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Phenolamides are important secondary metabolites in plant species. They play

important roles in plant defense responses against pathogens and insect

herbivores, protection against UV irradiation and floral induction and development.

However, the accumulation and variation in phenolamides content in diverse maize

lines and the genes responsible for their biosynthesis remain largely unknown. Here,

we combined genetic mapping, protein regulatory network and bioinformatics

analysis to further enhance the understanding of maize phenolamides biosynthesis.

Sixteen phenolamides were identified in multiple populations, and they were all

significantly correlated with one or several of 19 phenotypic traits. By linkage

mapping, 58, 58, 39 and 67 QTLs, with an average of 3.9, 3.6, 3.6 and 4.2 QTLs for

each trait were mapped in BBE1, BBE2, ZYE1 and ZYE2, explaining 9.47%, 10.78%,

9.51% and 11.40% phenotypic variation for each QTL on average, respectively. By

GWAS, 39 and 36 significant loci were detected in two different environments, 3.3 and

2.8 loci for each trait, explaining 10.00% and 9.97% phenotypic variation for each

locus on average, respectively. Totally, 58 unique candidate genes were

identified, 31% of them encoding enzymes involved in amine and derivative

metabolic processes. Gene Ontology term analysis of the 358 protein-protein

interrelated genes revealed significant enrichment in terms relating to cellular

nitrogen metabolism, amine metabolism. GRMZM2G066142, GRMZM2G066049,

GRMZM2G165390 and GRMZM2G159587 were further validated involvement in

phenolamides biosynthesis. Our results provide insights into the genetic basis of

phenolamides biosynthesis in maize kernels, understanding phenolamides

biosynthesis and its nutritional content and ability to withstand biotic and

abiotic stress.
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1 Introduction

Maize (Zea mays L.) is the world’s most widely grown crop for

staple foods, animal feed, biofuel and other industrial raw materials.

By 2050, it is estimated that the human population will reach 9

billion (FAO, 2009). Therefore, increasing maize yield while

providing additional nutritional value is essential to meet the

growing nutritional needs of a large global population (Casas

et al., 2014; Jin et al., 2017).

Phenolamides (PAs) are important secondary metabolites in

plant species. They are often referred to as hydroxycinnamic acid

amides (HCAA) or phenylamides. PAs are primarily found in

reproductive organs and seeds of plants and are believed to be

either products of polyamine catabolism or stored forms of

polyamines or phenols (Bassard et al., 2010). Chemically, PAs are

conjugates of various hydroxycinnamic acids (such as coumaric,

caffeic and ferulic acids) with mono/polyamines (such as tyramine,

putrescine, spermine and spermidine) (Tanabe et al., 2016; Peng

et al., 2016). PAs are highly diverse natural products identified in a

broad number of plant species, such as barley (Hordeum vulgare)

(Pihlava, 2014; Van Zadelhoff et al., 2022), rice (Oryza sativa)

(Tanabe et al., 2016; Peng et al., 2016; Dong et al., 2015), maize

(Zea mays) (Wen et al., 2014), tomato (Solanum lycopersicum)

(Roumani et al., 2022), tobacco (Nicotiana attenuata) (Onkokesung

et al., 2012; Ullmann-Zeunert et al., 2013; Figon et al., 2021),

Arabidopsis (Arabidopsis thaliana) (Fellenberg et al., 2012), tea

(Camellia sinensis) (Wang et al., 2023) and potato (Solanum

tuberosum) (Yogendra et al., 2017). PAs are involved in various

biological activities in plants (Wang et al., 2020). They play an

important role in plant defense responses against pathogens and

insect herbivores (Gaquerel et al., 2013, 2013, 2014; Figon et al.,

2021; Fang et al., 2022; Xu et al., 2022). They are also suggested to

play roles in sulfur starvation, heat shock, salt stress, protection

against UV irradiation and floral induction and development (Guo

et al., 2003; Demkura et al., 2010; Onkokesung et al., 2012).

Phenolamides biosynthesis is one of most intensively researched

fields of plant secondary metabolism, and the synthesis steps of

phenolamides are generally conserved across different plant species,

indicating a high degree of evolutionary conservation (Bassard et al.,

2010). The key step in phenolamide biosynthesis is catalyzed by N-

hydroxycinnamoyltransferase (HT), which acts at the entry point of the

pathway (Petersen, 2016; Roumani et al., 2021). Several HTs have been

cloned in various plant species, including tyramine hydroxycinnamoyl

transferases (THTs) in potato, tomato and rice (Schmidt et al., 1999;

Shen et al., 2021), putrescine hydroxycinnamoyl transferases (PHTs) in

rice and maize (Wen et al., 2014; Fang et al., 2021), serotonin N-

hydroxycinnamoyl transferases (SHTs) in pepper (Kang et al., 2006),

tryptamine hydroxycinnamoyl transferases (TBTs) in rice (Peng et al.,

2016), and agmatine hydroxycinnamoyl transferases (AHTs) in

Arabidopsis and rice (Muroi et al., 2009; Peng et al., 2016). The

BAHD acyltransferase family, named after its members benzyl alcohol

O-acetyltransferase (BEAT), anthocyanin O-hydroxycinnamoyl

transferase (AHCT), anthranilate N-hydroxycinnamoyl/benzoyl

transferase (HCBT), and deacetylvindoline 4-O-acetyltransferase

(DAT), is also involved in phenolamide biosynthesis (St-Pierre and

De Luca, 2000). Enzymes from branches I, IV, and V of the BAHD
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acyltransferase family have been identified in phenolamide biosynthesis

(Peng et al., 2016). Agmatine coumaroyl transferases (ACTs) have been

identified in Brachypodium distachyon (Carere et al., 2018), Arabidopsis

(Muroi et al., 2009) and barley (Burhenne et al., 2003). Spermidine

hydroxycinnamyl transferase, which produces hydroxycinnamoyl

spermidines, has been found in Arabidopsis, tobacco leaves, eggplant

and rice (Grienenberger et al., 2009; Luo et al., 2009; Onkokesung et al.,

2012; Dong et al., 2015; Peng et al., 2016). Putrescine hydroxycinnamoyl

transferases have been identified in both dicots (Nicotiana) and

monocots such as maize and rice (Onkokesung et al., 2012; Wen

et al., 2014; Chen et al., 2014b). Despite the identification of several

genes involved in phenolamide biosynthesis, the process is still not well

understood, particularly in maize. Further research is needed to unravel

the complete biosynthetic pathway and regulatory mechanisms of

phenolamides in maize and other plant species.

In recent years, the rapid development of metabolomics and the

use of different populations for genetic mapping have provided us an

unprecedented insight into the regulation of the abundance of multiple

chemical components in plants (Wen et al., 2016). Based on the

spatiotemporal distribution characteristics of PAs with the natural

genetic diversity of plants, several new PA biosynthetases were

successfully identified in rice and maize (Wen et al., 2014; Dong

et al., 2015). Two spermidine N-hydroxycinnamoyl transferases,

LOC_Os12g27220 and LOC_Os12g27254, responsible for the

biosynthesis of spermidine-containing PAs in rice have been recently

reported by GWAS (Dong et al., 2015). Several additional rice genes

were associated with the condensation of putrescine and agmatime

with hydroxycinnamoyl-CoA substrates in GWAS experiments (Chen

et al., 2014b).

Previously, comprehensive metabolic profiling using liquid

chromatography tandem mass spectrometry (LC–MS/MS) was

carried out in mature maize kernels from association panel and

RIL populations (Wen et al., 2014, 2015, 2016). Combined linkage

analysis and GWAS were carried out on the resultant datasets,

which led to the identification of a variety of loci involved in

multiple biosynthetic pathways (Wen et al., 2014, 2016). Here, we

combined genetic mapping, metabolite profiling from these

previous studies and protein regulatory network analysis to

further enhance the understanding of the maize phenolamides

pathway. Correlation between phenolamides and agronomic

performance (Yang et al., 2014), GWAS, linkage mapping,

protein regulatory network, and bioinformatics analysis of

candidate genes were conducted in the current study. These

results provide new insights for understanding phenolamides

biosynthesis and its nutritional content and ability to withstand

biotic and abiotic stress.
2 Materials and methods

2.1 Genetic materials and field trials

The metabolic data used in this study were obtained from

genetic materials, including an association mapping panel with

368 lines (referred to as AMP hereafter) for GWAS and two

recombinant inbred line populations (RILs; BB, F9 RIL B73/
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By804, and ZY, F10 RIL Zong3/Yu87-1) for linkage analysis as

described previously (Wen et al., 2014; Pan et al., 2016), BB and ZY

RIL populations was derived from a single F1 plant and was

developed through self-pollination and single seed descent for

nine and ten generations, respectively. Maize kernels of AMP

were planted in Yunnan (Kunming, E 102°30′, N 24°25′, referred
to as AMPE1) and Chongqing (E 106°50′, N 29° 25′, referred to as

AMPE2) in March 2011, the 197 BB RIL population was planted in

Hainan (Sanya; E 109°519, N 18°259) in October 2010 (referred to

as BBE1) and Henan (Zhengzhou; E 113°429, N 34°44′) in June

2011 (referred to as BBE2), and the 197 lines of the ZY RIL

population were planted in Yunnan (Kunming; E 102°309, N 24°

259; referred to as ZYE1) and Henan (Zhengzhou; E 113°429, N 34°

449; referred to as ZYE2) in March and June 2011, respectively. An

incomplete block design was used for the field trials of all the inbred

lines, including AMP and two RIL populations, and a single

replicate was conducted in each environment. All lines were self-

pollinated, and five ears were harvested from each plot at maturity

and air-dried and shelled. For each line, ears from five plants were

harvested at the same maturity and bulked. Twelve well-grown

kernels were randomly selected from the harvested ears and bulked

for grinding (Wen et al., 2014; Deng et al., 2020).
2.2 Metabolic data, genotype and
expression data

Samples from each line of AMP and RIL populations were

extracted before analysis using an LC–ESI–MS/MS system, more

details information were provided in previous study (Wen et al.,

2014). The genotype data was used in present study obtained from

the Maizego database (http://www.maizego.org/Resources.html)

consisted of 1.25 million SNP (B73_RefGen_v2) that covered the

whole maize genome, with a minimum allele frequency ≥ 0.05 (Liu

et al., 2017). The two RIL populations were also genotyped by the

Illumina MaizeSNP50 BeadChip, and high-density linkage maps

were constructed with 2496 and 3071 unique bins for BB and ZY,

respectively (Pan et al., 2016; Xiao et al., 2016). The expression data

of 28 769 genes were obtained by RNA sequencing from kernel of

five immature ears of 368 maize inbred lines were collected 15 days

after self-pollination for RNA extraction (Fu et al., 2013; Li

et al., 2013).
2.3 Genetic mapping

A genome-wide association study (GWAS) was conducted for

maize kernel phenolamides. To test the statistical associations

between genotype and phenotype, a mixed linear model was used

to account for the population structure and relative kinship (Li

et al., 2013). Considering the maker number in the present study is

1.25 million, many of them should be in linkage disequilibrium. The

effective number of independent markers (N) was calculated using

the GEC software tool (Li et al., 2012). Suggestive (1/N) P value

thresholds were set to control the genome-wide type 1 error rate.

The suggestive value was 2.04E-06 for the whole population and
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was used as the cutoff (Deng et al., 2017). The P value of each SNP

was calculated using Tassel3.0. For all traits, the lead SNP (SNP with

the lowest p value) at an associated locus and its corresponding

candidate genes in or near (within 100 kb up- and downstream of

the lead SNP) known genes were reported. If the associated SNPs

were not in or near an annotated phenolamides metabolism gene,

the closest of the lead SNP candidate gene was considered the most

likely candidate gene (Deng et al., 2017). The physical locations of

the SNPs were based on B73 RefGen_v2.

Linkage mapping was conducted using composite interval

mapping (CIM) implemented in Windows QTL Cartographer

V2.5 (Zeng and Kao, 1999; Wang et al., 2010) for all

phenolamides measured in the maize kernels of the two RIL

populations. The methods followed the Windows QTL

Cartographer V2.5 user manual. Zmap (Model 6) with a 10 cM

window and a walking speed of 0.5 cM was used. For each trait, a

uniform threshold for significant QTLs was determined by 500

permutations (p = 0.05). The parameter was set as default. A 2.0

LOD-drop confidence interval was used for each QTL as described.

Expression mapping (eQTL) analysis used the same method

described above for GWAS. The association analysis between the

genome-wide SNPs and the identified candidate gene expression

level was performed.
2.4 Data analysis

The line mean-based broad-sense heritability (H2) for each trait

was calculated as H2=s2 g/(s2 g+s2 e/n), where s2 g is genetic

variance, s2 e is error variance, and n is the number of

environments. The estimates of s2 g and s2 e were obtained by

the mixed linear model, treating genotype and environment as

random effects (R Core Team, 2012). For each metabolite, the BLUP

value for each line across environments was used to reduce

environmental noise based on the mixed linear model

implemented in the R package ‘LME4’ (R Core Team, 2012). The

Pearson correlation between different phenolamides and between

phenolamides and other agronomic traits of this association panel

(Yang et al., 2014) were calculated in subpopulations using the R

function COR. TEST (www.r-project.org). Cytoscape v3.9.1 (http://

www.cytoscape.org/download.php) was used for visualization.
2.5 Expression profiling of candidate genes
and protein–protein interaction network

The expression profiling of candidate genes was analyzed

through the transcriptomic data of the B73 maize inbred line in

different seed development stages, including 0 days after pollination

(S0), S2, S3, S4, S6, S8, S10, S12, S14, S16, S18, S20, S22, S24, S26,

S28, S30, S32, S34, S36 and S38 (Chen et al., 2014a). The chiplot

(https://www.chiplot.online/) was used to visualize the expression

profiling of candidate genes based on the defaults options.

Protein-protein interaction network analysis was performed

using the STRING database defaults options (https://string-

db.org/) based on confirmed and predicted interactions. The
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interaction network was visualized by Cytoscape v3.9.1 (http://

www.cytoscape.org/download.php). The network nodes represent

proteins, and the edges represent protein-protein interactions. The

GO (Gene Ontology) analysis of interaction proteins was performed

using AgriGO v2.0 (http://systemsbiology.cau.edu.cn/agriGOv2/),

and the analysis results (p<0.01) were imported into the online tool

REVIGO (http://revigo.irb.hr/) and then visualized using

software chiplot.
3 Results

3.1 Natural variations in phenolamides in
maize kernels

Using high-throughput liquid chromatography tandem mass

spectrometry (LC–MS/MS), we assessed the variation in

phenolamides content in dry matured maize kernels, which

included two recombinant inbred line populations (RIL), B73/

BY804 (BB) and ZONG3/YU87-1 (ZY), and an association panel

(AMP) harvested from multiple environments (simply called

AMPE1, AMPE2 for AMP, BBE1, BBE2 for BB RIL population,

and ZYE1 and ZYE2 for ZY RIL population, which are described in

detail in “Materials andMethods”). In a previous study, 748 and 735

metabolites were detected in AMPE1 and AMPE2, respectively

(Wen et al., 2014), and the chemical structures of 184 metabolites

were identified or annotated in BB and ZY RIL populations (Wen

et al., 2015). In the current study, we extract the profile of

phenolamides from these previous datasets, which includes 16

phenolamides. Among them, 16, 16, 15, 16, 15, and 16

phenolamides were found in AMPE1, AMPE2, BBE1, BBE2,

ZYE1, and ZYE2, respectively, and 15 phenolamides were

detected in all six environments (Table 1).

The phenolamides levels varied widely in AMPE1, AMPE2, BBE1,

BBE2, ZYE1, and ZYE2 (Supplementary Tables 1, 2). Variation ranged

from a 5.2-fold difference in N-(coumaroyl-O-hexoside)-spermidine to

a 40663.0-fold difference in the N-coumaroyl-spermidine derivative

and a 4.3-fold difference in N-(coumaroyl-O-hexoside)-spermidine to

an 83045.1-fold difference in the N’,N’’-feruloyl, caffeoyl-spermidine

derivative in association and linkage mapping populations, respectively

(Supplementary Tables 1, 2). The skewness, kurtosis and other detailed

information for each phenolamide are shown in Supplementary

Tables 1, 2. In AMP, all phenolamides have broad-sense heritability

(H2) greater than 0.4, and over 87.5% of phenolamides haveH2 greater

than 0.6. Over 86.7% and 57.1% of phenolamides had H2 greater than

0.5 in the BB and ZY populations, respectively (Supplementary Table 3,

Supplementary Figure 1). We constructed correlation coefficient

networks based on phenolamides levels detected in each experiment

with R > 0.3. We found more intense interactions among n1544-1 (N,

N-caffeoyl, feruloyl-spermidine derivative), n0439 (N’,N’’-feruloyl,

caffeoyl-spermidine derivative), n0380 (N-(caffeoyl-O-hexoside)-

spermidine), n0412 (N-(feruloyl-O-hexoside)-spermidine), n0436

(the N1, N10-diferuloylspermidine), n0945 (N-coumaroylputrescine),

n0183 (N-(coumaroyl-O-hexoside)-spermidine) and n1243 (N,N-di-

coumaroyl-N-feruloylspermidine). n0130 (N-Feruloylputrescine),

n1377 (N-Feruloylagmatine), n1376 (Feruloylagmatine derivative),
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n1394 (N-Feruloyl, N-methoxyagmatine), n0271 (Dicoumaroyl

putrescine) and n0979 (N-Coumaroylagmatine) showed more

intense interactions as well (Figure 1, Supplementary Table 4).
3.2 Correlation analysis with other traits

Phenolamides are an important class of metabolites in maize

kernels. To explore how the kernel phenolamides are coordinated

with other phenotypic traits. Pearson correlation coefficients were

calculated using the COR. test in R to detect the statistical

correlations between kernel phenolamides content and 23 other

phenotypic traits previously measured in the same association

panel. These 23 phenotypic traits included the morphological

attributes plant height (PH), ear height (EH), ear leaf width and

length (LW, LL), tassel main axis length (TML), tassel branch

number (TBN), and leaf number above ear (ULN); yield-related

traits ear length and diameter (EL, EW), cob diameter (CD), kernel

number per row (RKN), row number per ear (ERN), hundred

kernel weight (HW), cob weight (CW), kernel width (KW), kernel

length (KL) kernel thickness (KT); maturity traits days to heading,

anthesis, and silking (HD, PS, ST); disease resistance maize rough

dwarf virus (MRDV) and sugarcane mosaic virus (SCMV); and cob

color (CC).

The results showed that the 16 phenolamides were all significantly

correlated (p < 0.05) with one or several of 19 phenotypic traits except

EW, RKN, HW and MRDV. The content of n0130 (N-feruloylpu

trescine), n1377 (N-feruloylagmatine), n1376 (feruloylagmatine

derivative), n1394 (N-feruloyl, N-methoxyagmatine) and n0979 (N-

coumaroylagmatine) exhibited significant HD, PS and ST (Figure 2,

Supplementary Table 5), suggesting that increasing the content of N-

feruloylputrescine, N-feruloylagmatine, feruloylagmatine derivative, N-

feruloyl, N-methoxyagmatine and N-coumaroylagmatine might

increase days to heading, anthesis, and silking. N1048 (N-coumaroyl-

spermidine derivative) showed a significant positive correlation (p =

0.0117; R = 0.144) with KL and a significant negative correlation (p =

0.0111; R = -0.145) with KW. N0183 (N-(coumaroyl-O-hexoside)-

spermidine) showed a significant positive correlation (p = 0.0217; R =

0.131) with sugarcane mosaic virus (Figure 2, Supplementary Table 5),

implying that increasing the N-coumaroyl-spermidine derivative

content might increase the resistance of sugarcane mosaic virus. The

content of N,N-caffeoyl, feruloyl-spermidine derivative was

significantly negatively correlated with KL (p = 6.86×10-3; R =

-0.154), ERN (p = 9.74×10-3; R = -0.147), and PH (p = 0.0199; R =

-0.133), suggesting that an increase in N,N-caffeoyl, feruloyl-

spermidine derivative content may decrease the KL, ERN and PH

(Figure 2, Supplementary Table 5). More detailed information on the

correlation is shown in Figure 2 and Supplementary Table 5.
3.3 Linkage mapping for phenolamides
levels in the two RIL populations

Two RIL populations (BB and ZY) were genotyped with a high-

density SNP array (Pan et al., 2016) and were used for QTL mapping

for phenolamides. For the BB population, 58 and 58 QTLs were
frontiersin.org
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mapped for 15 and 16 traits in BBE1 and BBE2, respectively, with an

average of 3.9 and 3.6 QTLs per trait, respectively (Table 2,

Supplementary Table 6). Only nine QTLs were detected for the six

common phenolamides in BBE1 and BBE2 (Supplementary Table 6).

Each QTL explained 4.79%-20.20% (BBE1) and 2.75%-76.38% (BBE2)

of the phenotypic variation, with averages of 9.47% and 10.78%

(Table 1, Supplementary Table 6), respectively. Forty-one QTLs that

explained greater than 10% of the phenotypic variation (R2 = 10.41%-

76.38%) were identified in two experiments.

For the ZY RIL population, 39 and 67 QTLs were detected for 11

and 16 phenolamides traits in ZYE1 and ZYE2, respectively, with

averages of 3.6 and 4.2 QTLs, respectively (Table 2, Supplementary

Table 6). Only four QTLs were detected for the three common

phenolamides in ZYE1 and ZYE2 (Supplementary Table 6). Each

QTL explained 6.59%-17.54% (ZYE1) and 5.73%-29.98% (ZYE2) of

the phenotypic variation, with averages of 9.51% and 11.40% (Table 1,

Supplementary Table 6), respectively. Forty-three QTLs that explained

greater than 10% of the phenotypic variation (R2 = 10.02%-29.98%)

were identified in two experiments (Supplementary Table 6). For the

same trait, only 15 QTLs were detected in more than one population,

implying that different low-frequency QTLs existed in different genetic

backgrounds. We analyzed the resolution of QTL mapping, and the

results showed a 19.82% (44/222) QTL interval less than 1 Mb and a

67.57% (150/222) QTL interval less than 5 Mb (Supplementary

Figure 2, Supplementary Table 6). There are many QTLs explaining
Frontiers in Plant Science 05
more than 10%, but only 2 and 6 more than 20% (for BB and

ZY respectively).
3.4 GWAS for phenolamides levels

GWAS was performed using an association panel including 368

maize diverse inbred lines (Wen et al., 2014) and 1.25 million high-

quality single nucleotide polymorphisms (SNPs) with minor allele

frequency (MAF) >0.05 (Fu et al., 2013; Liu et al., 2017). A total of

73 loci were identified by GWAS at a significance level of p ≤ 2.04 ×

10−6 in two experiments (AMPE1, AMPE2) (Table 2). Briefly, 38

and 35 loci were identified for 12 phenolamides in AMPE1 and 13

phenolamides in AMPE2, with an average of 3.2 and 2.7 loci for

each trait, respectively, and only five of these loci were conserved for

the same phenolamides in both experiments. Each locus could

explain phenotypic variation (R2) ranging from 6.97% to 23.10%

and 7.10% to 17.71%, with means of 10.07% and 10.01%,

respectively. Twenty-four loci with effects greater than 10% were

identified in two environments (Supplementary Table 7). Detailed

information on the GWAS results, including the p value and R2 of

each locus, physical position and minor allele frequency (MAF) of

the lead SNP, annotation, eQTL, and correlation between

phenotype and expression of the most likely candidate gene, is

provided in Supplementary Table 7.
TABLE 1 Detailed information of 16 phenolamides detected in this study.

No.
Peak
no.

Level
Ret. Time
(min)*

Putative
phenolamides name

AMPE1 AMPE2 BBE1 BBE2 ZYE1 ZYE2

1 n0130 C 4.8 N-Feruloylputrescine √ √ √ √ √ √

2 n0183 B 6.45
N-(coumaroyl-O-
hexoside)-spermidine

√ √ √ √ √ √

3 n0271 C 9.63 Dicoumaroylputrescine √ √ √ √ √ √

4 n0380 B 5.64 N-(caffeoyl-O-hexoside)-spermidine √ √ √ √ √ √

5 n0381-1 B 9.9 Diferuloylputrescine √ √ √ √ √ √

6 n0412 C 6.24 N-(feruloyl-O-hexoside)-spermidine √ √ √ √ √ √

7 n0436 C 6.73 N1, N10-Diferuloylspermidine √ √ √ √ √ √

8 n0439 B 10.2
N’,N’’-Feruloyl,caffeoyl-
spermidine derivative

√ √ √ √ √ √

9 n0945 C 6.59 N-Coumaroylputrescine √ √ √ √ √ √

10 n0979 B 5.08 N-Coumaroylagmatine √ √ √ √ √ √

11 n1048 B 4.63 N-Coumaroyl-spermidine derivative √ √ × √ × √

12 n1243 C 10.8
N,N-Di-coumaroyl-
N-feruloylspermidine

√ √ √ √ √ √

13 n1376 B 5.33 Feruloylagmatine derivative √ √ √ √ √ √

14 n1377 C 7.69 N-Feruloylagmatine √ √ √ √ √ √

15 n1394 C 5.52 N-Feruloyl, N-methoxyagmatine √ √ √ √ √ √

16 n1544-1 B 11.3
N,N-caffeoyl, Feruloyl-
spermidine derivative

√ √ √ √ √ √
fronti
*Ret. Time, Retention time, in minutes (difference in Ret.Time between ES(+) and ES(-) modes was less than XX minutes), Identification level (B; C)- (B) MS/MS; (C) MSE.
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The colocalization of QTLs and/or significant loci for the same trait

identified across different environments or different populations is

summarized. In total, 10 trait-loci combinations that are 8 QTLs

corresponding to five traits were detected in more than one

environment or population (AMP, BBRIL, ZYRIL) in this study

(Figure 3, Supplementary Table 6, 7). Detailed analyses of the

candidate genes underlying these loci will provide useful further

information concerning the phenolamides biosynthetic pathway.
3.5 Prediction and annotation of
candidate genes

Subsequently, limited overlaps were found between the loci (10/

73) identified by GWAS and the QTLs identified by linkage

mapping for the same trait in the present study. A total of 58

unique candidate genes corresponding to 73 trait-locus associations
Frontiers in Plant Science 06
identified in two experiments were annotated, and other potential

candidate genes within 200 kb (100 kb upstream and downstream

of the lead SNPs) of the 73 loci are also listed in Supplementary

Table 7. Among these candidate genes, 46 genes that may affect

phenolamides were found in different developmental stages of

maize kernel (Figure 4). Based on the current database, among

the 58 candidate genes, those encoding enzymes involved in amine

and derivative metabolic processes accounted for 31%, the enzymes

involved in other biological processes accounted for 19%,

transcription factors accounted for 10%, and the unknown

functions accounted for 17% (Supplementary Figure 3).

Expression QTLs (eQTL, n = 368) were identified for a

plurality of these candidate genes (55.2%, or 32/58) using the

previous RNA-sequencing data of immature kernels (Fu et al.,

2013). Significant correlations (p < 0.05, n = 335-339) between the

expression level of the candidate genes with eQTLs identified and

the phenotypic variation of the corresponding phenolamides were
FIGURE 1

Correlation coefficient based network of all phenolamides in each experiment for AMP and both BB and ZY populations. |r| ≥ 0.3 for correlation
coefficient between two phenolamides was used to construct the network.
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found in 14 cases (24.1%) (Supplementary Table 7), which

suggests that some of these loci affect phenotypic variation via

transcriptional regulation.
3.6 Protein–protein interaction
network analysis

Proteins usually regulate the growth and development of plants

in complex interrelated networks. To understand the metabolism of

phenolamide-related traits in maize, protein-protein interaction

networks were constructed of 46 highly expressed candidate genes

through the STRING database (https://string-db.org/). Then, 358

genes were detected that were associated with 43 candidate genes

(Supplementary Figure 4, Supplementary Table 8). Gene Ontology

(GO) term analysis of the protein-protein interrelated genes

revealed significant enrichment in terms relating to cellular

nitrogen metabolism, amine metabolism, amino acid and

derivative metabolism, organic acids and other processes

(Supplementary Figure 5).
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3.7 Analysis of candidate genes

A major QTL on chromosome 10 (LOD = 53.67, R2 = 76.38%)

affecting n1048 (N-coumaroyl-spermidine derivative) was identified in

the BBE2 RIL population (Figure 5A) with a confidence interval of just

2.1 cM (0-2.1 cM) and a physical length of 2.04 Mb (0-2.04 Mb)

(Supplementary Table 6). A GWAS signal was detected within the QTL

interval located at 1.14 Mb (p = 8.46×10-7, n = 339, Figure 5B). Eleven

candidate genes were obtained within the 200 kb region around the

peak, including two ZmACTs (GRMZM2G066142 and GRM

ZM2G066049), three transposable elements (GRMZM2G365485,

GRMZM5G854762 and GRMZM2G057831), and six unknown

genes (Figure 5C). The two ZmACT (GRMZM2G066142 and

GRMZM2G066049) genes are located approximately 55-60 kb

upstream of the lead SNP chr10. S_1144300 (Figures 5B, C).

ZmACT encodes agmatine coumaroyltransferase, which catalyzes the

production of hydroxycinnamoyl derivatives such as p-

coumaroylagmatine, p-coumaroylputrescine, feruloylagmatine and

feruloylputrescine (Muroi et al., 2009). The lead SNP was strongly

associated with GRMZM2G066142 (p = 3.65 × 10−3, n = 368) and

GRMZM2G066049 expression levels (p = 3.01 × 10−3, n = 368)

(Figure 5E) and phenotypic traits from AMPE1 (p = 5.42 × 10−13, R2

= 7.51%, n = 338) and AMPE2 (p = 1.49 × 10−13, R2 = 8.43%, n = 335),

respectively (Figure 5D). Subsequently, the expression levels of

GRMZM2G066049 were significantly positively correlated with the

level of n1048 from AMPE1 (p = 0.040, r = 0.11, n = 339). The

expression levels of GRMZM2G066142 were significantly positively

correlated with the level of n1048 from AMPE1 (p = 8.09 × 10−3, r =

0.14, n = 339) (Figure 5F). These results imply that these two genes are

candidate genes.

A strong signal (p = 4.49 × 10−7, n = 339) was identified on

chromosome 9 (Supplementary Table 7), associated with n0183 (N-

(coumaroyl-O-hexoside)-spermidine) from AMPE1, which could

explain 7.89% of the phenotypic variat ion. The Bz1

(GRMZM2G165390) gene is located approximately 153 kb upstream

of the lead SNP chr9. S_11929632 (Supplementary Table 7). Bz1

encodes anthocyanin-3-O-glucosyltransferase, a key enzyme in the

anthocyanin synthesis pathway. The lead SNP was strongly associated

with the Bz1 expression level (p = 1.59 × 10−17, n = 367) and

phenotypic trait (p = 1.26 × 10−6, R2 = 7.89%, n = 338).

Subsequently, a strong cis-eQTL was detected for Bz1 (p = 1.98 ×

10−20, n = 368, MLM, Supplementary Figure 6), and the expression

level of Bz1 was significantly negatively correlated with the level of

n0183 (r = -0.16, p = 2.75 × 10−3, n = 338, Supplementary Figure 6,

Supplementary Table 7).
FIGURE 2

Correlation coefficient based network between phenolamides and
agronomy traits in each experiment for AMP populations. p < 0.05
between phenolamides agronomy traits and was used to construct
the network. CC, cob color, CD, cob diameter, CW, cob weight, PH,
plant height, EH, ear height, LL, ear leaf length, LW, ear leaf width,
EL, ear length, TML, tassel main axis length, TBN, tassel branch
number, ULN, up leaf number, ERN, ear row number, KW, kernel
width, KL, kernel length, KT, kernel thick, HD, Headingdate, PS,
pollenshed, ST, silkingtime, SCMV, sugarcane mosaic virus.
TABLE 2 Summary of significant loci-trait associations identified by GWAS and QTL identified by linkage mapping.

AMPE1 AMPE2 BBE1 BBE2 ZYE1 ZYE2

Number of traits 12/16 13/16 15/15 16/16 11/15 16/16

Number of loci 38 35 58 58 39 67

Average loci per trait 3.2 ± 2.6 2.7 ± 1.9 3.9 ± 2.6 3.6 ± 1.5 3.6 ± 2.0 4.2 ± 1.8

Average PVE per loci (%) 10.07 ± 4.40 10.01 ± 2.99 9.47 ± 3.60 10.78 ± 9.18 9.51 ± 2.70 11.40 ± 5.22
fr
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The significant SNP chr1. S_140716298 (in the 3′UTR of

GRMZM2G159587) was significantly associated with n0381-1

(diferuloylputrescine) (p = 1.39 × 10−11, n = 274) and n1243 (N,N-

di-coumaroyl-N-feruloylspermidine) (p = 9.06 × 10−7, n = 274) from

AMPE2, which accounted for 16.94% and 9.04% of the phenotypic

variance n0381-1 and n1243, respectively (Supplementary Figure 7,

Supplementary Table 7). ZmGR (GRMZM2G159587) encodes

glyoxylate reductase. The lead SNP was strongly associated with the

ZmGR expression level (p = 8.81 × 10−4, n = 300). Subsequently, a

strong cis-eQTL was detected for ZmGR (p = 1.97 × 10−9, n = 368,

MLM, Supplementary Figure 7), and the expression level of ZmGRwas

significantly positively correlated with the levels of n0381-1 (r = 0.14, p

= 9.40 × 10−3, n = 274) and n1243 (r = 0.15, p = 6.07 × 10−3, n = 274,

Supplementary Figure 7, Supplementary Table 7).
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4 Discussion

Phenolamides are important secondary metabolites in plant species.

They are important for defense responses against pathogens, insect

herbivores, sulfur starvation, salt stress, protection against UV

irradiation and floral induction and development (Demkura et al.,

2010; Onkokesung et al., 2012; Gaquerel et al., 2013; Figon et al.,

2021; Fang et al., 2022; Xu et al., 2022). Overexpression of endogenous

tyramine hydroxycinnamoyltransferase increased its resistance to

Pseudomonas syringae in tomato (Campos et al., 2014), the ectopic

expression of theAtACT in torenia plants rendered themmore resistant

to Botrytis cinerea (Muroi et al., 2012). Meanwhile, the accumulation of

p-coumaroylagmatine, p-coumaroylputrescine, and caffeoylputrescine

reduced spore germination of P. infestans on the potato leaf surface

(Dobritzsch et al., 2016). Through jasmonate-mediated activation of

defense-related genes and accumulation of aromatic phenolamides in

Qingke increased the resistance to powdery mildew (Xu et al., 2022). In

this study, we found that the n0183 (N-(coumaroyl-O-hexoside)-

spermidine) showed a significant positive correlation (p = 0.0217; R =

0.131) with sugarcane mosaic virus, and this result showed that n0183

might increase resistance to sugarcane mosaic virus. In addition, the

levels of n0130, n1377, n1376, n1394 and n0979 exhibited significant

positive correlations with HD, PS and ST (Figure 2, Supplementary

Table 5), suggesting that increasing their contentsmight increase days to

heading, anthesis, and silking.

Linkage analysis is a classical method for dissecting the genetic

basis that underlies quantitative traits. Fine mapping based on the

primary mapping results remains a conventional strategy. With the

rapid development of sequencing technology, we could obtain an

increasing number of molecular markers. However, due to the

limited combinations and the narrow genetic background of the

parents, linkage mapping is usually not very effective for complex

quantitative traits. GWAS is characterized by a high density of SNPs

and a large population, which can effectively solve the problem of low

diversity and detection rate, but a large number of false-positive results

will confuse the truly relevant sites and reduce the detection ability

(Zhang et al., 2022). Currently, as an efficient approach, the

combination of the GWAS approach and linkage analysis can help
FIGURE 3

Chromosomal distribution of phenolamides loci and QTLs identified in this study. QTL regions (represented by the confidence interval for linkage
mapping and the 100kb up- and downstream of the lead SNP for association mapping) across the maize genome responsible for phenolamides
levels from the different populations are shown as midnight blue (AMPE1), green (AMPE2), cyan (BBE1), yellow (BBE2), red (ZYE1) and brown (ZYE2)
boxes, respectively. The x axis indicates the genetic positions across the maize genome in Mb. Heatmap under the x axis illustrates the density of
amino acid loci and QTLs across the genome.
FIGURE 4

Heatmap of the expression profiles of candidate genes. The scale
bars represent standardized gene levels. S0-S38 indicate days after
pollination of maize seed.
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us quickly identify candidate genes. To date, only a few studies have

focused on the genetic architecture of maize kernel PAs (Wen

et al., 2014).

In the present study, we focused on the phenolamides that were

found in mature kernels harvested from an association panel and two

RIL populations grown across multiple environments. GWAS and

linkage mapping were used to dissect the genetic basis of PA content

in mature maize kernels from the aforementioned populations.

Combining linkage mapping and GWAS for 16 PA traits revealed

58, 58, 39 and 67 QTLs and 39 and 36 significant loci, respectively.

Only a few QTLs (15/222) could be identified in multiple RIL

populations, and only 10 trait-loci combinations that were 8 QTLs

corresponding to five traits were detected in more than one

environment or population (Supplementary Tables 6, 7). Similar

results have also been reported in other metabolite studies in maize

(Wen et al., 2014; Deng et al., 2017, 2015, 2016). These results implied

that QTLs affecting PA composition were genetic background

dependent. In this study, 73 loci were detected in AMPE1 and

AMPE2 with 1.25 million SNPs, and only 23/73 loci colocalized

with 1.06 million high-quality SNPs identified in the corresponding

environment in a previous report (Wen et al., 2014). Therefore, a

high-density map increased the QTL detection power and resolution

(Liu et al., 2017). A protein–protein network was constructed based

on the genes identified by GWAS (Supplementary Figure 4), and the

interacting proteins were found. These proteins are enriched in terms

relating to cellular nitrogen metabolism, amine metabolism, amino

acid and derivative metabolism, organic acids and other processes
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(Supplementary Figure 5). Further studies are needed to fully explore

the genetic control of phenolamides biosynthetic pathways.
5 Conclusion

An association panel and two RIL populations were used to

identify candidate genes for 16 phenolamide traits in multiple

environments. A total of 58, 58, 39 and 67 QTLs, explaining 9.47%,

10.78%, 9.51% and 11.40% of the phenotypic variation for each QTL

on average, were mapped in BBE1, BE2, ZYE1 and ZYE2, respectively.

Thirty-nine and 36 significant loci, explaining 10.00% and 9.97% of the

phenotypic variation for each locus on average, were identified in two

different environments. GRMZM2G066142, GRMZM2G066049,

GRMZM2G165390 and GRMZM2G159587 were further validated

using bioinformatics approaches. These findings provide insights into

the genetic basis of phenolamide biosynthesis in maize kernels,

understanding phenolamide biosynthesis and its nutritional content

and ability to withstand biotic and abiotic stress.
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FIGURE 5

Validation of association analysis using QTL Interval. (A) LOD curves of QTL mapping for level of n1048 in maize kernels on chromosome 10. (B) Scatterplot
of association results between SNPs in the confidence interval and the level of n1048. Association analysis was performed using the mixed linear model
controlling for the population structure (Q) and kinship (K). (C) The candidate genes of 200kb in the confidence interval. (D) Box plot for n1048 (red) from
AMPE1 and expression of GRMZM2G066142 (sky blue) and GRMZM2G066049 (sky blue). (E) Plot of correlation between the n1048 level in AMPE1 and the
normalized expression level of the GRMZM2G066142 and GRMZM2G066049, red triangle and blue spot represented the lead SNP GG and AA, respectively.
The r value is based on a Pearson correlation coefficient. The p value is calculated using the Student’s-t test.
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TheH2 distribution of phenolamides in different populations and environments.

SUPPLEMENTARY FIGURE 2

The QTL interval distribution of phenolamides in different RIL populations.
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SUPPLEMENTARY FIGURE 3

Functional category annotations for 58 candidate genes and their respective
percentages identified via GWAS as significantly associated with phenolamide

traits in maize kernels.

SUPPLEMENTARY FIGURE 4

Protein-protein interaction networks of 43 expressed candidate genes. The
node represents the protein, and the line represents interaction between the

proteins. The red solid circles represent the proteins encoded by the
candidate genes.

SUPPLEMENTARY FIGURE 5

Gene Ontology annotation of 401 interaction proteins from 43 GWAS

candidate genes.

SUPPLEMENTARY FIGURE 6

GWAS for n0183 with significant SNP-trait association in this study. (A) Plot of
the correlation between the n0183 level and the normalized expression level

of BZ1 (GRMZM2G165390). (A) Box plot for n0183 level (sky blue) and
expression of BZ1 (red). The r value is based on a Pearson correlation

coefficient. The p value was calculated using Student’s t test.

SUPPLEMENTARY FIGURE 7

GWAS for n0381-1 and n1243 with significant SNP-trait association in this study.

(A) Box plot for the n0381-1 level. (B) Box plot for the n1243 level. (C) Box plot for
the expression of ZmGR (GRMZM2G159587). (D) Plot of the correlation between
the n0381-1 level and the normalized expression level of ZmGR (sky blue). (E) Plot
of the correlation between the n1243 level and the normalized expression level of
ZmGR (sky blue). The r value is based on a Pearson correlation coefficient. The P

value was calculated using Student’s t test.

SUPPLEMENTARY TABLE 1

Phenolamide intensities of each line in AMP and both BB and ZY populations
planted across multiple environments.

SUPPLEMENTARY TABLE 2

Range and mean fold changes of phenolamide traits measured in AMP and
both BB and ZY populations.

SUPPLEMENTARY TABLE 3

The heritability distribution of each phenolamide in different populations

and environments.

SUPPLEMENTARY TABLE 4

Significant correlation between each phenolamide.

SUPPLEMENTARY TABLE 5

Significant correlation between phenolamides and agronomic traits.

SUPPLEMENTARY TABLE 6

QTL mapping summary of phenolamide-related traits detected from three

RIL populations.

SUPPLEMENTARY TABLE 7

Significant loci associated with phenolamide traits identified by GWAS across
two environments.

SUPPLEMENTARY TABLE 8

The list of significant Gene Ontology terms.
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