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Sustainable food security and safety are major concerns on a global scale,

especially in developed nations. Adverse agroclimatic conditions affect the

largest agricultural-producing areas, which reduces the production of crops.

Achieving sustainable food safety is challenging because of several factors, such

as soil flooding/waterlogging, ultraviolet (UV) rays, acidic/sodic soil, hazardous

ions, low and high temperatures, and nutritional imbalances. Plant growth-

promoting rhizobacteria (PGPR) are widely employed in in-vitro conditions

because they are widely recognized as a more environmentally and sustainably

friendly approach to increasing crop yield in contaminated and fertile soil.

Conversely, the use of nanoparticles (NPs) as an amendment in the soil has

recently been proposed as an economical way to enhance the texture of the

soil and improving agricultural yields. Nowadays, various research experiments

have combined or individually applied with the PGPR and NPs for balancing soil

elements and crop yield in response to control and adverse situations, with the

expectation that both additives might perform well together. According to several

research findings, interactive applications significantly increase sustainable crop

yields more than PGPR or NPs alone. The present review summarized the

functional and mechanistic basis of the interactive role of PGPR and NPs.

However, this article focused on the potential of the research direction to realize

the possible interaction of PGPR and NPs at a large scale in the upcoming years.
KEYWORDS

agro-ecological responses, food security, plant-microbiome, soil amendment,
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Introduction

Recently, soil amendments have been implemented in

agroecosystems to promote plant growth and development,

especially by adding organic and inorganic nutrients. Adding

specific substances to the soil enhances its capacity to sustain

plant life (Urra et al., 2019; Rubin et al., 2023; Kumari et al.,

2023b). Plant growth-promoting rhizobacteria (PGPR) and

nanomaterials (NMs) or nanoparticles (NPs) are under

consideration as a novel approach to boost crop productivity and

soil fertility (El-Ramady et al., 2022; Upadhayay et al., 2023; Rajput

et al., 2023a; Kumari et al., 2024). Several research studies have

demonstrated numerous benefits that soil organic amendments

may provide, including better soil texture, higher soil fertility,

restored soil health, and, ultimately, higher crop yield (Urra et al.,

2019; Rani et al., 2023).

Because of the serious risk factors to human health caused by

antibiotic-resistant bacteria, antibiotic residues, and antibiotic-

resistant genes that exist in agricultural organic amendments,

such contaminants in emerging pollutants are still a major

problem (Upadhayay et al., 2023). Soil supplements should have

attributes including ecological safeguards and negatively affect the

fertility of the soil, soil composition, or the enviro-ecosystem

(Garbowski et al., 2022; Rajput et al., 2023a). Owing to their

unique properties, PGPRs, and NPs have attracted more interest

in recent years as potential soil amendments that can mitigate the

risk associated with other soil additions under normal and adverse

conditions (Chen et al., 2021; Tolisano and Del Buono, 2023;

Kumari et al., 2024).

Most PGPRs have been reported and confirmed to improve

plant productivity by reducing environmental challenges (Singh

et al., 2021; Kumari et al., 2023a). Through both direct and indirect

strategies, it may enhance the overall quality of soil and plant yield

(Figure 1) (Sharma et al., 2023; Rajput et al., 2023a). The functions

of PGPR occur through direct mechanisms such as nitrogen
Frontiers in Plant Science 02
fixation, phosphate, and potassium solubilization, and the

production of growth-promoting phytohormones like indole

acetic acid (IAA) and siderophores. However, indirect

mechanisms are associated with the production of lytic enzymes

and antibiotics, dropping the soil pH and producing

exopolysaccharides. Several studies have assessed the efficacy of

PGPR for maintaining a sustainable agroecosystem in normal and

stressful conditions (Oleńska et al., 2020; Magnabosco et al., 2023;

Timofeeva et al., 2023). Numerous articles and meta-analyses have

observed the beneficial impacts of NPs on soil health and

agronomic productivity as well as the variables that facilitate the

ameliorative role of NPs (Urra et al., 2019; Sharma et al., 2020;

Verma et al., 2022a, b). The NPs have also alleviated various

environmental stresses during plant development (Dilnawaz et al.,

2023; Pramanik et al., 2023; Verma et al., 2023a).

Sustainable food security and safety have become extremely

challenging in the 21st century, particularly in developing nations

with limited resources. The teeming millions in the developing

world associated with the era of climate change threaten agricultural

crop production and management, a serious challenge to

sustainable agriculture (Fanzo et al., 2017; Watts et al., 2018).

According to the Food and Agriculture Organization of the

United Nations, over 2 billion people do not have enough food to

eat due to the COVID-19 pandemic. Agriculture systems and food

have already experienced significant modifications, but additional

research has to be done in light of the transforming global landscape

(Frona and Szenderák 2018; Kakaei et al., 2022). Land reforms,

modified water management, stress-tolerant cultivars, increased

fertilizer use, better seed, pesticide use, genetically modified crops,

plant growth regulators, and soil amendments are some of the

approaches used to improve soil quality and crop yields (Urra et al.,

2019; Abdul Aziz et al., 2022; Verma et al., 2022c; Akanmu

et al., 2023).

Crop yield downregulated because of various environmental

stresses (Verma et al., 2020a; Kumari et al., 2022; Patni et al., 2022;
FIGURE 1

An overview of the interactive effects of NPs and PGPRs on plant, soil and enviro-ecosystems.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1376214
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Verma et al. 10.3389/fpls.2024.1376214
Verma et al., 2023b). Nearly 6% of the world’s total surface area

(1125 mha), impacted by salinity; it includes 20% of agricultural

land and 33% of irrigated land. The loss of productivity from saline

soil can exceed 46 mha annually (Hossain, 2019; Negacz et al.,

2022). Annually, 1.5 mha of cropland is lost to saltwater due to soil

erosion. Production of crops and animals requires more water as

agriculture worldwide, provides 70% of total water returns. Water

deficit is a major abiotic stressor prevalent in sub-tropical and

tropical regions around the world (Kumari et al., 2022).

Furthermore, droughts are becoming more severe due to the era

of climate change. Water for agriculture has the potential to become

more in requirement globally by 60% upto 2025. The development

of plants and production is regularly reduced during drought stress

because of insufficient nutrient availability, lower leaf

photosynthetic CO2 assimilation rate and inadequate water

availability (Figure 2). Moreover, dehydration increases plants’

biological ethylene synthesis, inhibiting the length and

development of their roots (Hanjra and Qureshi, 2010; Mancosu

et al., 2015; Boretti and Rosa, 2019; Verma et al., 2023b).

Heavy metals in soils are a major abiotic stressor that reduces

agricultural output. Around the world, substantial amounts of

heavy metals are frequently present in the soil because of several

natural and human activities. Globally, over 10 million locations of

polluted soil have been monitored, with a majority of 50% polluted

areas with toxic ions. The toxic ions come into the agricultural land

from different types of industries, coal burning, wastewater

irrigation systems, petrochemical/hydrocarbon spillage, coal

combustion, animal waste, and sewage sludge (Boretti and Rosa,

2019; Urra et al., 2019; Rashid et al., 2023; Verma et al., 2023b).

Currently, co-applying PGPRs and NPs has been used in several

studies to enhance agronomic productivity and soil quality in

different scenarios (Figures 1, 2). The explicit assumption in these

studies has been that the NPs would make more nutrients available

and generate a conducive habitat for the PGPRs to establish. In

response, the latter would carry out their specific work (production

of plant hormones, solubilization of nutrients, etc.) at maximum
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levels. Both stressed and non-stressed soils were used for these

analyses. In the meantime, these demonstrations have yet to

undergo an in-depth synthesis and critical evaluation. This review

article aims to address the knowledge gap. Additionally, highlights

the research avenues that will be explored soon to fully utilize the

combined potential of PGPR and NPs for sustainable

agroecosystems in the years to come.
Enhancing Soil Quality through
Nanoparticle and PGPR Interactions

Because the soils carry out a wide range of ecological functions, it

is characterized from the viewpoint of those functions. From the

perspectives of concurrent agriculture and the environment, it is

described as “the capacity of a soil to function within ecosystem and

land-use boundaries to sustain biological productivity, maintain

environmental quality, and promote plant and animal health”

(Verma et al., 2022d; Anikwe and Ife, 2023; Sharma et al., 2023).

The main chemical elements of soil quality are soil organic matter,

pH, and accessible macronutrients (nitrogen, phosphorus, and

potassium). Comparably, the most widely utilized biological

indicators are soil respiration, microbial biomass, nitrogen

mineralization, and extracellular enzymatic activities, whereas the

most used physical indicators are bulk density, structural stability, and

the retention of water (Nielsen and Winding, 2002; Bunemann et al.,

2018). This review will evaluate the contribution of co-applying NPs

and PGPR to enhance soil quality based on these parameters. Co-

applying NPs and various PGPRs has been suggested as an effective

approach to improving soil quality. Because NPs provide PGPR with

a substrate with a high surface area and increased nutrition for their

survival, their presence may enhance PGPR efficiency (Nayana et al.,

2020; Akhtar et al., 2021; Alharbi et al., 2023; Rajput et al., 2023b;

Verma et al., 2023b). The impact of co-applying different PGPRs and

NPs on crop productivity and soil quality has been explored in the

subsequent sections (Figures 1, 2; Table 1).
FIGURE 2

Advantages of NPs and PGPRs applications in food security and safety.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1376214
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Verma et al. 10.3389/fpls.2024.1376214
TABLE 1 Influence of co-applied PGPRs and nanoparticles on plants in response to normal and stressed conditions.

Stress Crop PGPR strains
and NPs

Impact on crop and soil properties Source

Salinity Wheat (Triticum
aestivum L.)

Azospirillum lipoferum
SP2, Bacillus
coagulans NCAIM
B.01123, Bacillus
circulance NCAIM
B.02324, and Bacillus
subtilis MF497446
with foliar spray of
ZnO-NPs (950 g ha−a

and 500 mg L−g)

The interactive functions of PGPR and ZnO-NPs safe wheat plants during
salinity stress via upregulating antioxidative enzymatic responses, such as, CAT,
POD, and SOD (47, 102 and 106%), and uptake of K+ (27%) as relative to
control growing plants. However, alleviation of excess stress via combined
application was illustrated by the considerable reduction in membrane stability
index (EC), proline, MDA, and H2O2 content. Enhanced N uptake in treating
plants (57%) with application of PGPR+ZnO-NPs. Upregulated the soil urease
(80%) and dehydrogenase (232%) activity during saline stress with combined
application of PGPR and ZnO-NPs.

Alharbi
et al. (2023)

Salinity Sugar beet (Beta
vulgaris L.)

Pseudomonas
koreensis and Bacillus
coagulans (1x108

CFU/ml) with Si-NPs
(12.5 ppm)

The application of PGPR, Si-NPs, and their interaction in upgrading agronomic
responses, and productivity of sugar beet exposed to normal and saline water
irrigation in salty soil. High saline soil and salty water irrigation enhanced
imbalance of ions (K+/Na+ ratio) and reduced the RWC, relative membrane
stability index (RMSI), stomatal conductance, and photosynthetic pigments. The
combined application reduced oxidative stress indicators (H2O2 and MDA) and
Na+ ions while upregulating the enzymatic activities like SOD (1.9-folds), CAT
(1.4-folds), and POD (2.5-folds) as compared normal and excess soil salinity and
irrigation of saline water.

Alharbi
et al. (2022)

Water
deficit
andheat

Wheat (Triticum
aestivum L.)

Single and combined
PGPR (Pseudomonas
sp.) and ZnO-NPs
(10 ppm)

Enhanced plant performance, and stress resistance efficiency. Interaction of NPs
and Pseudomonas sp. protect from stress conditions by producing more proline,
SOD, POD, CAT, APX, GR, DHAR and ABA levels. The highest recovery of
stress was monitored by the leaf membrane stability reduction, H2O2 and MDA
content. Overall, combined treatment may protect plants mortality from heat
and water deficit or both conditions.

Azmat
et al. (2022)

Salinity Onion
(Allium cepa L.)

Bacillus pumilus and
Pseudomonas
moraviensis with Ag-
NPs (5ppm)

Bacillus pumilus associated with Ag-NPs better performed for the stimulation of
plant growth. The higher soil moisture content was observed in saline stressed
plants but the inoculated (PGPR) plants and Ag-NPs single and combined with
PGPR exhibited loss in the salt induced retention in the moisture of soil.
Interaction of Ag-NPs and PGPR and single enhanced the chlorophyll a+b and
carotenoids contents during saline stress conditions. The Ag-NPs enhanced the
content of sugar and proline.

Jahangir
et al. (2020)

Waste/
contaminated
water
irrigation

Maize
(Zea mays L.)

Pseudomonas sp.,
Pseudomonas
fluorescence and
Bacillus cereus with
Ag-NPs

The colony forming unit of the PGPR was inhibited by Ag-NPs, but regulated by
contaminated water. The Ag-NPs augmented the PGPR induced enhancement in
root morphology. The application of Ag-NPs, root-shoot ratio was varied. The
enzymatic activities (POD and CAT) were found higher by Ag-NPs and
contaminated waste irrigation application. The Ag-NPs regulated
phytohormones, such as ABA (~35%), IAA (56%), and GA (83%), enhanced
proline level (71%).

Khan and
Bano (2016)

No stress Maize
(Zea mays L.)

Bacillus sp. with
Ag-NPs

The significant increment was observed in seed germination (87.5%). The
highest plant and root growth was found in applied Bacillus cereus with Ag-NPs.

Kumar
et al. (2020)

No stress Cabbage (Brassica
oleracea L.)

Nocardiopsis sp.
individually or
combined applied
with Se-NPs

Enhanced fresh-dry mass and glucosinolate uptake. The myrosinase activity
significantly upregulated via sprouts of seeds and consequently increased the
amino-acid-derived glucosinolate induction. However, the antibacterial activities
were upgraded.

AbdElgawad
et al. (2023)

Galaxolide-
contaminated
soil

Soybean
(Glycine max L.)

Actinobacterium sp.
with Se-NPs (25 ppm)

The excess uptake of H2O2 (+180%), MDA (+163%), and oxidation of protein
(+125%), indicating oxidative stress in galaxolide-toxic plants. However, excess
uptake of detoxification activity markers, such as phytochelatins (+33%) and
metallothioneins (+80%) were observed in mixed applications during
contamination of galaxolide. The interactive application of PGPB and Se
mitigated the Chl a (+58%), gs (+57%) and Fv/Fm (+36%), which resulted in
maximum photosynthetic CO2 assimilation rate (+36%) and production of
biomass (+74%) under galaxolide contamination as relative to normal plants.

Halawani
and
Aloufi (2023)

No stress Cucumber
(Cucumis sativus L.)

Pseudomonas putida
and P. stutzeri (@ 106
cells/ml) with Ag-NPs
(5-ppm), foliar spray

Ag-NPs upregulated length of roots but reduced plant length of biomass. Leaf
protein, proline, phenolics, flavonoids, Chl b, a+b, sugar and Phenylalanine
Ammonia-Lyase (PAL) activities were enhanced as compare to control plants.
Ag-NPs also suppressed the PGPR effect for the length of root and shoot but
augmented the contents of protein and phenolics. Ag-NPs and PGPR increased
flavonoids and PAL, SOD and CAT activities in plant leaves. Ag-NPs enhanced
the PAL, CAT and SOD responses in both varieties. The application of
Pseudomonas putida can be applied either single or in mixed with Ag-NPs to
upregulate the antioxidantive and defense enzymatic responses.

Nawaz and
Bano (2020)

(Continued)
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TABLE 1 Continued

Stress Crop PGPR strains
and NPs

Impact on crop and soil properties Source

Excess Fe
and Mn

Bitter gourd
(Momordicacharantia
L.)

Pseudomonas stutzeri
(108 cells/ml) with
Ag-NPs

Carotenoids, protein, and proline activity were found higher as 366, 450, and
678% in bore well water with PGPR and Ag-NPs treatments. Pseudomonas
stutzeri was more significant than Ag-NPs to minimize oxidative stress with
highest carotenoids, flavonoids, proline contents, and enzymatic activities, such
as SOD and CAT.

Tariq and
Bano (2023)

Chromium Rice
(Oryza sativa L.)

Chromium-resistant
bacterium
Staphylococcus aureus
and Fe-NPs (20 ppm)

Fe-NPs significantly upgraded plant performance, production, and leaf gas
exchange responses by upregulating the Chl content and mitigating the damage
of oxidative stress. Chromium-tolerance bacteria (S. aureus) increased the
significant potential of Fe-NPs by transformation of chromium (Cr6+) ion into
less toxic form of chromium (Cr3+). The bacterial inoculation decreased the
accumulation of Cr by plant roots via adsorption of Cr ions.

Alharby and
Ali (2022)

Chromium Sunflower
(Helianthus annuus L.)

Staphylococcus aureus
with CeO2-NPs (25-
50 ppm)

CeO2-NPs significantly enhanced plant performance and crop productivity,
decreased oxidative stress, and increased antioxidative enzymatic activities
during chromium stress condition. S. aureus upregulated the potential role of
NPs in mitigating metal toxicity. The highest enhancement was observed in
applied NPs and S. aureus. Increased Chl content and reduced leaf membrane
stability index.

Ma
et al. (2022)

Cadmium
polluted soil

White clover (Trifolium
repens L.)

Pseudomonas
fluorescens (107 CFU/
kg soil) and TiO2

-NPs (100-
1000 mg/kg)

Interactive role of TiO2-NPs and PGPR upgraded plant development and Chl
level as compare to control. Application of TiO2 NPs to rhizospheric soil
potentially enhanced the uptake efficiency of T. repens. TiO2 NPs and PGPR can
decrease the TiO2-NPs for phytoremediation of toxic ions. Combined
application maintained T. repens growth in polluted soil and increased
accumulation of Cd in plants.

Zand
et al. (2020)

No stress Okra
(Abelmoschusesculentus
L.)

Pseudomonas libanesis
with Se-NPs

Enhanced phytochemicals (25–35%), height of shoot and root (25–35%), and
fruit quality with the application of Se-NPs (75 ppm) to avoid the Se-NPs
bioaccumulation in the agro-ecosystems.

Sonali
et al. (2023)

No stress Maize (Zea mays L.) Bacillus megaterium,
Bacillus brevis,
Pseudomonas
fluorescens and
Azotobacter vinelandii
with Si-NPs

Enhanced the efficiency of seed germination, plant development
and productivity

Karunakaran
et al. (2013)

No stress Wheat (Triticum
aestivum cv. Stava)

Bacillus thuringiensis
AZP2, Paenibacillus
polymyxa A26 with
TiO2-NPs

Upreguleted PGPR activities and their colonization Timmusk
et al. (2018)

No stress Oilseed rape (Brassica
napus L.)

Bacillus
amyloliquefaciens
subsp. plantarum
UCMB5113 with
TiO2-NPs

Protected plants from the fungal infection, i.e., Alternaria brassicae Palmqvist
et al. (2015)

No stress Cowpea (Vigna
unguiculata L.)

Pseudomonas monteilii
with Au-NPs

Increased the production of IAA by P. monteilii with Au-NPs (50 µg/mL). Au-
NPs upgraded plant agronomic responses

Panichikkal
et al. (2019)

No stress Maize (Zea mays L.) Bacillus sp. with
nanozeolite (50 ppm)

Agronomic response, such as length of plants, leaf area expansion, leaf numbers,
photosynthetic pigments and leaf protein were significantly upregulated.
Biochemical activities of soil were significantly enhanced, i.e., dehydrogenase,
fluorescein diacetate hydrolysis and alkaline phosphatase activities.

Khati
et al. (2018)

No stress Soybean (Glycine
max L.)

Bradyrhizobium
japonicum,
Pseudomonas putida,
Azospirillum lipoferum
with Zn-NPs (0.3-
0.9g/mL1

Plant length, number of nodules, grain yield-weight enhanced Seysdsharifi
and
Khoramdel
(2016)

No stress Maize (Zea mays L.) Bacillus sp.
with nanochitosan

Increased the frequency of seed germination (60 - 97%), length of plants (1.5-
fold), and leaf area expansion (2-folds). Soil biochemical activities, i.e.,
dehydrogenase, fluorescein diacetate hydrolysis and alkaline phosphatase were
upregulated. Plant metabolites increased, such as alcohols, acid ester and
aldehyde compounds.

Khati
et al. (2017)
F
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Nutrient Enhancement in Soil: The
Role of Nanoparticles and PGPR

Numerous demonstrations assessed the impact of co-applying

PGPR and NPs on soil quality, characterizing the physical,

chemical, and biological characteristics of soil (Table 1). When

NPs and PGPRs are applied together, generally found to enhance

the level of mineral nutrient content in rhizospheric soils when

compared to a single application of NPs or PGPR (Akhtar et al.,

2021; Singh et al., 2021; Alharbi et al., 2023; Tang et al., 2023). The

combined use of NPs and PGPRs resulted in increased soil nitrate

levels compared to a single dose of nitrogen. However, PGPR and

NPs enhanced organic carbon, phosphorus, and nitrogen

availability compared to normal plants. Nanoparticles sprayed on

plant leaves at low concentrations since they are economical and

environmentally beneficial (Ameen et al., 2021; Liu et al., 2022;

Verma et al., 2023a). NPs acquired more interest from plant

physiologists because of their usage as nano-growth regulators to

improve the growth and development of plants, mainly owing to the

effective supply and accumulation and translocation of required

minerals (Awan et al., 2020; Kupe et al., 2023). When mixed in soil,

they dissolve nutrients due to dissolution and decomposition under

the influence of soil properties and the activity of microbes. PGPR,

especially those that solubilize organic phosphate, accelerates the

accumulation of mineral nutrients from NPs. By utilizing PGPR

and NPs together, soil microorganisms are spared from the need to

seek out certain nutrients, enabling them to focus on the uptake of

other essential elements. This shift enhances enzyme activity and

facilitates the release of additional nutrients, thus promoting a more

efficient nutrient acquisition process and overall soil fertility

enhancement (Ameen et al., 2021; Liu et al., 2022; Rajput

et al., 2023a).
Improving soil water retention with
nanoparticles and PGPR

With their higher surface area-to-volume ratio, NPs can

potentially increase soil water-holding capacity (WHC), especially

those with coarse textures. The ameliorative impact of NPs on water

retention capacity has also been found in multiple states of the

experiments evaluating the co-application of NPs and PGPR. In

comparison to PGPR and NPs application only, combined

application of PGPR and NPs enhanced soil water holding

capacity (WHC) (Nayana et al., 2020; Tang et al., 2023). While

single use of PGPR has never been shown to improve soil WHC and

water content, it can increase water-deficit resistance capacity to

crop plants. However, enhanced WHC by the application of NPs,

synergize with PGPR given that the nutrient cycling, breakdown of

soil organic matter, and microbial signaling considering higher soil

moisture levels [Figure 2] (Verma et al., 2020b; Ahmad et al., 2022;

Chieb and Gachomo, 2023). It should be highlighted that the

indirect significance of NPs with PGPR application has yet to

be conducted.
Frontiers in Plant Science 06
Modulating soil
microbial communities

Nanoparticles enhance various physicochemical characteristics

of soil, eventually facilitating the function of indigenous soil

microbial populations. NPs can boost WHC, soil pH, substrate,

and nutrient availability, enhancing microbial biomass, abundance,

and diversification (Rajput et al., 2023a). Furthermore, it has been

demonstrated that NPs upregulate the nodulation of the natural

rhizobia with legume plants. This is due to the enhancement in

aeration provided by NPs that access more air to nodule bacteria,

which can persist for a long time on the porous surface of NPs

before colonization in the roots (Swarnalakshmi et al., 2020; Flores-

Duarte et al., 2022).

The mutualistic relationship between existing microorganisms

and plants may be further enhanced by adding NPs (Ameen et al.,

2021). The phosphate-solubilizing bacteria Pseudomonas sp.

increased the availability of phosphorus in soil presumably by

solubilizing it from the NPs thereby increasing the colonization of

roots and overall plant development (De Souza-Torres et al., 2021).

The general abundance of some microbial groups in soil may

increase with the interactive role of NPs and PGPR, which

improves soil health throughout (Table 1). The authors attributed

it increase in advantageous bacteria to the improved soil organic

matter content and its breakdown due to the interacting effect of

NPs and the inoculant (De Souza-Torres et al., 2021; Ahmad et al.,

2022; Rajput et al., 2023b).
Catalyzing soil enzyme activity with
nanoparticles and PGPR

Research studies on various intra- and extracellular enzymes

have also been used to evaluate the potential benefits of applying

NPs and PGPR simultaneously. Soil urease and dehydrogenase

enzymes activity was enhanced by applying PGPR and NPs

compared to single-use of any of them (Alharbi et al., 2023;

Upadhayay et al., 2023). Jabborova et al. (2021) observed that co-

inoculation of PGPRs with NPs resulted in higher levels of protease,

alkaline, and acid phosphomonoesterase than a single application of

PGPRs. Interactive application of Bacillus subtilis with NPs was

significantly observed in the activities of invertase and catalase in

soil than in single use of NPs (Medina-Velo et al., 2017; Khanna

et al., 2021). Ultimately, it has been revealed that the PGPR with

NPs increases the enzymatic activity of soil phosphomonoesterase

in acidic and alkaline conditions, as well as that of sucrase, urease,

protease, and invertase. By defining the direction and intensity of

nutrient transformation processes in soil, these enzymes can

improve soil fertility by stimulating biochemical processes within

the ecosystem. There is a direct correlation between soil nutrients

and the enhanced enzyme activity caused by PGPR and NPs

(Mushtaq et al., 2020; Ahmad et al., 2022; Rajput et al., 2023b).

Research is still lacking on how co-application of NPs and PGPRs

affects leucine aminopeptidase and N-acetyl-glucosaminidase,
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significant N-cycling enzymes. These enzymes catalyze the complex

proteinaceous compounds in soil. The amount of mineral nitrogen

added to the NPs can be determined by measuring the activity of

these enzymes in the presence of PGPR since the NPs are organic

materials that contain organic proteins (Figures 1, 2; Table 2).
Nanoparticles and PGPR: a synergistic
approach to combat
environmental stresses

Crops that grow with low pesticide application concentrations,

higher nutritional values, and disease resistance are necessary for

sustainable agriculture. In recent decades, the widespread

application of expensive agrochemicals in agriculture has

prompted the development of more environmentally friendly

substitutes, like PGPR and NPs (Medina-Velo et al., 2017; Ahmad

et al., 2022). PGPR and NPs have been broadly mentioned for their

significant impacts on plants. However, utilizing PGPR and NPs

together has been more successful in plant production in recent

years than using PGPR or NPs individually. Multiple research

projects have documented the significant role of PGPR and NPs

in enhancing crop productivity (Mushtaq et al., 2020; Khanna et al.,

2021; Rajput et al., 2023a). Similarly, the combined use of

Alcaligenes sp. with NPs promoted fresh and dry mass, plant

length, yield, and quality of fruits over a single use of PGPR.

PGPRs with NPs have also been evaluated during decreased

fertilizer frequency to reduce the greenhouse gas emissions

associated with the fabrication of ammoniac fertilizers and their

volatilization (Awan et al., 2020; Mushtaq et al., 2020; Khanna et al.,

2021; Shah et al., 2021).

Application of Enterobacter, Pseudomonas, Azospirillum,

Agrobacterium and NPs enhanced sustainable agriculture

production. The interactive use of PGPR and NPs may enhance

seed germination frequency, height of plants, dry-fresh biomass,

and crop productivity than the single use of PGPR or NPs (Medina-

Velo et al., 2017; Fadiji et al., 2022; Sharma et al., 2023). This

combination can work in different directions. In the direct

mechanisms, the usual generation of plant hormones by the

PGPR, such as indole acetic acid, siderophores, etc., and

enhancing soil minerals ’ availability through phosphate

solubilization and N2 fixation contributes to better plant

performance and productivity. The existence of NPs can assist the

withstanding of the PGPR in larger numbers in addition to

providing nutrient-rich substrate thereby leading to improved

efficiency by the PGPR ultimately boosting the production of

plants (Mushtaq et al., 2020; Khanna et al., 2021; Ahmad et al.,

2022; Rani et al., 2023).

It has been widely recognized that the PGPR reducing a wide

range of environmental stresses that impede the growth and

development of plants. Many researchers have demonstrated their

effectiveness in combating drought, soil flooding, salinity, low and

high light intensities, nutritional imbalance, and heavy metal

contamination. Plants can develop stress tolerance efficiency by

exploiting the ability of PGPR to release exopolysaccharides in dry
Frontiers in Plant Science 07
TABLE 2 Some of the stress-responsive genes in plants that can be
regulated by NPs and PGPRs.

Gene
Category

Functions Examples of
Genes/Proteins

Source

Antioxidant
Genes

Neutralize
reactive
oxygen
species (ROS)

Superoxide dismutase
(SOD), Catalase
(CAT), Peroxidases
(POD), Ascorbate
peroxidase (APX)

Akhtar et al.,
2021; Ali et al.,
2021; Azmat
et al., 2022; Sun
et al., 2022

Heat Shock
Proteins
(HSPs)

Protect plants
against high
temperature
and
other stressors

HSP70, HSP90 Zhao et al., 2012

Water
Stress Genes

Regulate water
flow in cells

Aquaporins,
Dehydrins, P5CS,
CAT1, DREB2,
dehydration-responsive
element-binding
proteins, “HsfA1a,”
“SlAREB1,”
“LeNCED1,”
and “LePIP1”

Mahakham
et al., 2017;
Raeisi Sadati
et al., 2022;
Subotic et al.,
2022; Mohamed
and Abdel-
Hakeem, 2023

Salinity
Stress Genes

Maintain ion
homeostasis
and
salt tolerance

Pathway of Salt Overly
Sensitive (SOS) genes,
auxin responsive
proteins (ARP), cAPX,
DREB, MnSOD, and
GST genes

Hezaveh et al.,
2019; Moradi
et al., 2022

Ethylene
Responsive
Factors
(ERFs) and
biosynthesis
genes

Regulate plant
responses to
adverse
agroclimatic
conditions

ERF1, ERF5,
ACC deaminase

Fadiji et al., 2022

Pathogenesis-
Related
(PR) Proteins

Involved in
defense
against
pathogens and
stress
responses

PPO, PR1, PR5, b-
1,3-glucanase

Elmer
et al., 2018

ABA-
Related Genes

Regulate
responses to
abiotic stress
via the
ABA hormone

ABA insensitive (ABI)
genes, PYR/
PYL receptors

Azmat
et al., 2022

Salicylic Acid
(SA)
responsive
and
Pathway
Genes

Defense
responses
modulation

SA responsive PR
(pathogenicity related
proteins) genes (PR1
and PR2)

Cai et al., 2020

Nitrogen
Assimilation
Genes

Uptake and
metabolism
of nitrogen

Nitrate reductase (NR),
Glutamine synthetase
(GS), nitrification
related amoA1 and
amoC2 genes

Yang et al., 2013

Phytochelatin
Synthase

Chelation of
heavy metals
for tolerance

PCS (Phytochelatin
Synthase)
genes, siderophores

Zand et al., 2020

Glutathione
S-
Transferases
(GSTs)

Detoxification
processes
within
plant cells

GST family genes Moradi
et al., 2022
It provides an overview of various gene categories that may be impacted by the presence of
NPs and PGPRs in plants, along with their general functions in stress response.
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environments (Vurukonda et al., 2016; Ahmad et al., 2022; Chieb

and Gachomo, 2023). In saline environments, it increases water

absorption, decreases stomatal conductance, boosts potassium

accumulation at the cost of sodium, reduces the direct negative

impacts of soil salinity, and increases antioxidant enzyme activities.

All these alterations assist in the improved growth of plants in saline

environments. Similarly, it has been observed that the PGPR

improves overall nutrient uptake while also immobilizing and

reducing the uptake of heavy metals by plants, thereby reducing

the toxicity caused by heavy metals (Bishnoi, 2014; Islam et al.,

2014; Kaushal and Wani, 2016; Kumar et al., 2017; Etesami and

Maheshwari, 2018). Bacillus pumilus in linked with Ag-NPs

performed better for the stimulation of onion plant growth.

Combined application exhibited a reduction in the salt-induced

retention in the moisture of rhizospheric soil and enhanced protein

content of bulb, reduced leaf flavonoids. Ag-NPs enhanced sugar

and proline levels. Bacillus pumilus proved to be more significant

during control conditions to all growth agronomic responses but

Pseudomonas moraviensis potentially coped in response to saline

conditions (Jahangir et al., 2020).

Numerous articles have reviewed these findings discussed in the

Table 1. Additionally, it has been demonstrated that NPs improve

salt tolerance, reduce drought stress, and minimize the toxicity that

organic and inorganic soil contaminants cause in plants (Rasheed

et al., 2022). Drought stress benefit in NPs-amended soils occurs

through higher water holding capacity to large surface area-to-

volume ratio of NPs (El-Saadony et al., 2022; Verma et al., 2022b, c;

Verma et al., 2023a). Similarly, plants in soil amended with NPs

mitigate soil saline conditions due to reduced osmotic stress to

increased soil water content and decreased Na+ absorption caused

by Na+ transient binding on sorption sites on NPs. The primary

approach by which NPs reduce the toxicity stress of organic and

inorganic heavy metals sorption. Multiple studies have reviewed all

these applications of NPs against diverse environmental stressors

(Azameti and Imoro, 2023; Faizan et al., 2023; Rajput et al., 2023b).

Recently, some studies have explored the possibility of combining

PGPR and NPs to mitigate the environmental circumstances for

plant development with the assumption that both additives would

act synergistically (Table 1). Synergies between PGPR and NPs have

been actively explored in these studies.
Soil quality enhancement: the
combined power of PGPR
and nanoparticles

Improved soil quality occurs from the combined application of

PGPR and NPs, which perform multiple functions to mitigate the

effects of drought stress (Table 1). When the soil water content was

half the field capacity (50% of soil moisture level), applying NPs and

PGPR jointly substantially improved the pH, EC, nitrate,

phosphorus, extractable K, and organic matter when compared by

applying NPs and PGPR separately [Figures 1, 2] (Akhtar et al.,

2021; Rajput et al., 2023a). Sun et al. (2022) reported that when the

FeO-NPs were treated with arsenic (As)-contaminated soil with the
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PGPR P. vermicola, the outcomes were notably enhanced, yielding

more effective results. Consequently, results demonstrated that the

P. vermicola and FeO-NPs applied combined may mitigate As

(arsenic) toxicity in seedlings of Trachyspermum ammi,

improving plant growth and composition under metal stress

observed by balanced exudation of organic acids (Sun et al.,

2022). The developing direction from this research suggests that

the higher water holding capacity and concurrent reduction in

drought stress strengthen the survival and abundance of the PGPR,

which perform their activities better (Ahmad et al., 2022).

In terms of soil quality, salt influences the composition of the

microbial community in the soil and reduces biomass and microbial

activity. Furthermore, under saline conditions, Na+ exceeds K+

transport channels, resulting in decreased and inhibited

development of plants (Al-Turki et al., 2023). Despite this, it has

been demonstrated that co-application of PGPR and NPs in salty

conditions induces salt tolerance and plant development, mostly

through lowering Na+ absorption and elevating the K+/Na+ ratio.

Using two endophytic bacteria, such as Burkholderia phytofirmans

or Enterobacter sp., and NPs drastically reduced saline stress in crop

plants by minimizing the uptake of xylem Na+ content. On the

contrary, combined application greatly enhanced the K+ and K+/

Na+ ratio, reducing plant saline stress (Kumawat et al., 2022; Al-

Turki et al., 2023; Rajput et al., 2023b). In the same demonstration,

the sodium adsorption ratio and Na+ in soil solution were

reduced by the latter application to adsorption sites and

desorption of K+ by interactive combination. When inoculated

with NPs and Paraburkholderia phytofirmans, which can produce

exopolysaccharides—significantly reduced the level of Na+ in the

soil solution, alleviating plant salinity stress (Fu and Yan, 2023).

Combined PGPRs and NPs have synergistic benefits on soil

quality because they reduce the Na+ level and increase colonization

efficiency. PGPR strains co-applied with NPs in salty soil showed

higher colonizing efficacy than PGPRs without NPs in the soil

(Kumawat et al., 2022; Rajput et al., 2023b). Enterobacter sp. with

5% NPs demonstrated increased colonizing efficiency in saline soil

than Burkholderia phytofirmans with and without NPs. Compared to

PGPR inoculation individually; co-applicating an endophytic PGPR

with NPs produced in salty soil caused an increase in PGPR

colonization in the rhizosphere, root, and shoot interior bacterial

population of about 150–250%. In rhizospheric soil, NPs

demonstrated downregulation in the Na+/K+ ratio and improved

PGPR root colonization efficiency, reducing soil salinity stress. By

releasing mineral elements like K+, Ca2+, and Mg2+ from the soil

solution, NPs, and PGPRs maintain the nutritional balance by

lowering the concentration of Na+ in the soil. As a result, the soil

K+/Na+ ratio gradually improved. Na+ in soil binds by

exopolysaccharides formed by PGPRs under stress (deMoraes et al.,

2021; Kumawat et al., 2022; Fu and Yan, 2023). The specific genes

responsive to stress in plants under the influence of NPs and PGPRs

can widely depend on the type of stress, plant varieties/species, type of

NPs, type of application, and applied PGPRs strains. Some of the

stress-responsive genes in plants can be regulated by NPs and PGPRs

which are shown in Table 2. It provides an overview of various gene

categories that may be impacted by the presence of NPs and PGPRs

in plants, along with their general functions in stress response.
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In polluted soils, the application of PGPR together with NPs has

also been explored (Table 1). Based on the findings; it is an effective

approach for lowering soil contamination from heavy metals.

Enterobacter sp. microbe with NPs could efficiently expedite the

restoration of soil contaminated with cadmium (Cd) toxicity. The

combined application of Bacillus sp. and NPs enhanced soil enzyme

(dehydrogenase) more than NPs, leading to improved biological

remediation. This combination also reduced HOAc-extractable Cd

levels than independent applications of NPs and PGPR. By lowering

the heavy metal’s availability, Bacillus sp. applied with NPs

significantly reduced the detrimental impact of chromium and

improved plant health. PGPRs and NPs immobilize metals via

metal-immobilizing bacteria, adsorption, co-precipitation, and

complexation, therefore restricting their availability in soil for

uptake and translocation (Mitra et al., 2018; deMoraes et al.,

2021; Zulfiqar et al., 2023).
Synergistic role of PGPR and
nanoparticles enhancing physiological
and yield characteristics

Several studies have demonstrated that the role of PGPR and

NPs on plant performance in adverse agroclimatic conditions

(Table 1). The impact of applying PGPR and NPs together on

plant development and productivity has been reviewed, and

different physiological and biochemical responses have been

triggered (Rajput et al., 2023a). However, a consequence of

drought stress is increased plant ethylene levels. It has been

demonstrated that the use of ACC-producing deaminase-

producing PGPR with NPs may reduce the higher ethylene level

in plants caused by drought because the latter increases colonization

in the plant rhizosphere and promotes the inoculant survival rate

(deMoraes et al., 2021; Al-Turki et al., 2023). In terms of

comparison, this resulted in higher plant yields than using PGPR

or NPs alone. Comparably, using P. aeruginosa and NPs jointly

decreased electrolyte leakage substantially compared to applying

independently. Also, co-application improved fresh and dry leaf-

shoot-root weight compared to a single usage of NPs or PGPR,

according to deMoraes et al. (2021). When combined with NPs,

several additional PGPRs that produce ACC deaminase, such as

Agrobacterium fabrum and Bacillus amyloliquefaciens have also

been shown to increase wheat productivity during severe water

stress conditions [Table 1] (Al-Turki et al., 2023; Rajput

et al., 2023a).

PGPR applied along with NPs to stressed plants, enhanced relative

water content, stomatal conductance, Ca2+ and K+ levels, and reduced

proline level. Additionally, researchers observed the reduced electrolyte

leakage assisted plants in adapting to drought stress conditions.

Drought causes plants to release more ethylene and electrolytes,

which inhibits plant growth. By reducing ethylene concentration and

electrolyte leakage in plants, co-application of PGPR with NPs may

mitigate drought stress in plants. According to experiments carried out

by Ahluwalia et al. (2021); Alharbi et al. (2023) and Chandrashekar

et al. (2023), PGPR with NPs increased the relative water content,

stomatal conductance, chlorophyll, and carotenoids in plants.
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The salty soil influences plant development, growth,

photosynthesis, lipid metabolism, and protein synthesis

(Figures 1, 2). Hormonal imbalances and osmotic changes harm

plant growth in saline soils (Singh et al., 2013). It also results in

specific toxicity of ions and malnutrition. A different reason is that

both sodium and chloride ions restrict plant growth. In certain

plants, only chloride ions accumulate in the shoot, while sodium

ions are retained in the roots and stems (Kumawat et al., 2022; Fu

and Yan, 2023). When PGPRs and NPs are applied in common,

their combined effects normally have a more beneficial impact on

plant productivity and the elimination of salt stress than separate

applications. Under salinity stress, combining NPs and a

siderophore-producing strain of Burkholderia phytofirmans

enhanced the plant height, grain yield, photosynthetic leaf gas

exchange, and root and shoot dry weight, respectively. The

synergistic ability to integrate PGPR and NPs to ameliorate soil

salinity stress for plants has also been confirmed by evidence from

multi-year field research experiments (deMoraes et al., 2021;

Kumawat et al., 2022; Alharbi et al., 2023). PGPR and NPs play a

major role in restoring toxic ions in plants. They can alter,

accumulate or eliminate heavy metals (Gulzar and Mazumder,

2022; Wang et al., 2022; Rai et al., 2023).

When combined with NPs, Enterobacter sp. significantly

facilitated the development of Brassica napus in cadmium-

contaminated soil (Saeed et al., 2019). Compared to soil without

PGPR and NPs under stress conditions, the co-application greatly

enhanced shoot and root length, respectively. In addition, PGPR

with NPs application reduced Cd uptake in root and shoot under

Cd stress conditions relative to individual use of PGPR and NPs,

respectively. An increment was observed in ryegrass biomass than

the application of NPs, and minimum Cd level was noticed in the

interactive application as relative to NPs, PGPR, and control (Jin

et al., 2016; Rizwan et al., 2021).

Recent studies performed by Timmusk et al. (2018) underscore

the transformative potential of integrating titania nanoparticles (TNs)

with Plant Growth-Promoting Rhizobacteria (PGPR) in agriculture.

This novel approach has demonstrated a significant boost in plant

biomass, particularly under challenging conditions such as drought,

salt, and pathogen stress. The synergy between TNs and PGPR not

only fortifies plant resilience but also paves the way for sustainable

yield improvements. By harnessing the combined power of these two

agents, we can unlock new pathways to bolster plant health and

productivity, marking a significant step forward in our quest for

sustainable agricultural practices.
Deciphering the interactions: how
PGPR and nanoparticles influence
plant biology

When NPs are applied with PGPR strains, they provide a

habitat for PGPR (i.e., colonization, reproduction, and growth)

due to its porous structure, more surface area, and the capacity to

absorb microorganisms and organic compounds. Several studies

mentioned in Table 1 demonstrated that the adding NPs to soils

increases the growth and abundance of PGPR inoculants. NPs also
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protected them from other dangerous bacterial infections. It

provides energy and the essential nutritional building blocks for

inoculants’ survival and growth. Furthermore, using NPs influences

the physicochemical characteristics of soils and may increase soil

microbial biomass and enzymatic activity. NPs are rich in different

nutritional compositions, such as nitrogen, phosphorus, potassium,

calcium, magnesium, zinc, etc., depending on the type and

frequency of application (deMoraes et al., 2021; Singh et al., 2021;

Alharbi et al., 2023; Al-Turki et al., 2023; Fu and Yan, 2023; Verma

et al., 2023a).

PGPRs enhance plant growth through direct and indirect

processes during normal and stressful situations. Like NPs, the

PGPR can either bring in a nutrient from outside via their direct

functions such as nitrogen fixation (by nitrogen-fixing bacteria) or

solubilize the immobilized nutrients (by phosphate-solubilizing

bacteria) thereby contributing to plant nutrition [Figures 1, 2,

Table 1] (deMoraes et al., 2021). In addition, due to their

nitrogen-fixing characteristics, nitrogen-fixing PGPRs like

Paenibacillus polymyxa, Rahnella sp., and Serratia sp. can

increase the level of mineral nitrogen in soil solution and restrict

it from leaching into the soil (Weselowski et al., 2016; Liu et al.,

2019; Ribeiro et al., 2020). A wide range of phosphate-solubilizing

PGPRs has been demonstrated to solubilize and provide phosphate

in soil for plant uptake (Walpola and Yoon, 2013; Alori et al., 2017;

Prabhu et al., 2018; Prakash and Arora, 2019; Gupta et al., 2021;

Koczorski et al., 2023; Suleimanova et al., 2023).

The direct phosphorus accumulation from NPs using PGPR has

yet to be demonstrated. Similar mechanisms of higher availability of

potassium may be predicted because PGPR is known for reducing

the soil pH and making the soil potassium available to plants and

NPs to be rich in essential minerals (deMoraes et al., 2021;

Koczorski et al., 2023). Another direct pathway of the production

of ACC deaminase reduces the generation of ethylene-enhanced

levels obtained during stress conditions via its breakdown into

ammonia and alpha ketobutyrate. Enterobacter sp., Alcaligenes sp.,

Pseudomonas fluorescens, Serratia odorifera, Leclerciaade

carboxylata, Agrobacterium fabrum, Bacillus amyloliquefaciens,

Pseudomonas aeruginosa, etc., can be produced by ACC

deaminase. These strains have beneficial synergistic effects with

NPs during environmental stress mitigation. PGPRs by their

indirect processes, i .e. , pH regulations, production of

exopolysaccharides, and defense against biotic stresses are also

associated with plant growth enhancement (Alori et al., 2017;

Prakash and Arora, 2019; Singh et al., 2021; Kumawat et al., 2022;

Alharbi et al., 2023; Suleimanova et al., 2023).
Potential drawbacks and risks
associated with their use of NPs and
PGPRs for sustainable
crop development

Nanoparticles offer transformative potential for agriculture

through their unique properties, such as high reactivity and the

ability to be engineered for specific tasks. Still, they also present
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environmental and health risks. Concerns include the toxicity of

nanoparticles to non-target organisms like soil microbes, plants,

and animals, with studies indicating that certain nanoparticles can

disrupt soil microbial communities and accumulate in the food

chain. Their small size facilitates mobility, raising the risk of

environmental contamination and unknown long-term effects

(Tourinho et al., 2012; (Dimkpa et al., 2013; deMoraes et al.,

2021). Human health concerns also arise from the potential for

nanoparticles to enter the body through food consumption, with

evidence of their ability to cross biological barriers. Regulatory

challenges are significant, as existing frameworks may not

adequately address the risks associated with nanomaterials.

Despite these risks, the benefits of nanoparticle use in agriculture

are considerable, necessitating comprehensive risk assessments, safe

handling practices, and clear regulatory guidelines to ensure their

safe and sustainable application ( (Grieger et al., 2012; Shah et al.,

2021). To ensure a sustainable approach, it is crucial to conduct

comprehensive risk assessments, invest in research for

understanding long-term effects, and develop nanomaterials that

are biodegradable and safe for the environment and human health.

Furthermore, establishing clear regulatory guidelines and

promoting safe handling practices are essential for mitigating

risks (Grieger et al. , 2012). By prioritizing safety and

sustainability, the agricultural sector can leverage nanotechnology

to address global food security challenges while protecting

environmental health and biodiversity.
Conclusions and future perspectives

During adverse agroclimatic conditions, reduced plant growth

and crop mortality are prevalent through significant food and

commercial cash crops. Given the significant potential of PGPR

and NPs to enhance crop productivity and soil health under both

normal and adverse conditions, our conclusion highlights the

necessity of integrating these technologies into sustainable

agricultural practices. The synergy between PGPR and NPs not

only offers a path to reducing synthetic fertilizer dependency but

also promises resilience against climatic stresses by improving plant

performance, production, and fruit or grain quality, as well as soil

profile. However, as highlighted in this article, limited field

demonstrations have been conducted to assess the significance of

the PGPR and NPs’ interactive role in sustainable agriculture.

Mechanistic research on the interaction between PGPR and NPs

requires more research. An extremely efficient approach to evaluate

the combined impact of PGPR and NPs could be long-duration field

demonstrations. The potential of the PGPR and NPs for sustainable

food production has been independently assessed in reasonably

long-duration field studies.

Future research is poised to delve deeper into the mechanistic

underpinnings of PGPR and NP interactions, with a strong

emphasis on long-term field trials. These studies are critical for

understanding the dynamic interactions in various soil types,

especially those lacking in organic matter in tropical and

subtropical regions. The aim is to develop tailored application

strategies that leverage the unique benefits of PGPR and NPs,
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thereby reducing reliance on synthetic fertilizers and enhancing the

environmental sustainability of agricultural systems. This detailed

exploration and application of PGPR and NPs hold the promise of

revolutionizing farming practices to meet the global food

demand sustainably.
Author contributions

KV: Writing – original draft, Resources, Methodology, Formal

analysis, Data curation, Conceptualization. AJ: Writing – original draft,

Software, Resources, Formal analysis, Data curation. X-PS: Writing –

review & editing, Visualization, Validation, Supervision, Project

administration, Methodology, Investigation, Funding acquisition,

Conceptualization. SS: Writing – review & editing, Software,

Resources, Data curation. AK: Writing – review & editing, Software,

Resources, Formal analysis, Data curation. JA: Writing – review &

editing, Software, Resources, Formal analysis, Data curation. SKS:

Writing – review & editing, Software, Resources, Formal analysis,

Data curation. MS: Writing – review & editing, Software, Resources,

Formal analysis, Data curation. CS: Writing – review & editing,

Software, Resources, Formal analysis, Data curation. Y-RL: Writing –

review & editing, Visualization, Validation, Supervision, Software,

Project administration, Methodology, Investigation, Funding

acquisition, Conceptualization.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This

research was financially supported by the Guangxi Natural
Frontiers in Plant Science 11
Science Foundation (2021GXNSFAA220022), Guangxi Innovation

Teams of Modern Agriculture Technology (nycytxgxcxtd-2021-03),

Guangxi Characteristic Crop Experimental Station (GTS2022022),

National Key Research and Development Project (2022YFD

2301102-07), The National Natural Science Foundation of China

(31760415), Fund of Guangxi Academy of Agricultural Sciences

(2021YT011) and Science and Technology Major Project of

Guangxi (Guike AA22117002-1).
Acknowledgments

The authors would like to thank the Guangxi Academy of

Agricultural Sciences, Nanning, Guangxi, China, for providing the

necessary facilities for this study.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
AbdElgawad, H., Korany, S. M., Reyad, A. M., Zahid, I., Akhter, N., Alsherif, E., et al.
(2023). Synergistic impacts of plant-growth-promoting bacteria and selenium
nanoparticles on improving the nutritional value and biological activities of three
cultivars of Brassica sprouts. ACS Omega 8, 26414–26424. doi: 10.1021/
acsomega.3c02957

Abdul Aziz, M., Brini, F., Rouached, H., and Masmoudi, K. (2022). Genetically
engineered crops for sustainably enhanced food production systems. Front. Plant Sci.
13. doi: 10.3389/fpls.2022.1027828

Ahluwalia, O., Singh, P. C., and Bhatia, R. (2021). A review on drought stress in
plants: Implications, mitigation and the role of plant growth promoting rhizobacteria.
Resour. Environ. Sust. 5, 100032. doi: 10.1016/j.resenv.2021.100032

Ahmad, H. M., Fiaz, S., Hafeez, S., Zahra, S., Shah, A. N., Gul, B., et al. (2022). Plant
growth-promoting rhizobacteria eliminate the effect of drought stress in plants: A
review. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.875774

Akanmu, A. O., Akol, A. M., Ndolo, D. O., Kutu, F. R., and Babalola, O. O. (2023).
Agroecological techniques: Adoption of safe and sustainable agricultural practices
among the smallholder farmers in Africa. Front. Sust. Food Syst. 7. doi: 10.3389/
fsufs.2023.1143061

Akhtar, N., Ilyas, N., Mashwani, Z., Hayat, R., Yasmin, H., Noureldeen, A., et al.
(2021). The synergistic effects of plant growth promoting rhizobacteria and silicon
dioxide nano-particles to ameliorate drought stress in wheat. Plant Physiol. Biochem.
166, 160–176. doi: 10.1016/j.plaphy.2021.05.039

Alharbi, K., Hafez, E., Omara, A. E.-D., Awadalla, A., and Nehela, Y. (2022). Plant growth
promoting rhizobacteria and silica nanoparticles stimulate sugar beet resilience to irrigation
with saline water in salt-affected soils. Plants 11, 3117. doi: 10.3390/plants11223117
Alharbi, K., Hafez, E. M., Omara, A. E. D., Rashwan, E., and Alshaal, T. (2023). Zinc
oxide nanoparticles and PGPR strengthen salinity tolerance and productivity of wheat
irrigated with saline water in sodic-saline soil. Plant Soil 493, 475–495. doi: 10.1007/
s11104-023-06245-7

Alharby, H. F., and Ali, S. (2022). Combined role of Fe nanoparticles (Fe NPs) and
Staphylococcus aureus L. @ in alleviating chromium stress in rice plants. Life (Basel) 12,
338. doi: 10.3390/life12030338

Ali, E. F., El-Shehawi, A. M., Ibrahim, O. H. M., Abdul-Hafeez, E. Y., Moussa, M. M.,
and Hassan, F. A. S. (2021). A vital role of chitosan nanoparticles in improvisation the
drought stress tolerance in Catharanthus roseus (L.) through biochemical and gene
expression modulation. Plant Physiol. Biochem. 161, 166–175. doi: 10.1016/
j.plaphy.2021.02.008

Alori, E. T., Glick, B. R., and Babalola, O. O. (2017). Microbial phosphorus
solubilization and its potential for use in sustainable agriculture. Front. Microbiol. 8.
doi: 10.3389/fmicb.2017.00971

Al-Turki, A., Murali, M., Omar, A. F., Rehan, M., and Sayyed, R. Z. (2023). Recent
advances in PGPR-mediated resilience toward interactive effects of drought and salt
stress in plants. Front. Microbiol. 14. doi: 10.3389/fmicb.2023.1214845

Ameen, F., Alsamhary, K., Alabdullatif, J. A., and ALNadhari, S. (2021). A review on
metal-based nanoparticles and their toxicity to beneficial soil bacteria and fungi.
Ecotoxicol. Environ. Saf. 213, 112027. doi: 10.1016/j.ecoenv.2021.112027

Anikwe, M. A., and Ife, K. (2023). The role of soil ecosystem services in the circular
bioeconomy. Front. Soil Sci. 3. doi: 10.3389/fsoil.2023.1209100

Awan, S., Shahzadi, K., Javad, S., Tariq, A., Ahmad, A., and Ilyas, S. (2020). A
preliminary study of influence of zinc oxide nanoparticles on growth parameters of
frontiersin.org

https://doi.org/10.1021/acsomega.3c02957
https://doi.org/10.1021/acsomega.3c02957
https://doi.org/10.3389/fpls.2022.1027828
https://doi.org/10.1016/j.resenv.2021.100032
https://doi.org/10.3389/fpls.2022.875774
https://doi.org/10.3389/fsufs.2023.1143061
https://doi.org/10.3389/fsufs.2023.1143061
https://doi.org/10.1016/j.plaphy.2021.05.039
https://doi.org/10.3390/plants11223117
https://doi.org/10.1007/s11104-023-06245-7
https://doi.org/10.1007/s11104-023-06245-7
https://doi.org/10.3390/life12030338
https://doi.org/10.1016/j.plaphy.2021.02.008
https://doi.org/10.1016/j.plaphy.2021.02.008
https://doi.org/10.3389/fmicb.2017.00971
https://doi.org/10.3389/fmicb.2023.1214845
https://doi.org/10.1016/j.ecoenv.2021.112027
https://doi.org/10.3389/fsoil.2023.1209100
https://doi.org/10.3389/fpls.2024.1376214
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Verma et al. 10.3389/fpls.2024.1376214
Brassica oleracea var italic. J. Saudi Soc Agric. Sci. 20, 18–24. doi: 10.1016/
j.jssas.2020.10.003

Azameti, M. K., and Imoro, A. M. (2023). Nanotechnology: A promising field in
enhancing abiotic stress tolerance in plants. Crop Design 2, 100037. doi: 10.1016/
j.cropd.2023.100037

Azmat, A., Tanveer, Y., Yasmin, H., Hassan, M. N., Shahzad, A., Reddy, M., et al.
(2022). Coactive role of zinc oxide nanoparticles and plant growth promoting
rhizobacteria for mitigation of synchronized effects of heat and drought stress in
wheat plants. Chemosphere 297, 133982. doi: 10.1016/j.chemosphere.2022.133982

Bishnoi, U. (2014). PGPR interaction: An ecofriendly approach promoting the
sustainable agriculture system. Adv. Bot. Res. 75, 81–113. doi: 10.1016/
bs.abr.2015.09.006

Boretti, A., and Rosa, L. (2019). Reassessing the projections of the world water
development report. NPJ Clean Water 2, 1–6. doi: 10.1038/s41545-019-0039-9

Bunemann, E. K., Bongiorno, G., Bai, Z., Creamer, R. E., De Deyn, G., De Goede, R.,
et al. (2018). Soil quality – A critical review. Soil Biol. Biochem. 120, 105–125.
doi: 10.1016/j.soilbio.2018.01.030

Cai, L., Cai, L., Jia, H., Liu, C., Wang, D., and Sun, X. (2020). Foliar exposure of
Fe3O4 nanoparticles on Nicotiana benthamiana: evidence for nanoparticles uptake,
plant growth promoter and defense response elicitor against plant virus. J. Hazard.
Mater. 393, 122415. doi: 10.1016/j.jhazmat.2020.122415

Chandrashekar, H. K., Singh, G., Kaniyassery, A., Thorat, S. A., Nayak, R., Murali, T.
S., et al. (2023). Nanoparticle-mediated amelioration of drought stress in plants: A
systematic review. 3 Biotech. 13, 336. doi: 10.1007/s13205-023-03751-4

Chen, C., Unrine, J. M., Hu, Y., Guo, L., Tsyusko, O. V., Fan, Z., et al. (2021).
Responses of soil bacteria and fungal communities to pristine and sulfidized zinc oxide
nanoparticles relative to Zn ions. J. Hazard. Mater. 405, 124258. doi: 10.1016/
j.jhazmat.2020.124258

Chieb, M., and Gachomo, E. W. (2023). The role of plant growth promoting
rhizobacteria in plant drought stress responses. BMC Plant Biol. 23, 407.
doi: 10.1186/s12870-023-04403-8

deMoraes, A. C. P., Ribeiro, L., deCamargo, E. R., and Lacava, P. T. (2021). The
potential of nanomaterials associated with plant growth-promoting bacteria in
agriculture. 3 Biotech. 11, 318. doi: 10.1007/s13205-021-02870-0

De Souza-Torres, A., Govea-Alcaide, E., Gómez-Padilla, E., Masunaga, S. H.,
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