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Application of amodal
segmentation for shape
reconstruction and occlusion
recovery in occluded tomatoes
Jing Yang1, Hanbing Deng1,2*, Yufeng Zhang1, Yuncheng Zhou1

and Teng Miao1

1College of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang, China,
2Liaoning Agricultural Informatization Engineering Technology Research Center, Shenyang
Agricultural University, Shenyang, China
Common object detection and image segmentation methods are unable to

accurately estimate the shape of the occluded fruit. Monitoring the growth status

of shaded crops in a specific environment is challenging, and certain studies

related to crop harvesting and pest detection are constrained by the natural

shadow conditions. Amodal segmentation can focus on the occluded part of the

fruit and complete the overall shape of the fruit. We proposed a Transformer-

based amodal segmentation algorithm to infer the amodal shape of occluded

tomatoes. Considering the high cost of amodal annotation, we only needed

modal dataset to train the model. The dataset was taken from two greenhouses

on the farm and contains rich occlusion information. We introduced boundary

estimation in the hourglass structured network to provide a priori information

about the completion of the amodal shapes, and reconstructed the occluded

objects using a GAN network (with discriminator) and GAN loss. Themodel in this

study showed accuracy, with average pairwise accuracy of 96.07%, mean

intersection-over-union (mIoU) of 94.13% and invisible mIoU of 57.79%. We

also examined the quality of pseudo-amodal annotations generated by our

proposed model using Mask R-CNN. Its average precision (AP) and average

precision with intersection over union (IoU) 0.5 (AP50) reached 63.91%,86.91%

respectively. This method accurately and rationally achieves the shape of

occluded tomatoes, saving the cost of manual annotation, and is able to deal

with the boundary information of occlusion while decoupling the relationship of

occluded objects from each other. Future work considers how to complete the

amodal segmentation task without overly relying on the occlusion order and the

quality of the modal mask, thus promising applications to provide technical

support for the advancement of ecological monitoring techniques and

ecological cultivation.
KEYWORDS

amodal segmentation, image segmentation, transformer, occlusion recover,
ecological monitoring
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1 Introduction

Currently, the global increase in food demand, coupled with a

shortage of labor and insufficient food supply, has posed significant

challenges (Tian et al., 2021). The use of automation-based growth

detection systems and intelligent harvesters has emerged as a

primary solution in modern agriculture. For production control

and biomass detection, the morphological information of plant

fruits is indispensable. Monitoring the yield and size of crops is

crucial for refining seeding and fertilization strategies. Information

about the appearance of fruits can aid mechanical equipment in

precisely determining the position and shape of the fruits.

Traditional machine vision systems encounter difficulties in

accurately estimating the dimensions of obscured objects during

the image collection process. Similarly, laboratory equipment based

on three-dimensional image reconstruction (Wang et al., 2017) also

poses challenges when applied to agricultural production activities.

Tomatoes play a vital role as a global economic crop. Numerous

countries engage in the cultivation and export of tomatoes and their

various products, such as sauce, canned goods, juice, and dried

tomatoes. This has profound implications for agricultural

economies and trade, establishing tomatoes as a key agricultural

product across fields worldwide. With the emergence of deep

learning, computer vision-based crop detection systems have

gained extensive application in various agricultural tasks,

including tomato harvesting (Guan et al., 2022), disease

identification (Dhaka et al., 2021), and growth monitoring. Kanna

et al. (2023) utilized CNN models to train and predict on a dataset

consisting of four types of cauliflower diseases, achieving the highest

accuracy in validation tests across multiple transfer models. Their

work emphasizes the crucial role of advanced CNN models in

automating the detection and classification of cauliflower diseases.

Kundu et al. (2021) proposed a framework that combines Internet

of Things (IoT) with deep transfer learning for detecting and

classifying rust and blight diseases in pearl millet, demonstrating

excellent accuracy. However, most methods used in detection

systems are primarily suitable for tasks such as crop counting

(Dolata et al., 2021), leaf counting (Wang et al., 2023), providing

limited information about the fruits.

Recently, we have come across several deep learning models

focused on tomato detection and recognition. Wang et al. (2022)

applied MatDet, introducing a path aggregation network to address

issues related to inaccurate bounding box localization and tomato

ripeness detection. Patil and Manohar (2022) utilized an enhanced

radial basis function neural network (ERBFNN) to improve the

efficiency and accuracy of tomato crop leaf disease segmentation.

Shinoda et al. (2023) used the Transformer and CNN models as the

backbone of Mask R-CNN (He et al., 2018) to determine the location

and ripeness of tomatoes with high accuracy. However, for the models

mentioned above, both learning and prediction rely on visible objects

in the image. These models demonstrate a weakness in predicting the

invisible parts and lack the capability tomeasure the size information of

the fruits. The ability to perceive the complete shape of occluded objects

is referred to as amodal prediction. Currently, amodal segmentation

has become a crucial method for recovering the shape of occluded

regions. AmodalMask (Zhu et al., 2017) is a deep neural network that
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predicts amodal masks using image patches. It serves as a focal point in

the research on amodal instance segmentation and represents an

extension and improvement of the SharpMask model (Pinheiro

et al., 2016). ORCNN (Follmann et al., 2019) is built upon the Mask

R-CNN framework, introducing two additional segmentation branches

for separately predicting masks of the visible and occluded regions.

Subsequently, it calculates the difference between these two masks to

generate the prediction for the amodal mask.

Previously, amodal segmentation techniques were primarily

applied in the fields of autonomous driving (Qi et al., 2019) and

scene understanding (Mohan et al., 2022). In automated agricultural

systems, the use of amodal segmentation technology aids in

accurately detecting and identifying plants, even when partially

occluded by other plants, by recognizing complete plant contours.

For detecting and categorizing plant diseases, amodal segmentation

technology assists in identifying infected plant portions. Automated

agricultural systems require counting fruits and leaves for yield

estimation or disease monitoring, and amodal segmentation

technology provides an effective solution for this. In the agricultural

realm, Chen et al. (2022) leveraged the robust feature extraction and

reconstruction capabilities of convolutional autoencoders to recover

pixels in obscured regions. To address the challenge of reduced

accuracy in detecting obscured citrus fruits, the convolutional

autoencoder skillfully extracted meaningful features from the

surrounding background information, restoring the integrity of the

original image. Gené-Mola et al. (2023) implemented an approach

that integrates modal and amodal segmentation based on

convolutional neural networks (CNN) in RGB-D images. They

proposed a resilient method for estimating fruit size and visibility,

specifically tailored for the amodal segmentation of apples. Blok et al.

(2021) utilized ORCNN to segment both the visible and amodal

regions of broccoli heads, enhancing the size estimation of occluded

broccoli heads. Chen et al. (2021) proposed a machine vision

approach to locate and grasp ripe tomatoes in complex

environments. Kim et al. (2023) introduced a U-Net-based

reconstruction network for cucumber segmentation and occlusion

recovery. The model exhibited accuracy, with an average precision

(AP) of 49.31 and an average precision with intersection over union

(IOU) of 0.5 (AP50) at 82.39. Gan et al. (2022) introduced a novel

structure based on Attention Graph Convolutional Networks

(AGCS) for piglet contour and amodal mask prediction.

The semantic labels for the amodal dataset proposed by Qi et al.

(2019) are generated through imagination by multiple annotation

experts. These labels lack authentic information about the true shapes

of objects and entail significant human labor costs. For amodal labels,

PCNet (Zhan et al., 2020) achieved the completion of amodal masks

through self-supervised training of a segmentation network. The

model takes only the modal masks (visible masks) as input and

introduces occluders on these masks. The goal is to restore the

previously occluded modal mask. However, during the completion

process, the model becomes excessively reliant on the occlusion order

of objects in the image. ASBUNet (Nguyen and Todorovic, 2021)

replaced the occluders’ masks used in PCNet with occlusion

boundaries, thus eliminating the need for occlusion order. Huang

et al. (2023) introduced a semi-supervised generative adversarial

network (GAN) for amodal segmentation. This is an AIS (Amodal
frontiersin.org
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Instance Segmentation) method designed for piglets in farrowing

pens, relying exclusively on a modal dataset. The model attained a

mean Intersection over Union (mIOU) of 0.823 for the segmentation

of occluded piglets.

In this study, our goal is to decompose the target objects in

greenhouse, explore the potential occlusion relationships among

highly similar objects, reassemble the scene order, and complete the

shapes of occluded objects.The primary contributions of our work

are as follows: 1) we synthesized a tomato dataset with occlusion

using the mean-value cloning technique and provided detailed

amodal label annotations for this dataset. 2) we pioneered the

combination and application of Swin Transformer and amodal

segmentation for plant fruit images. 3)we proposed a self-

supervised partial completion network that acquires the ability to

fill in the invisible parts of tomatoes with training solely using the

modal mask. 4) we utilized a segmentation loss method combined

with GAN loss to enhance the quality of predicted amodal masks.

We proposed an amodal segmentation model based on Swin

Transformer (Liu et al., 2021) and boundary estimation. Building

upon the improved Swin Transformer UNet (Cao et al., 2023), we

adopted a partial completion approach and trained a partial

completion network, thereby reducing reliance on a large number of

artificial amodal annotations for training. Additionally, we

incorporated ideas from occlusion boundary estimation in ASBUNet

and adversarial generative learning. We redesigned the prediction

weights for occluded and visible regions within our model. This

enabled us to enhance the accuracy of occlusion boundary prediction

and increase the realism of the resulting amodal segmentation masks.

Finally, we used the predicted amodal mask results from our proposed

model as pseudo-amodal annotations and fed them into Mask R-CNN

for training. This process allows us to evaluate the ultimate quality of

the generated pseudo-amodal annotations.
2 Materials and methods

2.1 Data acquisition

We selected tomatoes (variety: 325) in the greenhouse as the

subjects for our study. To minimize the impact of lighting conditions

and shadows, we utilized an additional fill light panel to provide
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supplementary lighting when necessary. To ensure the dataset

includes significant occlusion relationships, we opted for ripe

tomatoes as our objects and captured images at various positions

and orientations in space. As illustrated in Figure 1, to enhance the

clarity of occlusion relationships in the image, we intentionally chose

scenes with a higher degree of occlusion on the tomato fruits.

We employed an Azure Kinect depth camera to capture tomato

RGB image data at a resolution of 1280 x 720 and above. Developed

by Microsoft, Azure Kinect is a depth camera device capable of

automatically selecting per-pixel gain, facilitating a wide dynamic

range that cleanly captures both near and far objects. Azure Kinect

primarily relies on structured light technology and utilizes time-of-

flight (TOF) techniques to obtain depth information. Additionally,

it incorporates other sensors such as an RGB camera and a

microphone array to provide a comprehensive perception of data.

This technology allows us to acquire both color and depth

information of the scene simultaneously in the same space-time.
2.2 Amodal annotation and
datasets construction

Unlike other image segmentation tasks, which typically require

pixel-level masking of visible objects, amodal segmentation

incorporates scene structures with semantic labels for both visible

and invisible parts. The publicly available amodal datasets cocoA and

Kinst use ground truth annotated by artificial hypotheses, which

would lack the true full shape of the occluded instance. We used a

mean-value coordinate fusion algorithm (Farbman et al., 2009) to

seamlessly clone the source image patches into the target image, as

shown in Figure 2. The purple ROI in Figure 2A, as the image patch

to be cloned, was seamlessly synthesized into the left side of the target

image instance B. The image patch was then cloned into the target

image. The core idea of this technique is to use the coordinate

mapping relationship between the source and target images to

interpolate pixel values. An adaptive triangular grid is constructed

over the selected image patches, and the interpolated pixel values

depend on calculating the mean coordinates of the vertices of each

grid, and then sampling the boundary pixels hierarchically so that the

number of these vertices is roughly linear to the number of boundary

pixels, which translates into solving Poisson’s equation to make a
BA

FIGURE 1

Occlusion scenes in the natural growing environment of tomatoes; (A) is obtained from the top view angle; (B) is obtained by the slanted side angle.
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smooth interpolating membrane. This interpolation method

maintains the smoothness of the image and is able to handle scale

and deformation differences between different images.

We removed all incomplete masks of the masked instances,

then combined the patch-synthesized images, and finally removed

the images in the dataset that did not have masks, and selected 1000

images. We used the amodal semantic labels of 100 images as a test

set, while the modal semantic labels of 900 images were divided into

training and validation sets in a ratio of 9:1. To ensure the diversity

of the training samples, we used data augmentation techniques such

as flipping, panning, and random cropping to triple the number of

training samples. After data augmentation, a total of 2,430

augmented training images were accepted.
2.3 Amodal segmentation model

The focus of this study is on how to obtain contextual

information between occluding objects and decouple the

overlapping relationships between them. We aim to consider both

the relationship between occluders and occluded objects and

estimate the masks for occluders and occluded objects separately.

The overview of ACBET (Amodal Completion Network with

Boundary Estimation and Swin Transformer Unet) architecture is

depicted in Figure 3. We used the occlusion boundaries and the

primary masks of the visible parts as the inputs of model. It initially
Frontiers in Plant Science 04
processes them with a 4x4 convolutional kernel, resulting in a

tensor with 96 channels. Then, we applied a linear layer to

transform the dimensionality in the model. After linear mapping,

image becomes a series of segmented primary features that are

further fed into the encoder. The encoder and decoder in the model

utilize a symmetric and improved version of the Swin Transformer

Block, based on the Swin Transformer Unet architecture. We

modified the Swin Transformer Unet to act as the backbone of

the entire network and as the basic segmentation module. The

encoder gathers shallow-level features through four sampling layers.

These features are then fused with the deep-level features collected

by the decoder using skip connections.

In decoding process, we applied a partial completion algorithm to

complete the amodal mask.We have improved the partial completion

algorithm by introducing joint weights for the occluded region masks

and visible region masks. This enhancement strengthens the

attention to the interaction between the two parts of information

and facilitates the prediction of the entire amodal mask. Finally,

through the discriminator learning, the model generates predicted

uncertainty boundary maps and improved amodal masks.

2.3.1 Swin Transformer Unet
The Swin Transformer architecture is suitable for both general

vision backbones and downstream learning tasks. This architecture,

by introducing a hierarchical window mechanism, addresses the

computational inefficiency issue faced by traditional CNN networks
FIGURE 3

The overview of our approach; F denotes the feature map extracted from the model input by the encoder.
B CA

FIGURE 2

Cloning of source image patches to target image using mean coordinate fusion technique; (A) the purple ROIs in the image are the image patches
to be cloned; (B) target image; (C) cloning of the finished image.
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when processing large images. Swin Transformer Unet is primarily

composed of Swin Transformer Blocks and designed as a U-shaped

symmetric structure (Ronneberger et al., 2015). The architecture

can be visualized in Figure 4. Swin Transformer Unet first divides

the input image into a series of non-overlapping patches, each patch

having a size of 4 x 4. Since each pixel has RGB channels, each patch

has a dimension of 4 x 4 x 3. Then, each patch is passed through a

linear embedding layer to undergo a linear transformation and be

transformed into a dimension of C. The input features are then

sequentially passed through four stacked modules. In the Patch

Merging layer, the network concatenates the patches within a

neighboring 2 x 2 range to obtain a feature map with a

dimension of 4C. Then, a linear layer is applied to reduce the

dimension to 2C. After 4 downsampling modules, the network

obtains the feature map F.

When the Swin Transformer Block serves as the decoder, it

performs upsampling on the deep features extracting from the

previous layer. We add a 1x1 convolutional layer on top of the skip-

connected expansion layer to transform the feature size again. Each

Patch Expanding layer performs upsampling to restore the feature

map to twice its original size.

However, the final Expanding layer upsamples the feature map

to four times the input size. As shown in Figure 5, the Swin

Transformer Block is composed of two types of structures. Each

Swin Transformer Block consists of a relative position encoding

layer, a multi-head self-attention layer, an MLP layer, a fully

connected feed-forward network layer, and a residual connection.

These blocks can be computed in parallel, improving

computational efficiency and significantly enhancing the

performance of the model. For each window composed of

patches, the W-MSA calculates its Query(Q), Key(K), and Value

(V) vectors, following the Self-Attention algorithm. The algorithm

can be represented in Equation 1. The Q, K, and V vectors of each

window are multiplied by the matrix to obtain the Attention matrix

for each window.
Frontiers in Plant Science 05
Attention(Q,K ,V) = sof tmax
QKTffiffiffiffiffi
dk

p
� �

V (1)

The Attention matrices of all windows are concatenated to obtain

the final Attention matrix. To facilitate information interaction

between windows, SW-MSA employs a sliding window where each

window is shifted to the left or right by a certain distance, allowing for

a certain overlap between adjacent windows. Therefore, the

information from neighboring windows can be take into account

when computing self-attention in the model.
2.3.2 Partial completion algorithm
In previous supervised methods, it was common to incorporate

an amodal prediction branch to handle the task of predicting the

occluded masks, while another branch focused solely on the visible

region’s mask features. Indeed, the completion of the amodal mask

requires similar feature information from both the occluded and

visible regions. In this study, the training strategies used are partial

completion, which is based on the idea of allowing the model to

autonomously recover the occluded mask. During the training

phase, the images undergo preprocessing, and random sampling

is performed to extract the instances of occluders and occluded

instances. As shown in Figure 6, we randomly selected two images

that have an occlusion relationship, denoting the image containing

instance A as ImageA and the other image as ImageB. Using existing

instance segmentation models or manual annotation, we obtained

the visible mask MA for instance A and the visible mask MB for

another instance B. The partial completion algorithm randomly

places the visible mask of one instance on top of the visible mask of

the other instance, which can lead to two possible scenarios. The

first scenario is that instance A is occluded by instance B. We

denoted the mask of the occlusion as MA=MB, and the RGB image

of instance A occluded by the mask as IA=MB. They are combined as

input and fed into the network with a hourglass architecture to

perform segmentation.
FIGURE 4

Improved swin transformer Unet structure.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1376138
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yang et al. 10.3389/fpls.2024.1376138
The training objective is to complete the visible mask MA of

instance A. To prevent the model from excessively completing

pixels of mask MA, the second case is that instance B is occluded by

instance A, denoted as MB=MA. The model combines the mask MB

=MA and IA=MB=MA as inputs and the objective remains the same,

which is to complete the visible mask MA of instance A. Thus, the

model learns to determine whether completion should be

performed, achieving the goal of regularization in learning.

Subsequently, we introduced a discriminator to improve the

quality of the recovered masks. The whole process can be

described as follows (Equations 2–4):

MA,MB = N(A,B) (2)

MpreA = Dm PCMq (MA=MB, IA=MB)ð Þ (3)
Frontiers in Plant Science 06
MpreA = Dm PCMq (MB=MA, IA=MB=MA)ð Þ (4)

In the above equations, N represents the segmentation model or

manual annotation, PCM refers to the partial completion module,

and q represents the parameters of the partial completion module.

2.3.3 Boundary uncertainty estimation
In instance segmentation, applying uncertainty estimation allows

quantifying the model’s uncertainty in recognizing instance

boundaries in an image. The principle is to introduce a

probabilistic model to handle fuzzy and uncertain boundary

positions. In the aforementioned partial completion task, when the

model recovers occluded instances, the content of the occluded

regions may have different pixel fillings due to the uncertainty of

the boundaries. As shown in Figure 3, the model takes the original

image, the mask of the occluded object, and the occlusion boundaries
FIGURE 6

Partial completion of the algorithm’s process. The visible mask of instance A is represented as MA, and the visible mask of instance B is represented
as MB. When object A occludes object B, it’s denoted as MA=MB, and when object B occludes object A, it’s denoted as MB=MA.
FIGURE 5

Swin transformer block structure.
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as inputs to the hourglass network module. It then provides a mask

branch to handle the occlusion boundaries. The boundary

uncertainty map output by the model serves as another boundary

for the occluded object, and if the uncertainty is estimated to be high,

the uncertainty map with the original occlusion boundary can help

the model to capture reasonable shapes and sizes. The modal mask,

with a size of 224 x 224 x 2, serves as input to the Swin Transformer

Unet. It generates a featuremap of size H xW x 2, where H represents

the height and W represents the width. The feature map has two

dimensions: one channel is used for amodal segmentation prediction,

and the other channel is used for estimating the uncertainty of the

boundaries. The model calculates confidence intervals to determine

the range of predictions. The uncertainty map generated by the

model results in lower segmentation loss in regions with higher

uncertainty. Additionally, the shape priors obtained from the

uncertainty map help the model better understand spatial

distribution information. This uncertainty-based boundary

estimation optimizes the amodal mask completion task and

significantly improves the model’s performance.
2.3.4 Infer paired occlusion order for instances
Humans can intuitively perceive the sequential order of

overlapping objects in natural scenes. If we only consider the

occlusion of regions of interest (ROI) without incorporating

sequential reasoning, it would be insufficient to handle complex

scenes with a large number of overlapping objects. Zhu et al. (2017)

and Ehsani et al. (2018) considered the depth ordering of instances

in the image for the recovery of amodal masks. However, when it

comes to handle scenes with cyclic occlusions by ordering the

objects, the performance is not satisfactory.

However, when it comes to handle scenes with cyclic occlusions

by ordering the objects, the performance is not satisfactory. Zhan

et al. proposed a pairwise occlusion relationship sorting approach,

where adjacent instance pairs consisting of two connected visible

masks represent the occlusion between adjacent objects. However,

this method failed to address situations where two objects occlude

each other.

We drew inspiration from the occlusion boundary estimation

method ASBUNet and combined it with the partial completion

network to fill in the pixel values of different objects belonging to
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the boundaries. The combination of these two techniques reduces

the errors caused by the partial completion network’s inability to

follow consistent object geometry and missing boundaries. We

show the relationship between instances using a directed graph of

paired occlusion order in Figure 7.

G = (Y, T) is used to represent directed graphs with occlusion

order. Y denotes the set of all instances in the image with a total of N

instances. T is an N x N matrix, where Ti,j represents the occlusion

relationship between the adjacent pair of instances Ti and Tj. The

calculation formula is as follows Equation 5.

Ti,j =

0, if MA
i −Mi

�� �� = MA
j −Mj

�� �� = 0

1, if MA
i −Mi

�� �� < MA
j −Mj

�� ��
−1, if MA

i −Mi

�� �� ≥ MA
j −Mj

�� ��

8>><
>>: (5)

Where MA
i and  MA

j   represent the completed amodal masks for

instances i and j. Mi  and Mj  represent the visible masks, and

 MA
i −Mi

�� �� and  MA
j −Mj

�� �� represent the pixel value increments for

the completed amodal masks. If the increments generated by the

mask completion network for instances i and j are equal to 0, it

indicates that there is no occlusion between the two instances and

they belong to the same layer. In this case, the Ti,j in the matrix would

be 0. If the increment of the former is smaller than the latter, it means

that I occludes J, and the value of Ti,j is 1. If the increment of the

former is not smaller than the latter, it means that J occludes I,

and the value of Ti,j is -1. Considering the pairwise occlusion

order, we can gradually infer the object order in the entire scene,

providing clear prior information and interpretability for amodal

mask completion.

2.3.5 Loss function
The output of the model consists of two parts: the predicted

amodal mask and the predicted boundary uncertainty map. The

result of the amodal mask is obtained by element-wise addition and

activation using Sigmoid function (Equation 6), ensuring that the

values are within the range of [0,1]. The boundary uncertainty map

is obtained by calculating the boundary uncertainty. A higher value

of boundary uncertainty indicates greater uncertainty in the model’s

predictions of boundary positions, while a lower value indicates

greater confidence in the model’s predictions. By generating the
BA

FIGURE 7

Occluded scene and corresponding sorting graph; (A) occluded scene (B) corresponding sorting graph.
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boundary uncertainty map, we can quantitatively assess the

reliability of the model’s boundary predictions in the image.

Therefore, it needs to be non-negative. The result is smoothed

and output using Softplus non-linear function (Equation 7).

sigmoid(x) =
1

1 + e−x
(6)

sof tplus(x) = log(1 + ex) (7)

Therefore, after introducing the occlusion boundary estimation,

we use the loss function:

Lin_mask =
1
N o

N

i=1
g (mc

i = j1)Li (8)

Lout_mask =
1
No

N

i=1
(mc

i = 0)Li (9)

Li =
1
2

mt
i −mi

ui

� �2

+u2i

" #
(10)

In the above equations, N represents the total number of pixels in

the image, and mc
i represents the mask of the occluder. In Equation 8,

Lin _mask represents the loss generated during the mask prediction

inside the occluding object, and g  represents the weight assigned to it.
Based on experimental results, we set g to a constant value of 5. In

Equation 9, Lout _mask represents the loss for predicting the visible

mask outside the occluded region. In Equation 10, the first term of Li
aims to minimize the weighted discrepancy between the predicted

amodal mask and the ground truth amodal mask. mt
i represents the

ground truth amodal mask, while mi represents the predicted amodal

mask. The second term serves as a regularization term for the

predicted uncertainty map. Higher values indicate higher levels of

uncertainty in the corresponding regions. To improve the quality of

amodal mask completion, we also introduced adversarial learning by

using a discriminator to minimize the discrepancy between the

generated amodal mask and ground truth. The binary cross-

entropy loss function was modified as the original method. Its loss

function is shown in Equation 11. Emi
and EmC

i
represent the

mathematical expectation in the equation.

Ladv = Emi
½log(1 − Dm(mi))� + Emc

i
½logDm(m

c
i )� (11)

The overall loss function L is represented as follows (Equation

12):

L = Lin_mask + Lout_mask + Ladv (12)
2.4 Training and parameters setup

The training consists of three stages. In the first stage, the model

is trained with low-resolution images. This stage allows for faster

training by using a larger batch size and fewer iterations. In the

second stage, the model is trained with high-resolution images in a

smaller learning rate. This stage involves a longer training time to
Frontiers in Plant Science 08
ensure better convergence and accuracy on the higher-resolution

data. The Swin Transformer has already been pre-trained on

ImageNet-1K, and it is recommended to load the pre-trained

weights at the beginning of training. Utilizing transfer learning

allows the model to more effectively adjust to downstream tasks

with limited datasets, particularly when dealing with small fruits. In

the third stage, we used Mask R-CNN to test the model’s ability to

complement the modal mask. Subsequently, we conducted

experiments to evaluate the performance of PCNet, ASBUNet,

and our proposed model on the amodal mask completion task.

We also compared the accuracy of the respective models on the

amodal instance segmentation task. The mask input size of the

model is 224 x 224. To accommodate constraints in physical

memory and learning adjustments, we conducted 50,000

iterations with an initial learning rate of 5. The batch size was set

to 32. For optimization, we employed the SGD optimizer

(Stochastic Gradient Descent) with a momentum of 0.9. During

backpropagation to optimize the model, a weight decay of 0.0001

was applied. The learning rate schedule includes a learning rate

multiplier of 0.1, which adjusts the learning rate for different layers.

Every 2000 iterations, predictions are made on the validation set,

and the loss is evaluated for validation purposes.

Mask R-CNN is deployed using the open-source framework

Detectron2 and PyTorch. We initialized the Mask R-CNN network

using the pre-trained weights of the feature extraction network

ResNet50 [31]. The parameters of the bounding box regression and

fully convolutional networks are randomly initialized. We froze the

weights of the feature extraction network and set the learning rate to

0.002 for training the backend network. Training and testing of all

models in this study were conducted on one experimental platform

to ensure consistency in comparison conditions. The main

hardware configuration of the platform includes an Intel(R) Core

i9–10980XE CPU with a frequency of 3.0 GHz, 128GB of RAM, and

an NVIDIA GeForce RTX 3090 GPU with 24GB of memory. The

main software environment includes the Ubuntu 20.04 operating

system, PyTorch 1.10 deep learning framework, CUDA 11.7 for

general-purpose parallel computing, and cuDNN 8.3.4 for

GPU acceleration.
2.5 Metrics of evaluation

We used manually annotated amodal masks as the ground truth

for verification and testing. For the occlusion order task in inference

scenes, we compared the predicted occlusion order diagram with

the ground truth occlusion order diagram. We evaluated the

accuracy of the entire scene’s pairwise order and the accuracy of

pairwise occlusion order using AP-ACC (All Pairwise Accuracy)

and OP-ACC (Occlusion Pairwise Accuracy), respectively. In order

to evaluate the occlusion order prediction made by the experiments

on valid instances, we introduced a strategy where the predicted

instances are only evaluated if their IOU (Intersection over Union)

with the ground truth mask exceeds a threshold of 0.5. AOP

(Average Occlusion Precision) quantifies the accuracy of sequence

prediction across various threshold levels. To assess the completion
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of amodal masks, we compared the predicted amodal masks against

the ground truth mask and computed the mean Intersection over

Union (mIOU). For pixel classification tasks, we utilized Pixel

Accuracy (P-ACC) to evaluate the segmentation model’s quality.

For the prediction of invisible mask regions, we also used inv-mIOU

as an evaluation metric to measure the accuracy of the predicted

masks for occluded regions compared to the ground truth. In the

task of amodal segmentation, we used Average Precision (AP) to

represent the average precision at different IOU thresholds. AP

evaluation is commonly used with IOU thresholds of 0.5 and

0.75, using Average Recall (AR) as an additional evaluation

metric. The equation of OP-ACC and IOU are defined as follows

(Equations 13, 14):

OP − ACC = oAB(OAB = 1 and Opre
AB = 1)

oAB(O
pre
AB = 1)

(13)

IOU =
Mpre ∩ MGT

Mpre ∪ MGT
(14)

where OAB and Opre
AB denote ground truth and predicted

occlusion order.
3 Results

3.1 Training performance of
different models

Swin Transformer includes three network architectures that are

designed to adapt to different datasets and tasks based on differences

in network depth and the number of attention heads. In this

experiment, we have selected three architectures and labeled them

with Swin-Tiny-Unet, Swin-Small-Unet, and Swin-Base-Unet. We

show the loss profiles of the 3 different architecture models during the

training process. As shown in Figure 8, the loss curves of the three

models exhibit a clear decreasing trend, indicating that all three

models have converged during the training process.

Compared to Swin-Tiny-Unet, Swin-Small-Unet and Swin-Base-

Unet have a deeper network architecture and a larger number of
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parameters. However, they converge faster, reaching convergence at

approximately 22000 iterations with final loss values of 0.1437 and

0.1448, respectively. Swin-Tiny-Unet converges relatively slower,

reaching convergence at approximately 25000 iterations with a final

loss of 0.2087. In summary, all three models are capable of completing

the learning task. After converging the models to the global optimum

using SGD, we selected the best network model based on the

performance metrics evaluated on the validation set.
3.2 Inferring of occlusion order

Our baseline for the ordering inference task is established based

on the Area and Y-axis algorithm (Zhu et al., 2017). The Area

algorithm sets a separate heuristic method for the dataset. Since our

tomato dataset was captured from various angles and distances, we

applied an optimization heuristic that sorts larger instances as

foreground instances based on the area of their masks.

The Y-axis algorithm focuses on the bounding boxes of the image

instances and sorts them in the order of the detection boxes. Typically,

instances with bounding boxes closer to the bottom of the image are

placed at the front. In Table 1, we presented the results of different

methods for the occlusion pairwise sorting task. ACBET achieved

higher accuracy in occlusion pairwise sorting compared to PCNet-M

and ASBUNet, with an improvement of 5% and 3.3%, respectively.

Compared to the performance of the previous baseline in

occlusion pairwise sorting, our model demonstrates higher

metrics and performance, with an accuracy of 96.07%. The model

achieves an order prediction accuracy of 96.67% for the entire scene.

Additionally, at an IOU threshold of 0.5, the sorting accuracy of

adjacent instances in the occluded regions reaches a significantly

high level of 95.18%, indicating that the model performs better

adaptability to the morphology of tomato fruits.
3.3 Amodal mask completion

For PCNet and ASBUNet, the occlusion pairwise sorting

threshold was set to 0.2. The threshold of amodal mask
B CA

FIGURE 8

Training loss graphs of the three models; (A) Swin-Tiny-Unet (B) Swin-Small-Unet (C) Swin-Base-Unet.
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prediction was also set to 0.2. To ensure a fair comparison, we

adjusted the training and testing of both comparative models on

this dataset to achieve their best performance. We used the visible

masks as the input for ACBET. The evaluation results of amodal

mask completion are presented in Table 2.

Compared to Swin-Small-Unet and Swin-Base-Unet, Swin-

Tiny-Unet shows an improvement in mIOU accuracy of

approximately 1.4% and 0.6% respectively. The accuracy of inv-

mIOU has improved by approximately 21.8% and 14.4%

respectively. Additionally, Swin-Tiny-Unet has significantly fewer

parameters both Swin-Small-Unet and Swin-Base-Unet, so it has

faster computation and inference speed. In comparison to PCNet

and ASBUNet, ACBET with Swin-Tiny-Unet also demonstrates

improved mIOU by 3.5% and 1.7% respectively, showcasing better

segmentation performance. Moreover, our model achieves an

accuracy of 97.83% on the pixel classification task on the test set.

Our model outperforms other methods in completing more

reasonable amodal shapes when facing similar shapes and colors,

as well as moderate to severe occlusions. We visualized the results of

the amodal mask completion task in Figure 9.

ASBUNet demonstrates reasonable shape recovery for image 1 and

image 2. In images 3 to 5, the occluder is placed at the forefront of the

image and there is a larger pixel ratio (ratio of pixels between occluder

and occluded object), indicating that ASBUNet does not perform well

in handling heavy occlusion. While PCNet exhibits varying degrees of

pixel missing in all completed amodal masks. Furthermore, our model

even predicts amodal shapes that are more interpretable than the

manually annotated ground truth. However, the edges around the

completed amodal masks are irregular and jagged. That may be caused
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by pixel stacking resulting from the recombination of pixel blocks after

the pixel segmentation by the moving window algorithm.
3.4 Results of amodal segmentation

Amodal segmentation task that involves detecting instances from a

given image and predicting masks for those instances. The masks

represent the complete shape of objects under occlusion perception.

We applied the prediction ability of ACBET network in the amodal

completion task to our tomato training set, thus We applied the

prediction ability of ACBET network in the amodal completion task

to our tomato training set, thus obtaining amodal segmentation results

and an automatically generated pseudo-amodal annotated dataset.

We trained Mask R-CNN using both the pseudo-amodal

annotations generated from ACBET network and the manual

amodal annotations. It flanked the quality of the amodal

segmentation results and pseudo-amodal annotations generated by

our study. Table 3 presents the comparative results of our experiments.

Comparing the mask AP results in the table, our model outperformed

PCNet and ASBUNet by nearly 10% and 7.3%, respectively, achieving a

score of 63.91%. The AP50 and AP75 were also closer to the results

trained with manual annotations, which was significantly better than

PCNet and ASBUNet. However, since the dataset consists mostly of

close-up images, small objects were not included in the training by

default, which also explains the mediocre performance of the APm (AP

for medium objects: 322 <  area  < 962) metric.

Figure 10 showed the amodal segmentation results derived from

PCNet, ASBUNet and our study. In image 1, all three models are

trying their best to complete the full shape of the obscured tomato

No. 2, but our model completes a more regular shape. It demonstrates

that our model has better performance. In image 2, the tomato

labeled as 2 is occluded by the tomato No.1 on the left and tomato

No. 3 on the right. Both PCNet and ASBUNet accurately predicted

the right side region of the occluded tomato No. 2. When it comes to

the No. 2 tomato’s left side region, PCNet chose to ignore it, while

ASBUNet had a lower completion rate. Our model is capable of

reasonably completing the occluded masks for both sides. In image 3,

there are two tomatoes No. 2 and No. 3 occluded by the same object

No.1. Our model can simultaneously restore the shape of both targets,

while the previous two models tend to complete the mask restoration

for only one target and ignore the other.

We further tested the ACBET model on the tomato testing set

and obtained additional results, as shown in Figure 11. In the first

row Figure 11A, most of the results demonstrate high-quality

predictions of amodal complete shapes. However, there are some

results in Figure 11 that are not as satisfactory.

In Figure 11B, we observe that although the occluded tomato

instance on the right side is detected accurately, its small visible

mask closely resembles that of the leaf. This similarity leads the

model to refrain from completing the mask. The occurrence

depicted in Figure 11C can be attributed to the scarcity of content

within the occluded region, causing the model to overly scrutinize

pixel completion during training with a substantial dataset. The

presence of irregular branches and leaves, coupled with tomatoes

from the same class causing occlusion, results in significant
TABLE 2 Amodal mask completion results for different models (%).

Methods
backbone

segmentation
network

mIOU P-ACC
inv-
mIOU

PCNet Unet 90.62 91.36 –

ASBUNet Unet 92.47 94.19 38.99

ACBET Swin-Small-Unet 92.76 94.06 35.91

ACBET Swin-Base-Unet 93.56 94.89 43.37

ACBET Swin-Tiny-Unet 94.13 97.83 57.79
TABLE 1 Order inference results of different methods (%).

Methods
Input AP-

ACC
OP-
ACC

AOP50
mask image

Area √ 18.33 39.20 20.40

Y-axis √ 48.33 39.31 40.81

PCNet-M √ √ 91.66 90.19 –

ASBUNet √ √ 93.33 92.15 92.25

ACBET √ √ 96.67 96.07 95.18
The input column is divided into mask input and image input, and the symbol √ represents
the corresponding input item.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1376138
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yang et al. 10.3389/fpls.2024.1376138
obstruction, leading to irregular occluded and visible masks. This

complexity compounds the challenge of predicting the scenario

depicted in Figure 11D.
4 Discussion

The occurrence of hidden tomatoes in a greenhouse

significantly impacts the precision of tomato detection and
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counting. Accurate estimation of tomato yield and ongoing

monitoring of their growth play a pivotal role in enhancing the

economic returns for farmers involved in tomato cultivation.

Considering market preferences for fruit freshness, size, and

appearance, it becomes imperative to discern the distinct

morphology of every tomato during harvesting, even those that

are partially obstructed. Mask R-CNN is a standout method in the

realm of image instance segmentation, with its primary focus on the

visible regions of objects. In a study conducted by Afonso et al.
TABLE 3 Amodal segmentation results of pseudo-amodal annotations generated by different models trained on Mask R-CNN (%).

Training
data sources

Box AP AP50 mask AP AP50 AP75 APm APL AR10

manual amodal 64.92 86.91 66.51 89.12 74.67 42.07 68.94 68.62

PCNet amodal 62.75 88.67 53.52 86.41 59.80 40.24 64.91 58.35

ASBUNet amodal 61.71 88.96 56.65 86.87 66.41 44.68 63.82 61.40

ACBET amodal 60.29 90.01 63.91 86.91 73.52 43.10 64.19 66.18
Box AP and mask AP stand for box average precision and mask average precision, respectively. AP50 stands for average precision when the IOU threshold is 0.5, while AP75 stands for av area <962),
and APL represents AP for large-sized objects (area >962). Finally, AR10 refers to average recall with 10 detections per frame.
B C DA

FIGURE 9

Results of each method for amodal mask completion; The first column from top to bottom, the pictures are recorded as number 1–5 respectively
(A) GT, (B) PCNet, (C) ASBUNet, (D) ours.
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(2020), 123 images were captured using cameras mounted on a rail-

guided vehicle. The researchers utilized Mask R-CNN with the

RestNext-101 backbone network to segment red and green

tomatoes within a greenhouse. The obtained detection metrics
Frontiers in Plant Science 12
reveal an F1-Score of 0.93 for red tomatoes and 0.94 for green

tomatoes. Benavides et al. (2020) collected 175 images using a fixed

RGB camera. They employed the Sobel operator for tomato edge

detection, followed by segmentation based on both color and size
B C D

A

FIGURE 11

More modal segmentation results obtained by ACBET. (A) Results with better amodal segmentation. (B–D) Results with poor amodal segmentation.
B C DA

FIGURE 10

Results of amodal segmentation obtained from PCNet, ASBUNet and ACBET; the first column from top to bottom, the pictures are recorded as number
1–3 respectively; a to d are the results obtained from training and validation of the corresponding models (A) GT, (B) PCNet, (C) ASBUNet, (D) ours.
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(without considering occlusion). The resulting clustered tomato

detection rate was 79.7%. Zu et al. (2021) utilized an RGB camera

mounted on a mobile robot to capture images, expanding their

dataset to 3180 images through the use of data augmentation. They

employed the Mask R-CNN with the RestNet-50-FPN backbone

network to effectively segment mature green tomatoes, achieving an

impressive F1-Score of 0.9284. We integrated the amodal masks

predicted by the ACBET model with the images for training the

Mask R-CNN featuring ResNet-50-FPN backbone network. This

integration aimed to enhance the system’s capability to detect and

segment tomatoes of different colors in the images. The outcomes

demonstrate that, at an IOU of 0.5, the average segmentation

precision on the test set achieved 90.01%. Detailed findings from

the mentioned research are presented in Table 4.

The primary contribution of this study lies in restoring the

shape of tomatoes under specific occlusion conditions. We

introduce an amodal segmentation network based on the Swin

Transformer Unet and boundary estimation. By addressing tasks

such as occlusion order recovery, amodal mask completion, and

amodal segmentation, the model has demonstrated the ability to

restore the complete shape of occluded tomato fruits. Currently,

datasets containing amodal annotations are scarce, and manual

annotation comes with a high cost. For instance, annotating each

image in the COCOA dataset (Zhu et al., 2017) takes approximately

18 minutes, while annotating each image in the BSDS dataset

(Arbeláez et al., 2011) takes around 15 minutes. To address this

issue, we trained a partial completion network to autonomously

learn the completion of object pixels without the need for manual

amodal annotation during the training process.

In a study by Gené-Mola et al. (2023), amodal segmentation was

applied to obscured apples, and diameter estimation and fruit

visibility (the ratio of visible pixels to total apple pixels) were

based on the predicted amodal masks. The results indicate that, at

a confidence level of 0.2, the average precision (AP) for fruit amodal

mask prediction is 0.51. Given the model’s inability to directly

incorporate depth information from RGBD cameras in greenhouse-

captured images, this approach encounters practical limitations.
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Moreover, the amodal ground truth annotations for the dataset

were obtained from 3D tree models generated using Structure from

Motion (SfM) and Multi-View Stereo (MVS). Estimation errors

might affect the accuracy of the ground truth, rendering it less

precise compared to painstaking manual annotations. We provided

a test set synthesized through image patching, incorporating the full

shapes of tomatoes before they are obscured. This enables us to

obtain genuine amodal ground truth, even though the annotations

still depend on careful manual labeling. The Swin-Tiny-Unet

network utilized in the model incorporates a mobile window-

based attention mechanism algorithm, effectively enhancing

feature extraction and feature fusion capabilities. The testing

results of the ACBET segmentation model on the tomato dataset

reveal an average Intersection over Union (mIOU) of 94.13% and a

pixel classification accuracy of 97.83%. The average Intersection

over Union (mIOU) for invisible mask segmentation reached

57.79%. Introducing uncertainty estimation for occlusion

boundaries and incorporating prior information about tomato

shapes enhances the accuracy of predicting occlusion order in

scenarios with boundary confusion. The average accuracy for

predicted pairs of occlusion orders has risen to 96.07%.

Additionally, the discriminator in adversarial generative learning,

along with its corresponding loss function, contributes to the model

generating higher-quality amodal masks.

In Figures 10 and 11, our approach presents more convincing

prediction images and boundaries when compared to other models.

We trained Mask R-CNN on the pseudo-amodal annotated data

generated by ACBET, using the validation results on the test set to

assess the quality of the pseudo-amodal annotations, and

comparing them with manually annotated amodal annotations.

Using pseudo-amodal annotations generated by ACBET as the

training set, the average precision for mask segmentation reached

63.91%. Evaluation metrics AP50 and AP75 showed a decrease of

approximately 2.21% and 1.15%, respectively, compared to the

results with manually annotated amodal annotations. This

suggests that our model’s predictions for amodal masks closely

align with the actual amodal masks. Farming conditions can be

intricate, and shadows may be cast on obscured tomatoes due to

varying angles of illumination. Furthermore, irregular branches

may act as occluders for tomatoes, potentially leading to less

distinct boundaries calculated by the model. In our future work,

we will concentrate on tackling challenges presented by irregularly

shaped occluders. Although our model doesn’t necessitate amodal

masks during training, it still depends on modal masks throughout

the training process. As emphasized in the work by Zheng et al.

(2021), the quality of modal masks significantly influences the

completion results of amodal masks. Therefore, improving the

quality and accuracy of modal masks will also be a crucial aspect

of our future research efforts.

Based on the experiments of amodal mask prediction and

segmentation in tomato, it can be applied to other fruit and

vegetable crops such as apple, maize seedlings and cucumber in

the future to further study the plant phenotypes, such as calculating

the surface area and volumetric dimensions, which will be beneficial

for fruit detection and fruit grading. We estimated the visibility by

calculating the ratio of visible pixels (modal mask area) to the total
TABLE 4 Results shown from different studies on tomato fruit detection.

Author Method
NO.

Images
Reported Metrics

Afonso
et al.,
2020

Mask R-CNN with
ResNext-101

123 images
without
data

augmentation

F1-Score of red tomato
is 0.93, and green
tomato is 0.94

Benavides
et al.,
2020

Sobel operator for
detection, color-

based segmentation
175 images

Detection accuracy of
beef tomato 90%, and
cluster tomato is 79.7%

Zu
et al.,
2021

Mask R-CNN with
ResNet-50-FPN

3180 images
without
data

augmentation

F1-Score of mask for
green tomato is 0.92

Ours
ACBET + Mask R-
CNN with ResNet-

50-FPN

100 images
without
data

augmentation

Detection accuracy of all
tomato is 90.0%
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pixels of the tomato (amodal mask area). Figure 12 shows the

experimental results of tomato visibility estimation, with most

tomatoes having visibility values in the 15% to 40% and 50% to

90% bins. The amount of data, if large enough, can be an important

reference for determining the growing season of tomatoes.
5 Conclusion

Our research aims to assist farmers in monitoring the growth

stages of tomatoes or provide decision support for robotic fruit

harvesting. We have the capability to predict the complete form of

obscured objects and estimate tomato sizes even in complex

environments. The paper introduces an amodal segmentation

network based on Swin Transformer and boundary estimation.

Initially, we opted for the Swin Transformer Unet as the

segmentation network and subsequently modified the network’s

depth and attention mechanisms. This can reduce the model’s

complexity. Then, we embedded partial completion network

modules and a boundary estimation algorithm into the

segmentation network. It aids the model in self-supervised

learning to predict and complete amodal masks. Subsequently, we

integrated GAN loss into the cross-entropy loss to form a new loss

function. We selected undisguised tomatoes from the original

dataset and used the mean coordinate cloning algorithm to

synthesize obscured tomatoes. Subsequently, we integrated GAN

loss into the cross-entropy loss to form a new loss function. We

selected undisguised tomatoes from the original dataset and used

the mean coordinate cloning algorithm to synthesize obscured

tomatoes. This method enabled us to acquire amodal ground

truth for tomatoes, as opposed to artificially assumed ground

truth. The conclusive experimental results revealed that the model

attained an impressive average Intersection over Union (mIOU) of

94.12% for predicted amodal masks, along with a pixel classification
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accuracy of 97.83%. This study offers valuable insights into

advancing fruit harvesting systems and monitoring crop growth

status in agriculture. By delving into the complex relationship

between plant occlusion and visibility, improvements can be made

in automated fruit harvesting technology to enhance efficiency and

accuracy. Additionally, the ability to monitor crop growth status

aids in timely identification and management of plant health issues,

ultimately promoting increased agricultural yield and quality.
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FIGURE 12

Linear relationship between true and predicted tomato
visibility estimate.
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