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Corn seeds are an essential element in agricultural production, and accurate

identification of their varieties and quality is crucial for planting management,

variety improvement, and agricultural product quality control. However, more

than traditional manual classification methods are needed to meet the needs of

intelligent agriculture. With the rapid development of deep learning methods in

the computer field, we propose an efficient residual network named ERNet to

identify hyperspectral corn seeds. First, we use linear discriminant analysis to

perform dimensionality reduction processing on hyperspectral corn seed images

so that the images can be smoothly input into the network. Second, we use

effective residual blocks to extract fine-grained features from images. Lastly, we

detect and categorize the hyperspectral corn seed images using the classifier

softmax. ERNet performs exceptionally well compared to other deep learning

techniques and conventional methods. With 98.36% accuracy rate, the result is a

valuable reference for classification studies, including hyperspectral corn

seed pictures.
KEYWORDS

crop variety, hyperspectral image, channel attention, linear discriminant analysis,
deep learning
1 Introduction

The cultivation of maize holds significant economic importance as a pivotal crop. As

automation technology becomes increasingly prevalent in the agricultural sector, a growing

need for automated classification and identification of corn seeds is needed. Accurately

identifying corn seeds is vital for effective planting management, variety enhancement, and

quality control of agricultural products (ElMasry et al., 2019). However, traditional manual

classification methods can be inefficient and require substantial human resources. In

the agricultural field, hyperspectral imaging technology has found extensive application
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(Zhang et al., 2022). Hyperspectral images offer multi-band spectral

data and capture more comprehensive plant information than

traditional RGB images (Wang et al., 2019; Ahmad et al., 2021).

Therefore, hyperspectral imaging technology is widely employed in

non-destructive testing of crop seed varieties, quality assessment,

and vigor analysis (Ma et al., 2020; Zhang et al., 2023a; Zhang et al.,

2024a). Nevertheless, the high-dimensional nature of hyperspectral

data, complex features, noise, and variations in illumination poses

challenges for traditional image processing and classification

techniques in recognizing hyperspectral corn seed images (Zhang

et al., 2021a; Ghaderizadeh et al., 2022; Huang et al., 2022). Hence,

this article aims to enhance corn seed hyperspectral image

recognition accuracy and efficiency using the efficient residual

network (ERNet).

ERNet is an image classification and recognition model based

on deep learning. First, preprocessing and feature extraction were

performed on hyperspectral image data of different varieties and

qualities of corn seeds. Next, the ERNet model is constructed,

trained, and optimized to learn the image’s feature representation

and classification decision. Finally, the performance and

effectiveness of the proposed method will be evaluated, compared,

and analyzed with traditional image classification methods.

ERNet enhances model performance and efficiency by

incorporating residual connections and lightweight attention

mechanism. It leverages collaborative learning strategies among

different modules to effectively exploit coarse-grained, fine-grained,

and abstract-level features. By fully utilizing the feature extraction

capabilities of deep networks, ERNet overcomes the challenges of

gradient disappearance and information loss in deep networks,

enabling improved learning and image feature extraction.

Compared to traditional deep convolutional neural networks,

ERNet offers advantages such as reduced parameter count, high

computational efficiency, and suitability for processing high-

dimensional image data. The critical contributions of the

proposed ERNet model in this study can be summarized as:
Fron
• We propose ERNet, an efficient residual network

specifically designed for identifying corn varieties using

hyperspectral data. ERNet leverages the power of residual

connections and lightweight attention mechanism to

address issues like gradient disappearance and reducing

information loss commonly encountered in deep networks.

As a result, it dramatically enhances the model’s

performance and efficiency, leading to more accurate and

efficient corn variety identification.

• We introduce two efficient residual modules: identity block-

ECA (IBE) and convolutional block-ECA (CBE). These

modules incorporate a lightweight efficient channel

attention (ECA) mechanism into traditional identity and

convolutional residual modules. The ECA aims to enhance

the network’s accuracy and sensitivity in feature extraction

and analysis without altering the convolution operation

process or feature map size. This integration significantly

improves ERNet’s ability to recognize fine-grained features

in hyperspectral corn seeds.
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• We implemented effective cropping to optimize the

utilization of ERNet in extracting finegrained features

from hyperspectral corn seed images. This involved

removing redundant backgrounds and enlarging the

original image features. By employing this approach, we

enhanced ERNet’s ability to extract detailed and precise

features from the images.
The initial section will outline the characteristics of

hyperspectral images and emphasize the significance of corn seed

identification. The principles and advantages of efficient residual

networks will be elaborated upon. The subsequent section will

explain this article ’s research objectives and methods,

encompassing data collection and preprocessing, network model

construction and training, and other relevant aspects. Finally, the

study’s significance and anticipated results will be presented.
2 Related works

Extensive research has been conducted by scholars in seed

classification, utilizing various methods categorized into

traditional, machine learning, and deep learning approaches. The

following provides an overview and summary of these

research efforts.

Traditional methods have been attempted to be applied in seed

recognition and hyperspectral image classification. Gan et al. (Gan

et al., 2018) introduced a hyperspectral image classifier based on

multi-feature kernel sparse representation. The features were

transformed into a nonlinear low dimensional kernel space by

employing kernel principal component analysis, enabling the

handling of highly nonlinear distributions in hyperspectral image

data. Experimental results demonstrated remarkable performance

in hyperspectral image classification tasks. Hu et al. (Hu et al., 2020)

showcased a promising technology that combined multispectral

imaging and multivariate analysis. They utilized the LDA model to

achieve 90% accuracy in alfalfa seed classification and SVM to

achieve 91.67% accuracy in mycobacterium needle seed

classification. Furthermore, Chen et al. (Chen et al., 2023) utilized

the interior point hollowing algorithm to extract the outlines of

sugarcane images on the MATLAB platform. They compared the

effects of five classic edge detection operators on the same original

sugarcane image and found the Canny operator to be the most

suitable and effective. Li et al. (Li et al., 2023) proposed a method

that combined terahertz time-domain spectroscopy (THz-TDS)

imaging technology with the K-Means image segmentation

method to detect the internal quality of pumpkin seeds

accurately. Their approach achieved efficient results, with average

detection errors of approximately 6.27% and 4.27% for single-

frequency images at spatial resolutions of 0.4 mm and 0.2 mm,

respectively. Ahmed et al. (Ahmed et al., 2020) conducted a study

using X-ray imaging technology to investigate three watermelon

varieties’ internal parameters (endosperm and air space). They

evaluated traditional machine learning and deep learning

methods and recognized X-ray imaging as promising.
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These studies employed diverse hyperspectral image classification

and feature extraction methods to accomplish seed identification.

Nonetheless, traditional methods often focus on specific problems

and datasets, which may limit their models’ and algorithms’

adaptability and generalization capabilities, warranting

further improvement.

Machine learning methods provide solutions for algorithms and

models to handle tasks such as seed recognition and hyperspectral

image classification (Okwuashi and Ndehedehe, 2020; Chen et al.,

2021a). Traditional crop seed classification and identification

methods based on machine learning typically involve extracting

features such as color, shape, texture, and others from images. These

features are then used with classifiers like support vector machines

(SVM) and artificial neural networks for classification purposes

(Gao and Lim, 2019; Flores et al., 2021). For instance, Koklu et al.

(Koklu and Ozkan, 2020). developed a computer vision system to

differentiate seven dry bean varieties with similar characteristics.

They employed image segmentation and feature extraction

techniques, resulting in 16 features. By comparing the

classification accuracy using 10-fold cross validation against four

other methods, they found that the SVM classification model

achieved the highest accuracy for bean variety classification. Su

et al. (Su et al., 2020) utilized the KNCCRT integration framework

and the random subspace (RS) concept to enhance diversity by

randomly selecting features. They incorporated shape-adaptive

(SA) neighborhood constraints within the RS integration

framework to integrate spatial information. The method’s

effectiveness was verified through experiments on three real

hyperspectral datasets. In addition, Khatri et al. (Khatri et al.,

2022) employed machine learning methods to classify wheat seeds

based on seven physical characteristics. They observed 92% 94%,

and 92% accuracy for KNN, decision tree, and naive bayes

classifiers, respectively. An ensemble classifier based on hard

voting achieved a maximum accuracy of 95% for decision-

making. Zhang et al. (Zhang et al., 2020) utilized a random forest

classifier along with multispectral data from Landsat 8 and Gaofen-

1 (GF-1), field sample data, and panchromatic data from Gaofen-2

(GF-2). They calculated a time-series vegetation index from the

data’s textural features and developed an RF classifier method for

identifying corn seed fields. By inputting high-resolution remote

sensing image features into this RF classifier, they successfully

distinguished between two planting modes (seed and ordinary)

and different types of corn varieties (selfing and hybrid), enabling

the identification and mapping of extensive corn seed fields. Lastly,

Ruslan et al. (Ruslan et al., 2022) proposed image processing and

machine learning techniques were utilized to investigate the

identification of weedy rice seeds. The researchers demonstrated

that features extracted from RGB images, including color,

morphology, and texture, exhibited higher sensitivity and

accuracy compared to monochrome images.

In summary, researchers employ machine learning methods for

crop seed identification as machine learning technology advances.

These methods effectively identify crop seeds by extracting image

features and utilizing various classifiers for classification. However,

traditional machine learning methods often have high algorithm

complexity and computational resource demands. This limitation
Frontiers in Plant Science 03
hinders their real-time performance and scalability in

practical applications.

Deep learning methods have made significant advancements

and found widespread applications in agriculture. Researchers have

utilized various methods to enhance the accuracy of image

classification (Ding et al., 2020; Ding et al., 2023). These methods

include the use of hybrid convolutional networks (Chen et al., 2020;

Zhao et al., 2022a; Zhao et al., 2022b), innovative networks (Sun

et al., 2023; Zhang et al., 2023b; Zhang et al., 2024b), improving

image resolution (Paoletti et al., 2018; Liang et al., 2022),

underwater image enhancement using different methods (Li et al.,

2019; Li et al., 2021), multimodal deep learning models (Yao et al.,

2023) and combining convolutional neural networks with

hyperspectral images (Cao et al., 2020; Zheng et al., 2020; Xi

et al., 2022; Yao et al., 2022). Deep learning methods address the

limitations of traditional approaches by automatically learning

feature representations from raw data, eliminating the need for

manual feature design. They offer distinct advantages when dealing

with complex and large-scale datasets.

With the ongoing development of deep learning, there is an

increasing focus on applying deep learning techniques to seed

classification tasks to enhance classification accuracy and

robustness. For instance, Sellami et al. (Sellami et al., 2019)

presented a novel approach for hyperspectral image (HSI)

classification by integrating adaptive dimensionality reduction

(ADR) and a semi-supervised three-dimensional convolutional

neural network (3-DCNN). Their method effectively utilizes the

deep spectral and spatial features extracted by convolutional

encoder-decoders, substantially enhancing HSI classification

accuracy. Zhang et al. (Zhang et al., 2021b) proposed a

spectralspatial fractal residual convolutional neural network

incorporating data balance enhancement. This method addresses

the challenges posed by limited sample sizes and imbalanced

categories, ultimately improving classification performance. Ahila

et al. (Ahila Priyadharshini et al., 2019) developed a deep

convolutional neural network based on an improved LeNet

architecture to classify corn leaf diseases. By training their model

on the PlantVillage dataset, they successfully classified it into four

categories (three diseases and one healthy category) with an

accuracy of 97.89%. Waheed et al. (Waheed et al., 2020) proposed

an optimized dense convolutional network architecture for

identifying and classifying corn leaf diseases. Their approach

achieved an accuracy of 98.06% in accurately identifying and

classifying these diseases. Furthermore, Javanmardi et al.

(Javanmardi et al., 2021) proposed a novel method utilizing deep

convolutional neural networks (CNN) as feature extractors. They

employed multiple classifiers to classify the extracted features. Their

findings demonstrated that the model trained on features extracted

by CNN exhibited superior accuracy in classifying corn seed

varieties, with the CNN-ANN classifier performing exceptionally

well. Zhang et al. (Zhang et al., 2024a) proposed GACNet, a

framework for wheat variety recognition. The framework includes

semi-supervised generative adversarial networks for data

augmentation and incorporates cross-conscious attention

networks for variety recognition. GACNet achieves excellent

classification performance through cross-learning of cascaded 3D
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and 2D convolutions. Li et al. (Guohou Li et al., 2024) used a hybrid

convolutional neural network based on the attention mechanism to

identify varieties of hyperspectral wheat, and applied a multivariate

scattering correction method to attenuate spectral differences of the

same variety due to differences in scattering levels. At the same time,

principal component analysis was used to reduce the unwanted

spectral bands of the three-dimensional data, and the classification

accuracy of this method reached 97.92%.

Deep learning technology shows excellent potential in crop seed

classification tasks. These studies provide new ideas and methods

for the field of seed classification.
3 Methodology

The Figure 1 illustrates the overall architecture of ERNet,

designed for hyperspectral corn seed image classification. ERNet’s

input stage receives standardized hyperspectral maize seed images.

Subsequently, the hyperspectral images undergo dimensionality

reduction using the linear discriminant analysis (LDA) module.

The LDA module aims to extract discriminative features by

maximizing inter-class mean differences and minimizing intra-

class variance. ERNet incorporates an effective residual block

called the E-R module, efficiently eliminating redundant data

features and addressing uneven feature extraction issues. Finally,

the extracted feature information is transformed into a fully

connected feature vector, and the classification result is obtained

in probability form using the Softmax function. This architecture

empowers ERNet to process hyperspectral corn seed images

effectively, extract discriminative features, and deliver accurate

classification results. The process encompasses input processing,

dimensionality reduction, feature extraction, and classification

output, providing a professional and effective solution for

hyperspectral image-based seed classification tasks.
Frontiers in Plant Science 04
3.1 Network framework

The Figure 1 provides a detailed structure of ERNet,

encompassing the LDA module, the efficient residual module, and

the fully connected module. The LDA module framework is

responsible for reducing dimensionality on hyperspectral images.

The Efficient Residual module is employed to compact the network

and extract precise features from hyperspectral corn seeds. Lastly,

the fully connected module receives the extracted feature vector as

input and employs a softmax classifier to compute class

probabilities for the final classification result. Moreover, Table 1

provides a comprehensive overview of each module within the

ERNet model, highlighting their respective details.
3.2 Linear discriminant analysis module

Linear discriminant analysis (LDA) is a dimensionality

reduction algorithm that leverages discriminant information

within a given sample set. It constructs an intra-class scatter

matrix to capture the variations among similar data samples and

an inter-class scatter matrix to represent the differences between

dissimilar data samples (Blei et al., 2003). By identifying an optimal

projection direction, LDA is designed to minimize the intra-class

scatter of similar data while maximizing the inter-class scatter of

dissimilar data, thus achieving optimal separability among samples

(Jia et al., 2021). Specifically, LDA transforms the sample data into a

feature space using linear transformations, ensuring that samples of

the same pattern type are closer to each other. In contrast, samples

of different patterns are pushed farther apart. This mapping enables

the extraction of discriminative features, which can serve as more

informative inputs for subsequent classification tasks.

Let’s assume we have S training samples comprisingM different

pattern types, where the number of samples in each class is denoted
FIGURE 1

The flowchart of the ERNet method involves several steps. Initially, hyperspectral corn seed images undergo dimensionality reduction using LDA.
Next, the images are subjected to convolutional operations for initial feature extraction. The texture features obtained are then refined using the
efficient residual module to enhance their quality for the corn seed identification task.
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as Si(i = 1,2,···, M). Class M is represented by xi = xi1 , xi,⋯, xiSi

n o

, xij(i = 1, 2,⋯,M; j = 1, 2,⋯, Si) is an n dimensional vector.

Consequently, we can compute the mean vector for each

pattern type as Equation (1):

vi =
1
Si
o
Si

j=1
xij, (1)

the total sample mean vector is Equation (2):

v =
1
Mo

M

i=1
vi : (2)

The intra-class scattering matrix TW and inter-class scattering

matrix TB are respectively expressed as Equations (3) and (4):

TW =o
M

i=1
o
Si

j=1
(xij − vi)(xij − vi)

T , (3)

TB =o
M

i=1
(vi − v)(vi − v)T , (4)

for any n-dimensional vector a, the function f = aTTBa
aTTWa can be

calculated. The function measures the linear separability between

different pattern types by evaluating the ratio of the differences

between dissimilar categories to the differences between similar

types. A larger f value indicates a stronger linear separability,

implying a higher discriminative power in distinguishing between

different modes.

LDA effectively reduces data dimensionality while preserving

the discriminative information between categories. By

incorporating the LDA module, the classification performance in

hyperspectral image seed classification can be enhanced, and

redundant features can be minimized.

3.3 Efficient channel attention module

Studies have revealed that the channel attention mechanism

effectively enhances the performance of neural networks (Shi et al.,
Frontiers in Plant Science 05
2022). However, existing attention modules often exhibit

complexity, which can lead to the problem of model overfitting.

To tackle this problem, Wang et al (Wang et al., 2020) proposed a

lightweight and versatile module called efficient channel attention

(ECA). This study incorporates the ECA module into ERNet to

assign channel weights to capture crucial features of hyperspectral

corn seeds. Introducing the ECA module into ERNet enhances

network performance and augments the ability to represent

important features of hyperspectral corn seeds.

The Figure 2 demonstrates the operational principle of the ECA

channel attention mechanism. Global average pooling (GAP) is

initially applied to the original input image to extract its features.

This process involves averaging the features across each channel.

Subsequently, the ECA module facilitates local cross-channel

interactions through a rapid one-dimensional convolution

operation, employing a kernel size denoted as k. Determining the

convolution kernel’s size, k is adaptively achieved by leveraging a

function that the number of input channels C. Following this, the

sigmoid function is employed to assign weight proportions to each

channel. These weights represent the significance of each channel in

feature representation. Finally, the original input features are

element-wise multiplied by the channel weights, resulting in a

feature representation incorporating channel attention. Through
FIGURE 2

Feature refinement process of the efficient channel
attention modules.
TABLE 1 Details of each module of ERNet.

Layers (type) Input Size Output Size Repeat Parameter

Input 128 × 224 × 224 128 × 224 × 224 1 0

LDA 128 × 224 × 224 3 × 224 × 224 1 1280

Conv 3 × 224 × 224 64 × 112 × 112 1 9536

MaxPooling_1 64 × 112 × 112 64 × 56 × 56 1 0

IBE 64 × 56 × 56 256 × 56 × 56 3 232201

CBE_1 256 × 56 × 56 512 × 28 × 28 4 1086911

CBE_2 512 × 28 × 28 1024 × 14 × 14 6 7098422

CBE_3 1024 × 14 × 14 2048 × 7 × 7 3 14964763

Averagepooling 2048 × 7 × 7 2048 × 1 × 1 1 0

Fullyconnected 2048 × 1 × 1 2048 × 1 × 1 1 20490

Total trainable parameter:23413603
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these operations, the ECA module enables the network to prioritize

crucial channels and extract discriminative image features.

In the ECA attention mechanism, the first step is to transform

the dimension of the feature map obtained after the residual

network and pooling at each scale. The feature map, initially in

the shape of [H, W, C], is transformed into a vector of [1, 1, C].

Subsequently, the adaptive one-dimensional convolution kernel

size, denoted as k, is calculated based on the channel number C

of the feature map. Calculated as in Equation (5):

k = j(C) =
log2C
g

+
b
g

����
����
odd

, (5)

where g takes value of 2, b takes value of 1, and odd takes odd

number. The adaptive convolution kernel size, denoted as k, is

calculated based on these values. The calculated k is then used for

the one-dimensional convolution operation, which is applied to

each channel of the feature map. The purpose of this operation is to

capture the interactive information and reduce the degree of

information loss between channels. Subsequently, the weights of

each channel in the feature map are determined using the sigmoid

function. The resulting consequences are then normalized, and the

original input feature map is multiplied element-wise with the

normalized weights to obtain the weighted feature map. This

operation enables the network to prioritize essential channels,

enhancing the features’ representation capabilities.
3.4 Efficient residual module

The shortcut connections have been introduced into the residual

network to facilitate optimization. A shortcut connection is a network

structure that spans one or more layers and forms a residual learning

unit by adding the input directly to the output. As depicted in the

Figure 3, assuming the model input is denoted as x, and the original

mapping as R(x), the core idea of residual learning is to design the

network as R(x) = f(x) + x, where f(x) represents the residual mapping.

A residual map f(x) + x is obtained by adding the residual map to the

input. Although both mappings achieve the same expression effect, the

residual map f(x) scale is relatively minor. Fitting f(x) is much simpler

than doing the entire R(x) map. Replacing all the original mappings R

(x) in the model with the residual mapping f(x) + x, reduces the

difficulty of model fitting. The shortcut connections enable the network

to learn the residual part more efficiently without excessively

emphasizing the original mapping. This design more accessible

training and optimization of the network, thereby enhancing the

model’s performance and generalization ability.
Frontiers in Plant Science 06
In the context of the residual network, the output of each

residual learning unit is denoted as yi, while the input is represented

as xi. The mapping relationship within the residual learning unit

can be expressed as Equation (6):

yi = f ½xi +H(xi,wi)�, (6)

where the activation function f is applied within the residual

learning unit. The rectified linear unit (ReLU) and the sigmoid

function commonly use activation functions in neural networks.

The term H(xi,wi) represents the residual, where wi represents the

convolution kernel.

In the context of hyperspectral corn seed images, each image

can be represented as a matrix M consisting of multiple column

vectors. Matrix multiplication corresponds to a transformation,

where a vector undergoes operations such as rotation or scaling

to yield a new vector. When a matrix solely performs scaling or

scales one or more vectors without introducing a rotational effect,

these vectors are referred to as eigenvectors of the matrix, and the

scaled value is known as the eigenvalue. Using methods such as

gradient descent, the eigenvectors and eigenvalues of the matrix can

be reversely fitted. These eigenvectors and eigenvalues are the

characteristic information of hyperspectral corn seed images. We

can classify and identify ideas by extracting and utilizing this feature

information. The above transformation is formulated as Equation

(7):

M   (X) = M   (x) ∗T   (y), (7)

where M(X) represents the matrix obtained after scaling

transformation, M(x) denotes the original matrix, and x

represents the column vector of the original matrix. T(y)

represents a scaling matrix, where y signifies the scaling ratio

applied to the column vector x within the matrix M.

The Figure 4 illustrates the efficient residual (ER) module,

constructed by combining the IBE and CBE units. The number of

stacks is determined through multiple tests, with the IBE module being

stacked three times and the CBE module being repeated three times.

Do 4, 6, and 3 stacks, respectively. Specifically, the basic unit comprises

a sequence of cascaded operations, including convolution, batch

normalization, activation function, convolution, batch normalization,

activation function, convolution, batch normalization, and an ECA

attention module. The pixel-by-pixel addition operation is employed

within the basic unit. Additionally, short-circuit connections are

incorporated within the basic unit to mitigate gradient vanishing

issues and prevent network degradation.

The basic unit within the ER module enhances the network’s

representation capabilities and improves the training process. It

achieves this through cascaded convolution and batch

normalization operations. The convolution operations aid in

extracting essential image feature information and expand the

network’s depth and receptive field, enhancing the model’s

expressive ability. The batch normalization operation accelerates

training and enhances the model’s robustness. Moreover, the

activation functions introduce nonlinearity, allowing the network

to capture complex relationships within the data.
FIGURE 3

Basic unit legend of residual network.
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To enhance the original model and improve its performance in

image processing and computer vision tasks, we propose integrating

the ECA module with the identity and convolutional blocks,

respectively and refer to them as IBE and CBE structures. When

the number of input and output channels of the essence or

convolutional residual blocks is the same, we can directly

incorporate an element-wise shortcut link by adding the input and

output. This configuration forms the IBE structure. However, when

the number of input and output channels differs in the identity or

convolutional residual blocks, we introduce a convolution layer in the

shortcut connection. This additional layer adjusts the dimension of

the feature map to accommodate the disparity in input and output

channel numbers, resulting in the formation of the CBE structure.

We aim to enhance the original model and improve its performance

in various image processing and computer vision tasks by employing

these IBE and CBE structures.
3.5 Loss function

Cross entropy(CE) loss is a frequently used loss function in deep

learning, especially in multiclassification problems. It draws upon

concepts from information theory and measures the proximity

between the actual output and the desired output. In information

theory, the CE is utilized to estimate the average code length. In the

context of deep learning, the CE loss function quantifies the

dissimilarity between the model’s output’s probability distribution

and the actual label’s probability distribution. A smaller CE value

indicates a closer match between the two probability distributions.

Given two probability distributions, PA(x) and PB(x), the CE

between them can be expressed as Equation (8):
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H(A,B) =o
n

i=1
PA(xi) log  

1
PB(xi)

= −o
n

i=1
PA(xi) log  PB(xi),

(8)

where PA(x) represents true label distribution in the given

expression, while PB(x) represents the predicted distribution. As a

measure, the CE quantifies the disparity between the expected value

and the actual label value. More precisely, the CE loss function

gauges the uncertainty of the predicted distribution about the actual

distribution. To measure the distance and dissimilarity between two

probability distributions, kullback-leibler divergence (KL-

divergence) is employed. The KL-divergence is represented as

Equation (9):

DKL(A ∥B) =o
n

i=1
PA(xi) log  

PA(xi)
PB(xi)

=o
n

i=1
PA(xi) log  PA(xi) −o

n

i=1
PA(xi) log  PB(xi)

= −H(A) +H(A,B),

(9)

where DKL(A ∥B) achieves its minimum value only when

PA(x)=PB(x), indicating that the closer the predicted result is to the

actual result better. The CE loss function is a specific instance of KL-

divergence and finds extensive application in deep learning’s multi-

classification problems. We aim to minimize the CE loss function to

make the predicted PB(x) as similar as possible to the actual label

distribution PA(x). This alignment ensures that the model’s predictions

are consistent with the results.

The multi-class CE loss function serves as the evaluation

criterion for the model. The network aims to minimize the CE by

updating the weights of its nodes. To achieve this, the model
FIGURE 4

Feature refinement process of the efficient residual modules.
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employs the stochastic gradient descent algorithm. This algorithm

optimizes the loss function to determine the optimal parameters

and minimize the loss. The optimization process of the stochastic

gradient descent algorithm can be defined as Equation (10):

qi = qj − a ∗
∂ J(q)
∂ q

, (10)

where qi represents the weight of the current network node, qj
denotes the weight from the previous iteration of the network, and

a represents the learning rate of the model. During each iteration,

the model optimizes q through gradient descent, aiming to

minimize the CE. The goal is to reach the lowest possible the CE,

enabling the entire model to converge toward the global

optimal solution.
4 Experiments

This chapter begins by introducing the dataset utilized in the

study. It then proceeds to describe the training process of ERNet,

followed by conducting comparative and ablation experiments to

demonstrate the significance of ERNet in hyperspectral corn seed

classification. The results obtained from these experiments provide

valuable insights and reference points for evaluating the

effectiveness of ERNet in the classification task.
4.1 Dataset used

We method run on a Windows 10 PC with AMD Ryzen 5

3600X Central Processing Unit (CPU) at 3.80 GHz, The dataset

(CSHID) utilized in this article is sourced from SSTNet (Zhang

et al., 2022), encompassing ten different corn varieties cultivated in

Henan Province: Baiyu 607, Baiyu 808, Baiyu 818, Baiyu 833, Baiyu

879, Baiyu 897, Baiyu 918, Baiyu 8317, Baiyu 9284, and Fengda 601.

The data was collected using Surface Optics’ SOC 710 Portable

Visible/Near Infrared Imaging Spectrometer. Each corn variety
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consists of 120 samples, with each piece containing 128 spectral

bands. The original spectra were precisely cropped to ensure

accuracy, resulting in 129,230 sample images employed in this

study. The Figure 5 showcases a comparison of selected images

before and after cropping.
4.2 Experimental settings

The experimental setup for this article consisted of a computer

equipped with an AMD Ryzen 7 5800H with Radeon Graphics

CPU, operating at 3.20GHz and 16GB of RAM. Additionally, it

included an NVIDIA GeForce GTX 1650 graphics card with 4GB of

video memory. The software environment for the experiments

involved Python 3.7.13 and torch-gpu-1.10.1, running on the 64-

bit Windows 11 operating system.

The fully connected layer incorporates dropout technology to

prevent overfitting during model training. Additionally, the model’s

parameters are optimized using the Adam optimizer. Classification

results determine a learning rate of 0.01 as the optimal choice.

Furthermore, an exponential decay learning rate enhances model

stability during later training. This approach gradually reduces the

learning rate over time. The training process follows a batch

training method with a batch size of 32. Batch training involves

dividing the training dataset into several batches, each containing a

specific number of samples. The model performs forward

propagation and back propagation calculations on each set to

update the parameters. After 150 iterations, the loss rate

stabilizes, indicating that the model has converged and achieved

relatively stable performance.
4.3 Identification evaluation

When it comes to deep learning, more data is often required for

practical training than traditional machine learning approaches.

This paper randomly divides the dataset into a training set and a test
B C D E F G HA

FIGURE 5

The provided images showcase different types of seed images. The pictures labeled “before cutting” are sourced from SSTNet, while those labeled
“after cropping” have been manually and accurately cropped. The above eight sets of images correspond to the following corn varieties: (A) baiyu
607, (B) baiyu 808, (C) baiyu 818, (D) baiyu 833, (E) baiyu 8317, (F) baiyu 9284, (G) baiyu 897, and (H) fengda 601.
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set following a “training set: test set = 4:1” principle. Four machine

learning and six deep learning models are selected as reference

models to conduct comparative experiments. The machine learning

models consist of fuzzy k-nearest neighbor (FKNN) (Kumbure

et al., 2020), random forest algorithm (RFA) (Chen et al., 2021b),

stochastic gradient descent (SGD) (Lei and Tang, 2021), and

spatial-spectral feature extraction method (FSVM) (Jin et al.,

2022). The deep learning models include hybrid spectral net

(HybridSN) (Roy et al., 2019), centernet (Jin et al., 2021), spatial

source phase net (SSPNet) (Lin et al., 2022), spatial, spectral, and

texture aware attention network (SSTNet) (Zhang et al., 2022),

convolutional neural network with a bidirectional gated recurrent

unit (CNN-BiGRU) (Lu et al., 2023), and Convolutional Neural

networks with long short-term memory (CNN-LSTM) (Wang and

Song, 2023).

Model performance is assessed using four metrics: F1 score,

recall, precision, and accuracy. Accuracy measures the correct

classification rate of both positive and negative samples. Precision

is the ratio of true positives to all positive classifications. Recall

measures the percentage of correctly classified positive models out

of all positive examples. The F1 score is a comprehensive evaluation

index that combines precision and recall. Higher values of these

metrics indicate better classification performance. By comparing the

metric results across different models, their effectiveness in

classification tasks can be evaluated. We used the same test sets

and training parameters in comparison tests to assess ERNet against

several different approaches. The outcomes, as reported in Table 2.

RFA (Chen et al., 2021b) employs the random forest algorithm

to compute variable importance and weights for security risk

indicators, demonstrating high accuracy on large-scale datasets.

FSVM (Jin et al., 2022) utilizes principal component analysis to

extract features from spatial-spectral data and trains and optimizes

the model using support vector machines, resulting in good

classification performance on small sample datasets. FKNN

(Kumbure et al., 2020) utilizes local mean vectors and Bonferroni
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means, showcasing strong performance despite significantly

imbalanced data class distributions. SGD (Lei and Tang, 2021)

introduces high-probability bounds on computational and

statistical errors, enabling the development of a new learning rate

for non-convex learning with SGD by adjusting the number of

passes to balance these errors. SSPNet (Lin et al., 2022) utilizes

spatial source phase (SSP) maps derived from complex-valued fMRI

data as input for CNN and achieves noteworthy results in image

recognition. HybridSN (Roy et al., 2019) and SSTNet (Zhang et al.,

2022) are hybrid CNN models that jointly leverage 3D-CNN to

represent spatial-spectral features from spectral bands. SSTNet

additionally incorporates a spatial channel attention mechanism.

Both methods deliver satisfactory performance in hyperspectral

image classification. CenterNet (Jin et al., 2021) combines deep

learning and image processing techniques, utilizing genetic

algorithms to determine indicators and evaluate results, resulting

in commendable classification performance. CNN-BiGRU (Lu

et al., 2023) combines a convolutional neural network with a

bidirectional gated recurrent unit, introducing residual

mechanisms and an improved convolutional attention module,

demonstrating promising outcomes in rice disease identification.

CNN-LSTM (Wang and Song, 2023) combines a convolutional

neural network (CNN) with a long short-term memory (LSTM)

network and achieves accurate identification of corn varieties in

conjunction with hyperspectral imaging technology. Nevertheless,

the classification results obtained by these traditional and deep

learning methods still lower than ERNet.

Table 2 makes it clear that when compared to other techniques,

the machine learning models RFA (Chen et al., 2021b) and FSVM

(Jin et al., 2022) perform worse in classification. RFA (Chen et al.,

2021b) and FSVM (Jin et al., 2022) perform somewhat worse in

classification than FKNN (Kumbure et al., 2020) and SGD (Lei and

Tang, 2021). Although deep learning techniques like CNN-BiGRU

(Lu et al., 2023), CNN-LSIM (Wang and Song, 2023), and CenterNet

(Jin et al., 2021) have considerable benefits, their classification
TABLE 2 Identification results of different deep learning methods tested on the CSHID dataset.

Method F1-score Recall Precision Accuracy

FKNN (Kumbure et al., 2020) 0.9610 0.9583 0.9637 0.9625

RFA (Chen et al., 2021b) 0.9426 0.9411 0.9435 0.9479

SGD (Lei and Tang, 2021) 0.9585 0.9663 0.9703 0.9705

FSVM (Jin et al., 2022) 0.9467 0.9417 0.9519 0.9458

HybridSN (Roy et al., 2019) 0.9621 0.9667 0.9673 0.9708

CenterNet (Jin et al., 2021) 0.9253 0.9255 0.9260 0.9258

SSPNet (Lin et al., 2022) 0.9695 0.9695 0.9696 0.9693

SSTNet (Zhang et al., 2022) 0.9795 0.9791 0.9800 0.9792

CNN-BiGRU (Lu et al., 2023) 0.9396 0.9385 0.9384 0.9393

CNN-LSTM (Wang and Song, 2023) 0.9497 0.9501 0.9534 0.9509

ERNet 0.9833 0.9830 0.9846 0.9836
(Optimal: red; Suboptimal: blue).
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performance isn’t perfect. HybridSN (Roy et al., 2019), SSPNet (Lin

et al., 2022), and SSTNet (Zhang et al., 2022) do not outperform our

ERNet on a variety of indicators, even though they take into account

spectral spatial information and perform well in classification. In

conclusion, our ERNet performs exceptionally well in classification

due to its superiority in picture feature extraction. Regarding overall

performance, the ERNet network demonstrates notable advantages

across all evaluation metrics. The accuracy achieved by the ERNet

network reaches an impressive 98.36%. The accuracy improvement

ranges from 1.31% to 3.78% compared to the machine learning

models. Similarly, the other deep learning models show accuracy

gains ranging from 0.44% to 3.27%. These results highlight the

significant enhancement in corn hyperspectral image classification

accomplished by the ERNet network.

The accuracy and loss convergence curves of ERNet during

testing are shown in The Figures 6A, B. It is clear that ERNet

exhibits faster convergence before 20 epochs, and by the 130th

epoch, it has achieved good convergence and high accuracy. After

more than 130 epochs, ERNet stabilizes.

Comparing the training time of each model on the CSHID

dataset, it can be seen from Table 3 that ERNet outperforms

traditional machine learning with the latest network models for

training hyperspectral images in terms of training time, which

shows that the ERNet model achieves an excellent balance

between efficiency of use and improvement in accuracy,

specifically through the advantages of combining residual

networks with lightweight attention mechanisms to achieve

network performance improvement.
4.4 Ablation study

Ablation experiments were performed to evaluate the

effectiveness of each module in ERNet for hyperspectral maize

seed detection. The following ablation operations were performed

on ERNet individually: 1) our ERNet without efficient channel

attention module (-w/o ECA); 2) our ERNet without convolutional

block-ECA (-w/o CBE); 3) our ERNet without identity block-ECA

(-w/o IBE). The ablation experiments enabled a thorough
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evaluation of the effect of each module on the performance of

ERNet in recognizing hyperspectral corn seeds.

Table 4 presents the f1-score, recall, and accuracy results for

each ablation experimental model and the corresponding

accuracy score for the full ERNet model. By comparing the

practical outcomes, it is evident that the complete ERNet

model achieved the highest scores across all metrics compared

to the ablation models.
5 Discussion

The research presented in this article holds significant

importance for corn seed identification within the agricultural

domain. By leveraging an efficient residual network to process

high-dimensional hyperspectral image data, the accuracy and

efficiency of corn seed identification can be substantially enhanced.

This, in turn, enables precise planting management and facilitates
BA

FIGURE 6

Accuracy and loss convergence over the number of epochs on the test set. (A) Accuracy convergence over the number of epochs. (B) Loss
convergence over the number of epochs.
TABLE 3 Training and testing times on the CSHID dataset, training times
are based on one epoch.

Method Training
time(s)

Testing
time(min)

FKNN (Kumbure et al., 2020) 25.7 20.3

RFA (Chen et al., 2021b) 35.4 28.4

SGD (Lei and Tang, 2021) 26.0 28.3

FSVM (Jin et al., 2022) 34.6 27.8

HybridSN (Roy et al., 2019) 37.1 29.7

CenterNet (Jin et al., 2021) 46.6 31.8

SSPNet (Lin et al., 2022) 37.6 32.4

SSTNet (Zhang et al., 2022) 26.4 29.7

CNN-BiGRU (Lu et al., 2023) 26.2 23.4

CNN-LSTM (Wang and
Song, 2023)

35.9 26.8

ERNet 20.3 19.6
The test time is the result of categorizing the entire dataset. (Optimal results are bolded.)
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advancements in crop varieties for agricultural production. The

intended outcome of this research is to demonstrate experimentally

that features within hyperspectral images can be effectively extracted

using an efficient residual network, leading to accurate classification

and identification of corn seeds. Furthermore, this article’s research

methods and findings can serve as a valuable reference for studying

hyperspectral image recognition and classification in other crop-

related research endeavors.

Future challenges include realizing complete seed screening in

the recognition process and using hyperspectral technology for

maturity discrimination to achieve a true sense of superior breed

recognition. These challenges are worthwhile to pursue in order to

develop more functional deep learning models for seed recognition

in a variety of scenarios.
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