of sugarcane variety

improvement is as high as 60% (Chen et al., 2011). Remarkably,

all major producing countries in the world have taken the selection

and breeding of new varieties and continuous upgrading as a solid

guarantee to promote the steady development of sugarcane

industry. However, sugarcane is an allopolyploid and aneuploid

crop (2n=100-130, approximately 10 Gb) with a highly complex

genetic background (Piperidis et al., 2010), and its hybrid progeny

are widely segregated for traits (You et al., 2019), and the typical

breeding cycle is as long as 10-15 years (Kandel et al., 2018).

Notably, sugarcane is a tall-large (about 3-4 m tall), long-growing

(about 10-14 months) perennial crop, and its phenotyping is a huge

workload. Meanwhile, the development and utilization of wild

germplasms are insufficient and breeding technology is relatively

lagging behind in sugarcane breeding. Compared to crops such as

rice, maize and soybean, the process of improving sugarcane

varieties is extremely slow (Cursi et al., 2022b; Gonçalves et al.,

2024). Currently, the main varieties in sugarcane production are

mainly obtained through crossbreeding, and their progeny

populations are huge, with as many as 1.0-1.2 million seedlings

planted annually in mainland China alone (You et al., 2019).

As for global crop breeding, technological innovation has

always promoted the leapfrog development. Accompanied by the

evolution of natural species over thousands of years and the

development of science and technology, agricultural breeding has

gone through four stages, namely, primitive domestication and

selection (Breeding 1.0), traditional or conventional breeding

(Breeding 2.0), molecular breeding (Breeding 3.0), and smart

breeding also known as molecular design breeding (Breeding 4.0),

which is being transformed from theory to reality (Shen et al., 2022;

Xu et al., 2022). Particularly noteworthy is that in 2018, the

University of California realized asexual propagation of rice seeds

for the first time, which helps to fix the hybrid advantage and lays a

good theoretical foundation for the one-line method for breeding

(Khanday et al., 2019). Recently, a group led by Lin Li from

Huazhong Agricultural University in China published the first

multi-omics integrative network map of maize in Nature

Genetics, which provides a key to accurately decode the maize

functional genome (Han et al., 2023). Researchers at the University

of California have also developed “Cloning reprogramming and
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assembling tiled natural genomic DNA”, providing a simpler and

more cost-effective way to build synthetic chromosomes (Coradini

et al., 2023), which can be called the epochal masterpiece of plant

Breeding 4.0. In that sense, it is time to discuss the technical

difficulties and methodological strategies faced by sugarcane

breeder, and to put forward the development ideas and research

directions for sugarcane breeding in the future.

The world’s population is projected to exceed 9.7 billion by

2050, up from 7.95 billion in 2022 (United Nations, 2022), and the

global demand for sugar and energy will increase further, all the

while facing threats such as diminishing arable land resources,

rising temperatures, and a highly unstable climate (Flack-Prain

et al., 2021; Jaiswal et al., 2023; Olsson et al., 2023). As for sugarcane,

huge economic losses are incurred every year due to the occurrence

of diseases or pests such as smut, rust and borer (Cheavegatti-

Gianotto et al., 2019; Gopi et al., 2024). Theoretically, it is

encouraging to note that fresh stem yield of sugarcane can reach

more than 380 t/ha (Waclawovsky et al., 2010), while the current

yield is only about 70.6 t/ha and 83.2 t/ha, respectively (FAO, 2021),

suggesting enormous room for improvement. In view of this, it is

particularly necessary and urgent to seize the opportunity for

breeding 4.0 era to fully develop the potential of sugarcane

germplasm resources, and accelerate the breeding of

breakthrough varieties through the use of modern technology.

This perspective provides an overview of the achievements that

have been made in the field of sugarcane breeding and elaborates

the current status and future challenges from the aspects of

technology and methods, with a special emphasis on smart

breeding. We hope that it will accelerate the breeding process and

technological innovations particularly in highly polyploid crops

such as sugarcane.
History of sugarcane breeding

Breeding 1.0

In breeding 1.0 era, wild crops were domesticated and cultivated

for food. Early farmers, although most probably did not understand

the theory of genetic diversity, had already begun to use its value,

consciously or unconsciously, to select plants by chance, choosing

single plants that performed well in terms of yield or other traits in

one season as “seeds” for the next season, and reproducing them

over and over again (Figure 1). During this period, it was largely a

matter of subjective judgement on the part of the farmer through

visual observation of natural variation, and progress in crop

improvement was very slow (Kuriakose et al., 2020; Zhang et al.,

2023a). Regarding sugarcane, one hand, until the beginning of the

20th century, the raw material for sugar production in various

countries, was only used in the original varieties such as bamboo

cane, reed cane, Uba and Badila, or natural hybrids such as Greole

and Bourbon. On the other hand, human beings have continuously

developed sugar production technology for thousands of years

(Chen et al., 2011; Wu et al., 2014). This has also laid the genetic

resource base and technical enlightenment for the breeding of

elite cultivars.
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Breeding 2.0

In the late 19th century and early 20th century, breeding has

entered into the 2.0 era, which was characterized by cross-breeding

strategies, quantitative genetics, and statistical approaches to select

improved varieties according to Mendel’s plant genetic theory

(Zhang et al., 2023a). In 1887-1888, Sotwedel F. in Java, and

Harrison J. and Boyell J. R. in Barbados successively discovered

natural sugarcane seedlings, which opened a new era of cross-

breeding (Harrison, 1888; Griggs, 2011). In 1889-1890, Dutch

sugarcane breeder Jeswiet J. pioneered the theory of “nobilization

breeding”. He initiated a new way for sugarcane variety

improvement, that is the interspecific hybridization between S.

officinarum (female, noble cane) and S. spontaneum (male, wild

cane) with few recurrent cycles of backcrossing between the first

hybrids and the S. officinarum species. With this strategy, the first

sugarcane complex ‘POJ2878’, which containing genes for high

yield and high sugar in S. officinarum as well as genes for vigor,

resistance to stress and disease in S. spontaneum, was created. By

1929, it had replaced almost all local cultivars, accounting for 95%

of the total sugarcane planting area in Java, and had also become an

elite cultivar and hybrid parent in many countries (Jeswiet, 1930;

Widyasari et al., 2022). Subsequently, on the basis of work by Kobus

J. D. and Barber C. A., Venkatraman T. S. bred ternary hybrids

‘Co213’, ‘Co281’ and ‘Co290’ containing the genetic characters from

S. officinarum, S. spontaneum and S. barberi (Venkatraman, 1927;

Ram et al., 2022), proving a new way to multiple the key regulating

genes to improve sugarcane, and it was the second breakthrough in

sugarcane breeding in the 20th century. Later, Mangelsdorf A. J.

proposed the “Furnace hybridization”, which was the first to

estimate the fitness of the parents, and a quadruple hybrid ‘H32-

8560’ containing the kinship of S. officinarum, S. spontaneum, S.

barberi, and S. robustum was bred from S. robustum (Mangelsdorf,

1956; Khan, 2022). Under this system, sugarcane breeders have also

carried out their own cross-breeding programs and bred many
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famous sugarcane varieties, such as ‘CP’ series of Florida in the

United States, ‘Q’ series of Queensland in Australia, ‘NCo’ series of

Natal in South Africa, as well as ‘ROC’ series of Taiwan, ‘GuiTang

(GT)’ series of Guangxi, ‘YueTang (YT)’ series Guangdong, and

‘YunZhe (YZ)’ series of Yunnan provinces in China (Table 1).

Recently, Chinese sugarcane breeders used ‘YZ94-343’ (thick stalk)

and ‘YT00-236’ (high sugar) to crossbreed ‘YZ081609’, a high-sugar

variety with a peak sucrose value of 20.3% (Zhao et al., 2019; Zhang

et al., 2024). They even used chemical or radiation mutagenesis to

treat seeds or buds and sugarcane varieties with better characters

were screened and selected (Chen et al., 2011; Penna et al., 2023).
Breeding 3.0

Regarding breeding 3.0 era, breeders extensively utilized

techniques such as molecular markers, transgene, gene editing

and genomic selection to develop new varieties by selecting or

aggregating the key regulating genes (Xu et al., 2022; Yadav et al.,

2024). Molecular marker-assisted selection (MAS) breeding, which

is reliable, efficient and not or rarely affected by the external

environment, is the use of molecular markers closely linked to the

target traits to assist breeding. Selection and planting of prevalent

disease-resistant varieties is one of the most cost-effective ways to

control sugarcane diseases and increase sugar content and cane

yield (Aitken, 2022). However, so far, only the closely linked

markers R12H16 and 9O20-F4 for resistance to the brown rust

Bru1 gene (Le Cunff et al., 2008) and the G1 marker for resistance to

orange rust (Yang et al., 2018) have been used in sugarcane

breeding. Recently, single nucleotide polymorphism (SNP)

microarrays established on high-throughput sequencing began to

be used for target trait localization, and quantitative trait locus

(QTLs) related to yellow leaf (You et al., 2019), ratoon stunting

(You et al., 2021), leaf blight (Wang et al., 2022a), and mosaic

disease (Lu et al., 2023) resistance, as well as chlorophyll content
FIGURE 1

History and future perspective of sugarcane breeding.
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(Lu et al., 2021), tillering and ratooning ability (Wang et al., 2023a)

were obtained, nevertheless none of them have achieved subsequent

progress in application.

To further reduce the cost while balancing the ability for statistical

data analysis and process simplification, Giovannoni et al. (1991) and

Michelmore et al. (1991) proposed a bulked segregation analysis (BSA)

strategy. This approach is to use two parents with extreme differences

in the target traits to construct a segregating population, and select the

individuals with extreme phenotypic differences in their offspring to

construct sequencing pools, respectively, which can effectively observe

whether there is a significant difference in the allele frequency of

polymorphic loci between the two populations, and then locate the

markers associated with the target traits (Wang et al., 2023b). However,

due to the complex genome of sugarcane, only a few traits related
Frontiers in Plant Science 04
markers such as resistance to brown rust (Asnaghi et al., 2004), smut

(Xu and Chen, 2004; Gao et al., 2022), leaf blight (Wang et al., 2022b),

and brown stripe (Cheng et al., 2022) were obtained base on the

BSA strategy.

Genome-wide association study (GWAS) or genomic selection

(GS) is a new strategy for identifying genetic variation affecting a

complex trait through comparative analysis at the genome-wide

level (Tibbs Cortes et al., 2021). The former is intended to detect

causal genomic regions that control the variation of quantitative

traits, since statistically there are significant associations between

genotype and phenotype. The latter is intended to explore all the

available markers to fit genomic prediction models, which could

replace the traditional phenotypic selection at a certain stage of a

breeding program (Deomano et al., 2020; Yadav et al., 2020; Hayes
TABLE 1 Sugarcane breeding achievements of major producing countries.

Country Main objectives
Abbreviation of
variety code

Typical varieties
Average
production
(t/ha) a

Sugar
production
rate (%) b

Disease
resistance

Australia

high yield, high sugar,
drought-resistant, disease-
resistant, suitable for
machine harvesting

KQ, Q
Q208, KQ228, Q200, Q183,
Q232, Q138, Q226, MQ239,
Q186, Q231, Q240

83.2 13.67% brown rust, smut

Brazil
high yield, high sugar,
disease-resistant, suitable for
machine harvesting

RB, SP, CTC
RB86-7515, RB96-6928,
SP81-3250, RB92-579, RB85-
5156, RB85-5453

78.5 13.28% smut

China

high yield, high sugar,
drought-resistant, disease-
resistant, suitable for
machine harvesting

GT, LC, YT, YZ, ROC
GT42, GT44, LC05136,
YZ081609, YZ0551,
YT93-159

79.5 12.58% c
smut, pokkah
boeng, mosaic,
brown rust

Cuba
high yield, high sugar,
disease-resistant

C

C86-12, B7274, C323-68,
C90-317, C86-156, C86-503,
C86-531, C88-380 C90-530,
C90-647,
C89-250

43.5 6.12%
brown rust,
yellow
rust, mosaic

India

high yield, high sugar,
drought-resistant, disease-
resistant, saline-
alkali resistance

Co, CoA, CoC, CoH,
CoJ, CoLk, CoM, CoP,
CoS, CoSe, CoSi, CoT,
CoTL, CoV

Co0238, Co86032,
CoA92082, CoM0265,
CoS767,
CoS8436, CoSe92423

74.32 10.20% smut, red rot

Mexico
high yield, high sugar,
disease-resistant

MEX
MEX69-290, MEX68-1345,
MEX79-431, MEX91-662

67.87 11.63%
smut, brown
rust, yellow rust

Pakistan
high yield, high sugar,
disease-resistant

SPF, CPF, HSF, BF
BF-162, SPF-213, CPF-237,
HSF-242

69.53 7.96% smut

Philippines
high yield, high sugar,
disease-resistant

VMC, PHIL
VMC86-550, PHIL2006-
2289, PHIL2005-1763,
PHIL2005-0483, PHIL8013

57.79 9.30%
smut,
downy mildew

South
Africa

high yield, high sugar,
drought-resistant

NCo NCo310 73.9 11.32% smut

Thailand
high yield, high sugar,
disease-resistant, strong
perennial root

K, KK, LK, UT
KK3, LK92-11, K88-
92, UT12

45.3 11.26% smut, red rot

United
States

high yield, high sugar,
disease-resistant, suitable for
machine harvesting,
frost resistance

CP, HoCP, LCP, Ho, L
CP72-1210, CP89-2143,
LCP85-384, HoCP96-540,
L99-226

86.24 12.78%

brown rust,
yellow rust,
smut, ratoon
stunting disease
aProduction data from FAOSTAT;
bSugar production rate from BRIC Agricultural Database;
cAbout sugar production rate: China calculates it based on the production of white granulated sugar, while other countries calculate it based on raw sugar.
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et al., 2021; Islam et al., 2021; Mahadevaiah et al., 2021; Voss-Fels

et al., 2021; Yadav et al., 2021; Islam et al., 2022; Sandhu et al., 2022;

Islam et al., 2023). Natural populations are preferred for GWAS and

GS due to their complex structure, obvious differences in genetic

information, and the high number of rare variant loci. Compared to

QTL localization based on genetic mapping, GWAS and GS have

been reported relatively few in sugarcane. For example, GWAS was

used for yield (Barreto et al., 2019; Zhang et al., 2023b), sugar

content (Racedo et al., 2016; Fickett et al., 2019), fiber composition

(Gouy et al., 2015; Yang et al., 2019a), drought tolerance

(Wirojsirasak et al., 2023), and disease resistance such as yellow

leaf (Débibakas et al., 2014) and orange rust (Yang et al., 2019b);

and GS was used for fiber content, flowering (Hayes et al., 2021),

yield and sugar (Deomano et al., 2020; Islam et al., 2022), ratooning

ability (Islam et al., 2023), and rust resistance (Islam et al., 2021). It

should be noted that GS has shown high prediction accuracies in

practical breeding programs, and can be a promising tool for

improving the rate of genetic gain for quantitative traits in

sugarcane breeding (Yadav et al., 2020; Hayes et al., 2021; Islam

et al., 2023).

Transgene is to introduce and integrate desired target genes into

the genome of an organism so as to improve the original traits or

endow them with desirable traits. Successful transduction of

herbicide-tolerant bar gene, mosaic virus resistant CP and P1

genes, and insect-resistant bt gene has opened up a vast field of

genetic engineering in sugarcane, in which ‘CTC20BT’ and

‘CTC9001BT ’ have been commercially grown in Brazil

(Cheavegatti-Gianotto et al., 2019). Recently, genome editing

especially CRISPR is emerging as a revolutionary technology in

life sciences, which can realize targeted editing and modification to

improve crop varieties according to breeding needs (Liu et al., 2022;

Nerkar et al., 2022; Adeel and Jones, 2024). With the goal of high

yield, high sugar and low fiber, a technical route for genome editing

has now been established in sugarcane (Jung and Altpeter, 2016;

Rahman et al., 2019; Laksana et al., 2024). The rapid development of

high-throughput genomics technologies has brought life sciences

into the era of big data, and omics-based interdisciplinarity is

accelerating precision crop breeding (Bohra et al., 2020; Shen

et al., 2022).

Surprisingly, the high polyploid and complex nature of the

sugarcane genome make it difficult to breed new varieties. The

genome has different ploidy levels and allele dosages (Batista et al.,

2021), and it has also been a huge challenge to appropriately read

the sugarcane DNA and distinguish among the different genotypic

classes, mainly those related to heterozygous individuals (Garcia

et al., 2013). In this sense, the majority of genotypic data, obtained

for sugarcane to date, does not consider its ploidy levels, allele

dosages and, therefore, does not provide a reliable genetic

information about its genome (Yadav et al., 2023). At the same

time, the statistical approaches are not fully developed to take into

account the genotypic data obtained from the complex context of

sugarcane, including the methods for GWAS, GS, and other

approaches related to MAS (Yadav et al., 2020; Batista et al.,

2021; Mahadevaiah et al., 2021; Jackson et al., 2022). Actually, for

a long time, the sugarcane genome is mostly/still read and

considered as diploid species, and the efficient use of these
Frontiers in Plant Science 05
approaches is far from being a reality, although important

progress has been made in the last years, and there is still a long

way to realize molecular breeding for sugarcane.
Breeding 4.0

Smart breeding (4.0) is an emerging paradigm with combines

genotype- and phenotype-based technologies, that deeply integrates

modern biotechnology and information technology to achieve

faster, better and more efficient breeding of new crop varieties

(Chandra et al., 2024). According to the theoretical basis and

technical means, breeding 4.0 can be divided into two main

modes: The first is intelligent hybrid breeding, which uses MAS

or GWAS strategies to aggregate exogenous/endogenous the key

regulating genes into the target germplasm according to the

breeding objectives. High-throughput phenotyping combined

with remote sensing and deep learning can measure numerous

traits with unprecedented spatial and temporal resolution, and

quickly and accurately identify new germplasm or varieties

combining many desirable traits (Mostafizur Rahman Komol

et al., 2023; Kumarasiri et al., 2024; Santhrupth and Devaraj

Verma, 2024). The second is intelligent biological breeding, which

uses artificial intelligence to design superior allelic variants and

genomic elements, and then uses transgenic approach and gene

editing to write into the genome and precisely improve the target

traits. The essence is the diversified integration of artificial

intel l igence such as big data and deep learning and

biotechnologies such as gene editing and synthetic biology to

achieve intelligent upgrading of biological breeding, which will

substantially improve the utilization rate of germplasm resources

(Rizzo et al., 2023; Yan andWang, 2023). It is anticipated that smart

breeding can provide an optimized way to address the challenges of

difficult phenotypic identification, long breeding cycles and heavy

workload in sugarcane breeding (Figure 2).
Current status and challenges

Current status for sugarcane breeding

Nowadays, there is a shortage of superior varieties with

outstanding performance in various agronomic traits in sugarcane

production. According to ISSCT, there are 56 countries with

sugarcane breeding institutions in the world, among which Brazil,

India, China, the United States, and Thailand have a perfect

sugarcane breeding system and have already bred a number of

elite varieties through hybridization or self-crossing (Zhou et al.,

2023; Azim et al., 2024), such as the ‘RB’, ‘SP’ and ‘CTC’ series in

Brazil, the ‘KK’, ‘K’, ‘LK’ and ‘UT’ series in Thailand, the ‘Co’ series

of maincrop varieties in India, and the ‘GT’, ‘YT’ and ‘YZ’ series in

China (Hu et al., 2021). These dominant varieties have given a

strong impetus to the improvement of global average sugarcane

yields and sugar per unit. According to FAO statistics on sugarcane,

from 1961 to 2021, the unit production increased from 50.3 t/ha to

70.6 t/ha globally, with an increase of 20.3 t/ha and 40.4%; and the
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sugar content increased from only 9.1% to 14.0%. Moreover, a

number of energy and sugar-energy sugarcane varieties have been

selected, such as ‘US67-22-2’ and ‘IA313’ in the United States,

‘SP71-6163’, ‘SP76-1143’, ‘SP94-115’, ‘RB72-454’, and ‘RB85-5536’

in Brazil (Chen et al., 2011; de Souza Barbosa et al., 2020). However,

existing sugarcane varieties are mainly bred from ‘POJ2878’ or its

progenies, such as ‘F134’, ‘CP49-50’ and ‘NCo310’. Due to the

similarity in parentage, the varieties have weakened disease and

stress resistance, and their lodging and adaptability have

deteriorated, thus limiting the sustained improvement in the

sugarcane productivity (Chen et al., 2011; Zhao et al., 2022).

Collection, utilization, and innovation of germplasm resources

are the source and key to breakthrough in sugarcane breeding,

which need to be developed urgently (Huang et al., 2023). The

Indian Institute of Sugarcane Breeding (Kannur) and the USDA

Sugarcane Research Institute (Miami) are the two centers of

sugarcane germplasm resources in the world, with 3,377

(Chandran et al., 2023) and 749 (Hale et al., 2022) germplasms,

respectively. In the past 30 years, China’s National Germplasm

Repository of Sugarcane (Kaiyuan) has collected and preserved

5,962 resources of six genera and 15 species from 39 major

sugarcane-planting countries and the region of sugarcane

germplasm resource origin centers (November 26th, 2023), and

now it is the largest with the most complete genus and great

diversity of preserved sugarcane germplasm resources in the
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world. In recent years, in order to expand the pedigree of

sugarcane, Sugarcane Research Institute of Yunnan Academy of

Agricultural Sciences in China has constructed an artificial

photoperiod-induced hybridization technology system suitable for

the Kaiyuan (location: 23°71’N, 103°26’E; altitude: 1,050 m), which

overcomes the technical difficulties of distant hybridization between

sugarcane genera, and successfully utilized S. officinarum, original

cultivation varieties, and S. arundinaceum Retz. or Erianthus rockii

Keng. for germplasm innovation.
Challenges for sugarcane breeding

We have already entered into the early stage of Breeding 4.0 in

rice and corn after years of development, however for sugarcane

breeding, it is still at the stage of transition from conventional

breeding (Breeding 2.0) to molecular breeding (Breeding 3.0) or

their combination, largely lagging behind the main crops (Cursi

et al., 2022a; Ram et al., 2022; Afzal et al., 2023; Azim et al., 2024; Qi

et al., 2024). The major challenges in sugarcane breeding globally

today are: (1) The narrow genetic base of modern varieties, with 78-

80% of their genomes derived from S. officinarum and 10-20% from

S. spontaneum, resulting in a serious lack of genetic variation in

breeding populations, and limiting the effectiveness of varietal

improvement (Piperidis et al., 2010). Besides, special attention
FIGURE 2

Framework for sugarcane breeding 4.0.
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should be paid on the potential of two strategies, recurrent GS and

reciprocal recurrent GS, to increase the long-term genetic gain for

complex quantitative traits in sugarcane breeding (Yadav et al.,

2020). (2) Despite the current high number of bio-breeding studies,

only Brazilian stem borer-resistant transgenic sugarcane has been

used for production so far (Cheavegatti-Gianotto et al., 2019); The

novel strategies of sequencing and genotyping for polyploids,

especially sugarcane, as well as the development of specific

statistical models to analyze the data, are an urgent demand for

sugarcane breeding (Batista et al., 2021). (3) The development of

accurate phenotype identification techniques for germplasm

resources has lagged behind. (4) Existing informatization

solutions have deficiencies in scale, performance, cost, and

scalability, making it difficult to meet the needs of smart breeding.
Conclusions and future prospects

Improvement and innovation of crop varieties is the top priority

for securing the needs of human life and promoting social

development. In the face of cross-pressures such as population

explosion, decrease in available arable land, and increase in biotic

and abiotic stresses, as a major sugar and energy crop, the varietal

renewal of sugarcane will play a greater role in ensuring sugar

supply. In the future, sugarcane breeding will focus more on

ecologically viable, environmentally friendly and resource

matching. It is thus suggested that we should continue to explore

in depth the genetic characteristics of agronomic traits such as yield,

sugar, and resistance, as well as amenability to mechanization.

Special attention should be paid to the collection of wild

germplasm resources and the innovation of germplasm parents.

Combining with the means of transgene, gene editing, and synthetic

biology, the innovation of technology and methodology can be

strengthened for sugarcane breeding. We hope that in the near

future, all those efforts can advance towards the higher goal of

sugarcane breeding, in brief as high-yield, high-sucrose, stress

resistance, and suitable for mechanization.

Smart breeding provides a good opportunity for varietal

innovation in highly polyploid crops such as sugarcane. Grasping

the current situation, it is important and necessary to build a

sugarcane breeding 4.0 system adapted to the new era –

“germplasm resources + biotechnology + information technology

+ talents + policies”. On the basis of in-depth exploration of the

germplasm resources and genes in the “Saccharum complex”, we

will continue to enrich and broaden the genetic foundation of

sugarcane varieties through the combination of natural and artificial

mutations, so as to cultivate new varieties with innovative and

breakthrough features. Moreover, the process of digitizing

sugarcane germplasm resources will be accelerated, and an

integrated “germplasm conservation – variety breeding – seedling

production” platform will be established to improve and precipitate

the efficiency and accuracy of breeding. In summary, in the era of

Breeding 4.0, it is promising to make significant breakthroughs in

the field of sugarcane breeding, which should provide more elite

varieties for the sustainable development of sugar industry.
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