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Root-knot nematodes (Meloidogyne spp., RKN) are among the most destructive

endoparasitic nematodes worldwide, often leading to a reduction of crop growth

and yield. Insights into the dynamics of host-RKN interactions, especially in varied

biotic and abiotic environments, could be pivotal in devising novel RKN

mitigation measures. Plant growth-promoting bacteria (PGPB) involves

different plant growth-enhancing activities such as biofertilization, pathogen

suppression, and induction of systemic resistance. We summarized the up-to-

date knowledge on the role of PGPB and abiotic factors such as soil pH, texture,

structure, moisture, etc. in modulating RKN-host interactions. RKN are directly or

indirectly affected by different PGPB, abiotic factors interplay in the interactions,

and host responses to RKN infection. We highlighted the tripartite (host-RKN-

PGPB) phenomenon with respect to (i) PGPB direct and indirect effect on RKN-

host interactions; (ii) host influence in the selection and enrichment of PGPB in

the rhizosphere; (iii) how soil microbes enhance RKN parasitism; (iv) influence of

host in RKN-PGPB interactions, and (v) the role of abiotic factors in modulating

the tripartite interactions. Furthermore, we discussed how different agricultural

practices alter the interactions. Finally, we emphasized the importance of

incorporating the knowledge of tripartite interactions in the integrated RKN

management strategies.
KEYWORDS

root-knot nematodes, root-knot nematode-host interactions, plant growth promoting
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1 Introduction

Plant-parasitic nematodes (PPNs) infect a wide range of food

crops and cause severe damage (Nicol et al., 2011; Jones et al., 2013;

Kantor et al., 2022). PPNs control costs several billions of dollars

annually to the global agriculture industry (Elling, 2013; Gamalero

and Glick, 2020; Kantor et al., 2022). Among these, root-knot

nematodes (RKN) are the most economically significant plant

pathogens due to the high levels of damage and infection they

cause, their wide host and geographic ranges, and interaction with

other plant pathogens (Rehman et al., 2012; Topalović and Geisen,

2023). The second-stage juvenile (J2) is the only infective stage of

RKN. In plant roots, the J2s undergo two developmental stages (J3

and J4) before an adult stage. Adult females establish feeding sites

and cause root galls (Eisenback and Triantaphyllou, 1991; Karssen

and Moens, 2006; Gheysen and Mitchum, 2011).

The above-ground symptoms of RKN-infected plants include

poor plant growth, necrosis on leaves, and rapid wilting under

environmental stress caused by water deficiency or other factors

(Bernard et al., 2017; Elnahal et al., 2022). The obvious below-

ground symptom of RKN infection is the formation of galls on the

roots that reduce the absorption and translocation of water and

dissolved nutrients. RKN root damage also fosters access to

secondary infection of roots by soil pathogens such as fungi and

bacteria (Agrios, 2005; Cao et al., 2023). Because of their wide host

range and distribution, effective RKN management is becoming a

global priority. Effective RKN management may require an

integrated application of control strategies such as chemical

nematicides, resistant crops, trap crops, organic amendments, and

different microbial agents (Desaeger et al., 2020; Forghani and

Hajihassani, 2020; Topalović et al., 2020b). Synthetic chemical

nematicides are effective in controlling RKN and are widely used

around the globe but their use has been restricted due to their

negative impact on human health and the environment (Katooli

et al., 2010; Desaeger et al., 2020). Thus, there is a critical need for

alternative nematode control methods which are both effective in

controlling RKN and environmentally sustainable.

RKN management strategies using antagonistic soil microbiota

would offer an ecologically sound RKN control (Zhang et al., 2017;

Abd-Elgawad, 2021; Aioub et al., 2022). A broad range of soil

microbiota reduced nematode infection directly or indirectly in

plants (Eberlein et al., 2016; Ashrafi et al., 2017; Hamid et al., 2017;

Hussain et al., 2018; Nuaima et al., 2021). These microbes use

antibiosis, parasitism, induced systemic resistance (ISR) in plants,

or apply a combination of different strategies that can interfere with

nematode infection in plants (Chen and Dickson, 1998; Siddiqui

et al., 2005; Martıńez-Medina et al., 2017; Poveda et al., 2020). One

subset of soil microbiota showing RKN suppression is plant growth

promoting bacteria (PGPB). Here, we define PGPB as bacterial

community inhabiting soil around roots (rhizosphere bacteria) and

inside plant roots (endophytic bacteria) and promoting plant growth

through a variety of processes such as biofertilization, phytohormone

production, antipathogenic activities and ISR (Lugtenburg and

Kamilova, 2009; Aioub et al., 2022; Gowda et al., 2022).

PGPB stimulate plant growth by supplying essential plant

nutrients such as nitrogen (N), phosphorus (P), potassium (K), and
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other micronutrients such as iron (Fe), and promote soil

bioremediation by secreting a variety of metabolites and hormones

(Poria et al., 2022). PGPB have a direct influence on both plant

development and metabolism through the production of

phytohormones and plant growth regulators (Chandra et al., 2018).

Microbial phytohormones and phytostimulators such as auxins,

ethylene, cytokines, gibberellin, abscisic acid, salicylic acid and

jasmonic acid are important in plant biological processes such as

cell division and elongation (Lugtenburg and Kamilova, 2009;

Tsukanova et al., 2017; Shaffique et al., 2023). Phytohormones and

enzymes such as 1-aminocyclopropane-1-carboxylate (ACC)

produced by PGPB also alleviate various forms of stress, including

infections by pathogenic bacteria, resistance to stress induced by

polyaromatic hydrocarbons, heavy metals such as Ni2+ and

environmental stresses such as salt and drought (Glick et al., 2007;

Lugtenburg and Kamilova, 2009; Zhang et al., 2020; Sharifi et al.,

2022). PGPB are also involved in antipathogenic activities through

antagonism, signal interference, predation, parasitism, competition,

and induced systemic resistance (ISR) (Milner et al., 1996; Bassler,

1999; Ryu et al., 2003; Emmert et al., 2004; Aioub et al., 2022). Thus,

the use of PGPB for RKN control is an ecologically sound strategy for

suppressing RKN using naturally occurring species, introducing them

to the rhizosphere or manipulating the soil through different

agricultural practices that enhance their performance (Topalović

et al., 2019; Topalović et al., 2020b; Eldeeb et al., 2022).

Despite several promising RKN control results under laboratory

and greenhouse settings, transitioning from lab to field has been

challenging due to inconsistencies in microbial agent performance

in the field conditions (Topalović and Heuer, 2019). Some reasons

for that are the weak competitive ability of the microbial agents and

the failure to establish a high density in soil ecosystems. In soil

ecosystems, host-RKN interactions are complex and can be affected

by different soil physicochemical and biological properties (Cao

et al., 2023). Soil physicochemical and biological properties

modulate host-RKN interactions, and they are in turn affected by

different agricultural practices. Therefore, the knowledge of how soil

biotic and abiotic factors modulate the host-RKN-PGPB (tripartite,

Figure 1) interactions would be critical to develop economically and

ecologically sound RKN control strategies. This review emphasizes

the tripartite phenomenon with respect to (i) PGPBs’ direct and

indirect effect on RKN-host interactions; (ii) the host’s influence in

the selection and enrichment of PGPB in the rhizosphere; (iii) the

influence of the host in RKN-PGPB interactions; (iv) the role of soil

microbes in enhancing RKN parasitism, and (v) the role of abiotic

factors in modulating the tripartite interactions. Furthermore, the

paper delves into how different agricultural practices alter the host-

RKN-PGPB interactions. Finally, it concludes by emphasizing the

importance of incorporating the knowledge of tripartite interactions

in the integrated RKN management strategies.
2 Influence of PGPB on host-
RKN interactions

PGPB have a direct and indirect effect on RKN and affect the

interaction between the host and RKN (Figure 1).
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2.1 Direct modulatory mechanisms

Direct modulatory mechanisms refer to the adverse effect of

PGPB on RKN through processes such as parasitism and antibiosis.

Among these, parasitism stands out as the most effective and direct

modulatory mechanism which entails the tropic growth of the

PGPB toward RKN, ultimate assault, and disintegration of RKN

through enzyme activity (Pal and Gardener, 2006; Singh et al.,

2017). For instance, Pasteuria penetrans showed strong parasitism

to Meloidogyne graminicola, M. incognita, M. arenaria, and M.

hapla (Ciancio, 2018; Aioub et al., 2022).

Antibiosis involves the release of enzymes, metabolic by-

products, and toxins by various PGPB to actively suppress RKNs.

The release of these products plays a crucial role in inhibiting

nematode hatching, development, and existence (Subedi et al.,

2020). Some PGPB such as Pseudomonas fluorescens, produce

metabolic by-products like 2,4-diacetylphloroglucinol and

hydrogen cyanide that suppress RKN density and promote plant

growth (Mena et al., 2002; Meyer et al., 2009; El-Rahman et al.,

2019). Research on Corynebacterium paurometabolous and

Lysobacter capsica showed that these PGPB expressed chitinase

and gelatinase activities which reduced the numbers of galls and egg

masses of M. incognita in tomatoes (Mena et al., 2002; Lee et al.,

2015). Bacillus cereus strain (BCM2) released 2,4-2,4-ditert-

butylphenol, 3,3 dimethyloctane, chitonase, alkaline serine

protease, and neutral protease which resulted in the reduction of

M. incognita density on tomato (Li et al., 2019a). B. thuringiensis is

known to produce proteinaceous protoxin crystals that cause lysis

of the intestine and the nematode’s death (Griffitts et al., 2005;

Vachon et al., 2012; Elhady et al., 2017).

Several PGPB strains with antibiosis activity such as Bacillus

aryabhattai A08, Paenibacillus alvei T30, Bacillus firmus T11,

Paenibacillus barcinonensis A10, and B. cereus N10w were
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reported (Viljoen et al., 2019). Application of P. fluorescens and

Serratia marcescens reduced the number of galls and egg masses of

RKN species (Ali et al., 2021). Pseudomonas spp. and Bacillus spp.

isolated from RKN suppressive soil exhibited RKN antagonism on

tomato (Zhou et al., 2019). Similarly, soils with low- and high-

infestations of M. incognita demonstrated different microbial

communities in the rhizosphere, the low-infested soil contained

more of plant beneficial microbes including those with nematocidal

activities such as B. amyloliquefacens W1 (Zhao et al., 2023).
2.2 Indirect interventional mechanisms

PGPB indirectly suppress RKN by promoting plant growth and

development through improved nutrient availability and uptake,

producing phytohormones, and activating ISR. Recent studies

revealed that N-fixing PGPB strains promote plant growth by

providing nitrogen and increase plants’ resistance to RKN (Aioub

et al., 2022). For instance, Rhizobium spp., Mesorhizobium spp.,

Sinorhizobium spp., Bradyrhizobium spp. and Frankia spp. fix N2,

supply it to plants and promote plant growth (Vejan et al., 2016;

Dash et al., 2017; Liao et al., 2021). Similarly, Paenibacillus

polymyxa, a N-fixing PGPB, promoted plant growth and

suppressed Meloidogyne incognita populations on tomato in a

greenhouse experiment (El-Hadad et al., 2011). Azospirillum spp.,

Azotobacter spp., and Rhizobium spp. decreased root galling caused

by Meloidogyne javanica in root of chickpea (Cicer arietinum)

(Siddiqui and Mahmood, 2001). Inoculating tomato plants with

Bacillus firmus, B. megaterium and B. circulans also improved plant

growth through phosphate acquisition and suppressedM. incognita

populations (Terefe et al., 2009; El-Hadad et al., 2011). Likewise,

phosphate-solubilizing P. fluorescens suppressed M. incognita

population in chickpea field (Rizvi et al., 2012). PGPB with
FIGURE 1

Simplified diagrammatic representation of host-RKN-PGPB interactions. Host plants shape the rhizosphere microorganisms by recruiting or
inhibiting subsets of plant growth promoting bacteria (PGPB) for its benefits. The PGPB directly attack the root-knot nematodes and/or through
plant growth promotion and induced systemic resistance. The figure is created with BioRender.com.
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phytohormone-producing ability promoted plant growth and

suppressed PPNs (Backer et al., 2018). For instance, indole acetic

acid (IAA) production by the strain Streptomyces fradiae NKZ-259

enhanced plant growth (Myo et al., 2019). Pseudomonas simiae

strain MB751 also produced IAA, improved plant growth, and

suppressed M. incognita development (Sun et al., 2021).

PGPB decrease the population of RKN by enhancing ISR

through eliciting plant innate immunity in plants. This is

accomplished through processes like cell wall intensification,

callose deposition, phenolic compound accumulation, and

upregulation of biochemical compounds such as jasmonic acid,

pathogenesis-related proteins, lipopolysaccharides, phytoalexin,

siderophores, chitinase, and salicylic acid (Aioub et al., 2022). For

instance, M. javanica and M. incognita population densities were

suppressed because of the activation of ISR when Arabidopsis roots

were treated with PGPB Bacillus cereus (Jiang et al., 2020). Similarly,

tomato roots inoculated with P. fluorescens Pf128 and B. subtilis

Bbv57 decreased M. incognita populations due to increased activity

of enzymes involved in ISR (Meena et al., 2012).
3 Plants recruit and shape PGPB
communities in the rhizosphere

Different plant species selectively attract different communities of

PGPB and influence their composition when grown on the same soil

(Berendsen et al., 2012). The PGPB exhibit significantly higher

population densities in the rhizosphere compared to the bulk soil,

primarily due to plants releasing up to 40% of their photosynthates as

root exudates (Bais et al., 2006). However, their diversity is low in the

rhizosphere compared to the bulk soil (Berg et al., 2006; Costa et al.,

2006; Hein et al., 2008; Berendsen et al., 2012) indicating PGPB

community establishment is driven by host plant selection (Li et al.,

2019b; Yin et al., 2021). The type and age of the host plant, and biotic

and abiotic stresses influence the compositions of root exudates

(Lundberg et al., 2012; Chaparro et al., 2014; Bulgarelli et al., 2015;

Tkacz et al., 2015; Kantor et al., 2018; Yin et al., 2021). Thus, the

composition of root exudates actively secreted by plants shape the

PGPB community by stimulating or repressing the subset of the PGPB

community in the soil (Doornbos et al., 2012). Components of root

exudates such as sugars, organic acids, metabolites, phytohormones,

and complex mucus-like polymers play a key role in shaping the

composition and structure of PGPB community (Broeckling et al.,

2008; Carvalhais et al., 2015; Berendsen et al., 2018; Sasse et al., 2018;

Yuan et al., 2018; Wen et al., 2020, 2021; Kong et al., 2021).

For example, long-chain fatty acids and amino acids were

identified to play a crucial role in attracting PGPB, including

Pseudomonas populations (Yuan et al., 2018; Wen et al., 2021).

Additionally, a higher release of four short-chain organic acids

(citric acid, pyruvate acid, succinic acid, and fumarate) has been

linked to the increased presence of PGPB such as Comamonadaceae

spp (Wen et al., 2020). Root-secreted malic acid has also been linked

to the attraction of Bacillus spp. to the rhizosphere (Rudrappa et al.,

2008). Therefore, the particular ratios and makeup of root exudates

significantly influence the PGPB composition (Badri et al., 2009;

Zhou and Wu, 2012).
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Secondary metabolites secreted by plant roots can also be

detrimental for the growth of specific group of microbes in the

rhizosphere (Bais et al., 2002; Zhang et al., 2011). Benzoxazinoids are

exuded in relatively large quantities from cereal roots and can inhibit

rhizosphere microbes (Berendsen et al., 2012). In maize (Zea mays),

2,4-dihydroxy- 7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA)

is the main antimicrobial benzoxazinoid. In contrast, PGPB P. putida

KT2440 was attracted and tolerant to DIMBOA (Berendsen et al., 2012;

Neal et al., 2012). In the absence of DIMBOA, the colonization of roots

by KT2440 strain was lower (Berendsen et al., 2012; Neal et al., 2012).

Secondary metabolites have shown promising nematocidal activity.

Notably, various metabolites synthetized by wild watermelon roots

have been documented in literature for their effectiveness in controlling

nematodes (Kantor et al., 2018).

Plants also produce compounds that stimulate or repress

quorum-sensing (QS)-regulated responses in PGPB. These QS-

interfering compounds enable the plant to manipulate gene

expression in their PGPB communities (Berendsen et al., 2012).

PGPB utilize QS to signal each other and regulate expression of

certain genes by using diffusible N-acyl-homoserine lactones

(AHLs) (Elasri et al., 2001; Berendsen et al., 2012). AHL-

mediated regulation typically makes use of two proteins that

resemble the LuxI and LuxR protein families. LuxI-like proteins

are AHL synthases, whereas LuxR-like proteins function as

receptors of AHL that can form complexes with AHL which in

turn can affect gene expression of QS-target genes (Decho et al.,

2011; Berendsen et al., 2012). For instance, seedling extracts and

exudates of barrel clover (Medicago truncatula), pea (Pisum

sativum), rice (Oryza sativum) and green algae (Chlamydomonas

reinhardtii) had compounds that specifically stimulated or

repressed responses in QS-reporter bacteria (Teplitski et al., 2000;

Gao et al., 2003; Teplitski et al., 2004; Ferluga and Venturi, 2009).

Some plant-associated PGPB have LuxR-like proteins that are

stimulated by plant-derived signals, whereas they themselves do

not produce AHLs (Ferluga and Venturi, 2009; Berendsen et al.,

2012). Thus, plants recruit and shape the rhizosphere microbes

through the composition of root exudates and secondary

metabolites. These substances selectively attract or repel soil

microbiota and play a role in controlling the expression of QS-

regulated genes of soil microbiota.
4 Interplay between host and PGPB in
RKN suppression

Root exudates are important in nematode attraction to plant

roots and directly affect nematode interactions with PGPB by

inducing changes in the surface of PPNs. PGPB interact with

PPNs through the nematode surface coat (SC). SC is a

glycoprotein layer secreted by the hypodermis, or by the

excretory and nervous systems (Lin and McClure, 1996; Curtis

et al., 2011). Receptors on nematode SC mediate the specific

interaction with the lectine-like protein molecules on PGPB

surface (Bird, 2004; Davies and Curtis, 2011). Studies showed that

nematode SC exposed to different root exudates and secondary

metabolites also undergoes modifications which influence PGPB
frontiersin.org

https://doi.org/10.3389/fpls.2024.1377453
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Habteweld et al. 10.3389/fpls.2024.1377453
attachments to RKN surface (Akhkha et al., 2002; Curtis, 2008;

Singh et al., 2014; Liu et al., 2017). Pasteuria penetrans endospores

attachment to J2 of RKN were variable in response to root exudates

from different plant species (Singh et al., 2014; Liu et al., 2017). For

instance, M. incognita J2 exposed to the root exudates showed

greater P. penetrans endospores attachment (Singh et al., 2014).

These results indicated that the influence of specific host root

exudates on RKN-PGPB interactions in the soil favors RKN

antagonistic microbes attachment (Topalović et al., 2020c).

J2-attached PGPB can also increase hosts’ resistance to RKN.

PGPB attaching to J2 of M. hapla prior to J2 infection enhanced

their detection by upregulating several pattern-triggered immunity

(PTI)-responsive defense genes (Topalović et al., 2020a). Moreover,

chemicals produced by M. hapla J2 with attached Microbacterium

sp. K6 strain activated a greater reactive oxygen species (ROS)

response in tomato roots. Such a greater increase in ROS was not

detected for nematodes without the K6 strain. Besides, hundred-

fold ROS response was observed in the leaves than the roots for J2

with attachedMicrobacterium sp. K6 strain (Topalović et al., 2020a,

b, c). Therefore, J2-attached PGPB prior penetrating roots can

activate ISR that inhibits RKN establishment.

Recent research findings suggest that the success of RKN root

invasion is influenced by the root exudates and PGPB in the

rhizosphere which determine whether the RKN surface molecule

is recognized by plant roots or not (Topalović et al., 2020c). Thus,

host plant root exudates components play a key role for the

communications between plants and nematodes, and nematode-

PGPB interaction by modulating components of the nematode SC

(Topalović et al., 2020c). Based on the host range of the nematode

and the PGPB composition, RKN may either bypass plant defense

responses to infiltrate the roots or be antagonized within or outside

the plant. Thus, plants are utterly dependent on PGPB during

nematode invasion, which results in the proliferation of a certain

group of PGPB community protecting the host (Hussain et al.,

2018; Topalović et al., 2020c). This suggests that the dynamic

tripartite phenomenon in soil leads to nematode suppression by

microbially induced systemic resistance in plants (Topalović

et al., 2020a).
5 Soil microbes could enhance
RKNs parasitism

RKN juveniles, while actively searching for roots in the soil, are

likely to encounter and attach to a functionally diverse array of soil

microbes. This array includes both antagonistic and protective

surface microbes (Topalović and Vestergård, 2021). The

holobiont concept suggests that each macroorganism has

developed a mutually beneficial relationship with specific

microbiota that influences its health and survival. Additionally, it

infers that the microbial moiety of a holobiont can undergo

modifications in response to environmental stress (Bordenstein

and Theis, 2015). Soil microbes can protect PPNs in soil by

outcompeting nematode antagonists for attachment sites on the

nematode’s surface, reducing nematode recognition, or by
Frontiers in Plant Science 05
producing compounds that are toxic to nematode antagonists

(Topalović and Vestergård, 2021).

RKN J2s may avoid antagonists by recruiting protective soil

microbiota to their surface. A recent study revealed that J2-attached

microbes’ compositions were different on actively moving J2 surface of

Meloidogyne hapla and M. incognita in the presence of Pseudomonas

protegens strain CHA0, a bacterial antagonist (Topalović et al., 2023).

In the absence of P. protegens strain CHA0, bacterial genera such as

Delftia, Variovorax and Pseudomonas attached on both active and

inactive J2s but not on J2 treated with P. protegens strain CHA0. P.

protegens CHA0 also activated proliferation of Flavobacterium spp.

and Cutibacterium spp., and Methylophilaceae family within the

Gammaproteobacteria, which might have protective role on active

nematodes in M. hapla and M. incognita, respectively (Tsuru et al.,

2021; Topalović et al., 2023). The presence of P. protegens CHA0

might also change the surrounding microbial community by reducing

the prevalence of nematode antagonistic taxa such as Pseudomonads

may be due to a release of secondary metabolites from P. protegens

CHA0 (Topalović et al., 2023). Such antimicrobial compounds might

play a role in reducing the abundance of nematode antagonists in the

soil in the presence of RKN protective soil microbiota.

PGPB attachment to nematode surface can reduce the nematode

recognition by plants during the infection process by masking the

nematode receptors (Curtis, 2008; Mendy et al., 2017; Topalović et al.,

2020c). RKN surface-attached microbes may also facilitate RKN

establishment by helping in the creation of a feeding site and

enhancing nutrition available for the nematodes (Cao et al., 2015).

Community analysis of root-associated microbiomes in healthy and

RKN-infected tomatoes showed that nematode infections were

associated with variation and differentiation of the endophyte and

rhizosphere bacterial populations in plant roots (Tian et al., 2015).

Bacterial genera with N-fixing (Sinorhizobium spp. and Devosia spp.)

and cellulose-degrading (Sphingomonadaceae) abilities were found

associated with different life stages of M. incognita on tomato (Cao

et al., 2015; Tian et al., 2015). As the plant does not recognize N-fixing

bacteria as pathogens, their introduction may deter RKN recognition

and immune responses against the RKN. In addition, detecting

cellulose-degrading bacterial groups may suggest that the gall-

enriched cellulose-degrading bacteria may help nematodes in

feeding site formation (Tian et al., 2015; Yergaliyev et al., 2020).

Overall, soil type, plant genotype, the specific interaction between soil

microbiota and nematode surface, and the movement of J2 influence

the composition of J2-attached microbial community (Adam et al.,

2014; Elhady et al., 2017; Topalović et al., 2019; Elhady et al., 2021;

Topalović et al., 2023).
6 Role of abiotic factors in host-
RKN interactions

Soil abiotic factors can affect host-RKN interactions through

their impact on plant and RKN growth and development, and/or

the activities of PGPB (Figure 2). RKN spend a phase of their life

cycle (J2) in soil, the composition, and properties of which affect J2

motility and distribution, as well as their development inside their
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host (Norton, 1989; Mateille et al., 2014). Soil abiotic factors (soil

physical properties such as temperature, texture, structure, and

moisture content; soil chemical properties such as soil pH

and mineral compositions) affect RKN behavior and development

and in turn host-RKN interactions (Palomares-Rius et al., 2015).

They also affect host growth and development such as root size,

numbers, softness and quality and quantity of root exudates, and in

turn RKN behavior and development (Castillo et al., 2006; Landa

et al., 2014). Soil abiotic factors also affect the movement of volatiles

released from roots and PGPB and alter the interactions of host-

RKN-PGPB as volatiles play key roles in mediating intra- and inter-

kingdom communications (Sharifi and Ryu, 2018; Erktan et al.,

2020; Wester-Larsen et al, 2020; Lee and Ryu, 2021). While soil

abiotic factors affect soil microbiota which in turn can affect host-

RKN interactions as aforementioned, an in-depth analysis of this

topic falls beyond the scope of this review as its main theme is to

discuss the role of PGPB and abiotic factors on host-RKN

interactions. Rather, in the following sections we will mainly

discuss the major soil abiotic factors affecting host-RKN

interactions by focusing on their impact on plants and RKN.
6.1 Soil temperature

Temperature influences nematode behavior such as egg

hatching, nematode movement, root infection, their development

and existence in soils (Velloso et al., 2022; Pradhan et al., 2023).

Temperature also has a tremendous effect on plant development,

reproduction, survival, and resistance to RKN (Hatfield and

Prueger, 2015; Pradhan et al., 2023). Different levels of soil

temperatures have variable effects on RKN root infection and

their metabolism (Verdejo-Lucas et al., 2012, 2013; Khan et al.,

2014; Pradhan et al., 2023). The tropical nematodes such as M.

incognita,M. javanica andM. arenaria are most active for infection

at a temperature of 24–32°C, while other root-knot nematodes such
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as M. hapla and M. chitwoodi can remain active in a temperature

range of 10°C and 32°C (Davila-Negron and Dickson, 2013; Gine

et al., 2021; Pradhan et al., 2023). As temperature increases, the

number of RKN generations increase which leads to large

increment in nematode population density and greatly reduce

plant development (Verdejo-Lucas et al, 2013).

Generally, RKN reproduction increases when the soil

temperature is intermittently above 28 °C (Talavera et al., 2009).

However, temperatures below 18 °C decreased the J2 motility and

subsequent root penetration and development inside roots (Roberts

et al., 1981; Prot and Van Gundy, 1981a; Trudgill, 1995). High

temperatures are also known to decrease nematode motility and

cause lethality (Wallace and Bird, 1965; Wang and McSorley, 2008;

Oka, 2019). Similarly, the pace of plant growth and development

hinges on the ambient temperature of the plant, with each species

having a defined temperature range represented by a minimum,

maximum, and optimum temperature (Hatfield and Prueger, 2015).

Soil temperature affects physiological processes of host plants such

as root growth (Holtzmann, 1965), plant vigor and yield (Abdul-

Baki, 1991), and thus, affect host-RKN interactions. For example,

heat stress increase heat-shock proteins in plants that may alter the

plant defense mechanisms at early stages of nematode infection

(Verdejo-Lucas et al., 2013).

High temperature also affects plant resistance to RKN infection

(Roberts, 2002). For instance, Mi-1 gene is responsible for tomato

resistance to M. arenaria, M. incognita and M. javanica (Smith,

1944) which greatly reduces the RKN reproduction in tomato

(Roberts and Thomason, 1986; Sorribas et al., 2005). However,

soil temperature above 28 °C usually negatively affects the resistance

traits (Holtzmann, 1965; Dropkin, 1969; Araujo et al., 1982) and

lead RKN to break the Mi-gene that lead to RKN population

increase and affect plant growth and development (Devran and

Sögüt, 2010; Verdejo-Lucas et al., 2012, 2013). As plants and RKN,

PGPB have minimum, optimum, and maximum temperatures for

their physiological activities. Temperature changes lead to
FIGURE 2

Impact of abiotic factors in host-RKN-PGPB interactions and their communications. The figure is created with BioRender.com.
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structural and compositional changes in PGPR community which

affect their interaction with plants and RKN, and host-RKN

interactions (Zhang and Gross, 2021; Omae and Tsuda, 2022).

The activity of PGPB enzymes can be influenced by soil

temperature. For instance, the effectiveness of enzymes involved

in nitrogen fixation varies at different temperatures (Abdul Rahman

et al., 2021).

Temperature can influence the tripartite interactions through

altering the host and PGPB volatiles concentration and mobility in

soil (Kramshøj et al., 2019; Wester-Larsen et al, 2020). Studies

showed that temperature increase positively correlated with an

increase volatiles concentration by increasing biological activity,

and liberating adsorbed and dissolved volatiles (Guenther et al.,

1993; Insam and Seewald, 2010; Wester-Larsen et al., 2020). When

concentration of volatiles in soil is low, it is not sensed over long

distance by host, RKN and PGPB and hence affect the interactions

between host-RKN-PGPB.
6.2 Soil texture, structure, and
moisture content

Soil texture, structure and moisture are interrelated. Soil texture

(proportions of sand, clay, and silt) and structure (soil aggregation)

directly influence soil porosity which determines soil aeration, water

infiltration and retention, and, indirectly, root growth, nematode

movement, nutrient availability, and microbial activity (Saxton and

Rawls, 2006; Mateille et al., 2014; Noronha et al., 2021; Garcia et al.,

2022). Soil texture impacts the movements of J2 through the water

film around soil particles, stimulated by the retention of root

exudates that enable RKN to locate the roots (Prot and Van

Gundy, 1981b; Garcia et al., 2022). The sandier soils seem to be

good habitats for RKN and increase their presence in areas with

coarse soil (Prot and Van Gundy, 1981b; Mateille et al., 2014; Kabir

et al., 2017; Noronha et al., 2021). More structured soils with higher

clay content, greater porosity, and water storage favored RKN

because they retained water and created transport films in the soil

that facilitated nematode movement (Otobe et al., 2004; Fajardo

et al., 2011; Noronha et al., 2021). More structured soil also

promotes the abundance, structure, and activity of PGPB which

affects host plants, RKN as well as their interactions (Hartmann and

Six, 2023).

Conversely, dry soil conditions may inhibit root growth,

decrease metabolic activity, and cause electrolyte disturbances.

These adverse effects can lead to the death of the plant, which in

turn negatively affects the RKN development (Hurd, 1968; Roberts

et al., 1981; Chen et al., 2022). Dry soils may not have enough water

film for RKNs’ movement to locate host roots (Wallace, 1958; Oka,

2019). Dry soil also negatively affects the abundance, structure, and

activity of PGPR and as a result of reduced nutrient availability,

antipathogenic activities against RKN and the interactions between

host and RKN (Bogati and Walczak, 2022; Omae and Tsuda, 2022).

For instance, low soil moisture content decreases the movement of

nitrogen-fixing bacteria to the rhizosphere, decreases rhizosphere

colonization and their plant growth-promoting activity (Islam et al.,

2020). Conducive soil physical properties such as water retention,
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porosity, aeration, and soil temperature enhance plant

development, favor RKN and PGPB activity, and increase

nematode and PGPB reproduction (Franchine et al., 2018;

Notonha et al., 2021).

Soil texture, structure and moisture content affect the diffusion

rate of volatiles in soil and as a result modulate the interactions

between host, RKN and PGPB (Aochi and Farmer, 2005; Asensio

et al., 2008). Soil texture and structure determine the pore sizes

(micro or macro) in the soil which in turn influences the movement

of soil organisms and soil moisture content (Mateille et al., 2014;

Noronha et al., 2021; Garcia et al., 2022). The level of soil moisture

content in turn affects the rate of diffusion of volatiles in soil that

alters the interactions between host-RKN-PGPB. For instance, the

movement of volatiles in wet soil is much slower than in dry soil,

influences volatile travel distance and magnitude and impact the

sensing ability of soil organisms such as RKN (Moldrup et al., 2000).

In contrast, volatiles diffusion in the drier soil is faster and travels

longer (Tyc et al., 2015; Erktan et al., 2020). RKN locate and move

towards the host root tip by using the concentration gradient of

volatiles as cue (Rasmann et al., 2012). Although RKN can better

sense roots due to faster diffusion of volatiles, it may not reach to the

root due to movement restriction in drier soil condition. Thus,

optimal soil pore size and moisture content allows the movement of

soil organisms and diffusion of volatiles. Similarly, the movement of

PGPB to the root is mediated by the volatiles from the host, and

plant roots must sense PGPB volatiles to respond accordingly

(Schmidt et al., 2015; Schulz-Bohm et al., 2015; Tyc et al., 2017;

Erktan et al., 2020; Sharifi et al. 22).
6.3 Soil pH

Soil pH is one the most important soil abiotic factors

influencing soil properties, nutrient availability and solubility,

plant growth, and RKN activity (Gentili et al., 2018; Penn and

Camberto, 2019; Nisa et al., 2021; Barrow and Hartemink, 2023;

Dewangan et al., 2023). Nutrient levels in soil are linked to the

concentration of hydrogen ions, reflected in the soil’s pH value.

Changes in pH level can influence the availability of nutrients,

affecting plant growth. The exact influence of pH fluctuations on the

soil’s microbial populations is not fully understood though it is

known that pH is a key factor in determining microbial community

structure (Biswas et al., 2007; Msimbira and Smith, 2020). Although

the influence of soil pH varies with the host and nematode species

(Wallace, 1973; Jones, 1975), soil acidity is a major abiotic stress

factor that limits plant and RKN development (Schaller, 1987; Foy

et al., 1993; Baligar and Fageria, 1997). In soil pH <5, for instance,

aluminum (Al) becomes toxic to root growth while the essential

nutrients such as P, K, magnesium (Mg) and calcium (Ca) become

less available for uptake and negatively affect plant growth.

Prolonged exposure to Al subjects plants to considerable

oxidative stress and harms the root systems, impairing their

ability to absorb water and nutrients (Kochian et al., 2005; Chai

and Schachtman, 2022). Similarly, alkaline soils often have a

reduced availability of P, zinc (Zn), Fe, copper (Cu), Boron (B),

and manganese (Mn), which results in stunted plant growth
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(Melakeberhan et al., 2004; Barrow and Hartemink, 2023). Soil pH

higher than 5 was associated with an increase of RKN populations;

and pH values of 5.9 and 4.6 favored more pre-adult and adult

stages of M. incognita than pH 4.3 in soybean roots (Melakeberhan

et al., 2004; Kesba and Al-Shalaby, 2008; Nisa et al., 2021). Similarly,

soil pH ranging from 5.7-7.9 appears to positively impact the

abundance of RKN on sugarcane (Garcia et al., 2022). Based on

the plant and RKNs species, specific range of soil pH negatively

affects plants and RKN development and their interactions.

Although tolerance of PGPB to soil acidity or alkalinity differs,

most PGPR prefer pH of 6-7 and a change in range of soil pH alters

their composition and activity which also alters their impact on host

and RKN. For instance, low soil pH decreased nitrogen-fixing

bacteria diversity and the process of N-fixation (Smercina et al.,

2019; Abdul Rahman et al., 2021). Microorganisms in soil must

have the ability to perceive and adapt to changes in their

environment, including shifts in pH, to successfully survive and

establish themselves (Biswas et al., 2007).
6.4 Soil organic matter

Increased soil organic matter (SOM) is typically linked to

increased water holding capacity, storage of plant nutrients and

structure of soil, and heightened microbial activity, and better plant

growth, influencing host-RKN interactions (Pimentel et al., 2005;

Evanylo et al., 2008; Zasada et al., 2008; Natsheh and Mousa, 2014;

Zhang et al., 2014, 2016). One scenario illustrating the influence of

SOM on host-RKN interactions involves the promotion of plant

growth as indicated by previous studies (Pimentel et al., 2005; Forge

and Kempler, 2009). This growth elevates the carrying capacity of

plants on which RKN feed (Bongers et al., 1997; Bongers and

Bongers, 1998; Bongers and Ferris, 1999; Habteweld et al., 2020a) or

enhances microbial activity such as nematode antagonists resulting

in RKN suppression (Gine et al., 2016; Silva et al., 2022). SOM also

alters the tripartite interactions directly by adsorbing the volatiles

released by plants and PGPB directly which decrease their

concentration in soil or by involving soil structure and pore

formation as aforementioned indirectly (Wester-Larsen

et al., 2020).
6.5 Soil nutrient content

The presence of nutrients in the soil has a direct or indirect

impact on both plant growth and development as well as RKN

densities through the development of host plants (Habteweld et al.,

2018). Soil mineral content is an important abiotic factor for

nematodes ’ development as they modify their habitat,

metabolism, or movement (Norton, 1989; Mateille et al., 2014;

Palomares-Rius et al., 2015). For instance, N is one of the

macronutrients essential for plant growth and development and

increase nematode reproduction indirectly by enhancing root

growth (Santana-Gomes et al., 2013; Lira et al., 2019). Studies

showed that high N content in the soil was positively correlated
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with RKN population densities in sugarcane and tomatoes (Asif

et al., 2015; Ngeno et al., 2019).

P promotes root growth which increases nutrients acquisition

and overall plant development (Devi et al., 2012). P deficiency

induces the exudation of phenolics such as caffeic and

protocatechuic acid into the rhizosphere resulting in desorption

of P by binding with P-containing minerals in soils to release P for

plant uptake (Juszczuk et al., 2004; Hu et al., 2005; Weisskopf et al.,

2006; Noronha et al., 2021; Chai and Schachtman, 2022). P also

influences RKN through biochemical changes in plants such as the

increase in plant oils, phenolics, peroxidases, and ammonia that

reduce the reproduction of the nematodes (Noronha et al., 2021).

The addition of P fertilizers inhibits hatching and causes J2

mortality of M. javanica and M. incognita (Habash and Al-

Banna, 2011; Hemmati and Saeedizadeh, 2019). K is required for

plant development due to its involvement in various metabolic

processes such as photosynthesis, protein synthesis, and

translocation of sucrose from leaves to the stalk storage tissues

(Medina et al., 2013). It is also related to stabilizing cell structure,

thickening cell walls, and preventing the expansion of intracellular

space (Li et al., 2010). Thus, low K levels in soil contribute to

reducing the longevity of plants such as sugarcane (Noronha et al.,

2021). K may suppress RKN as the application of K activates various

enzymes improving plant resistance against M. incognita (Zhao

et al., 2016).

While the impact on the development of RKN is not well

studied, Ca, Mg, Ca/Mg, Carbon/Nitrogen (C/N) and soil cation

exchange capacity (CEC) play important roles in the development

of both plants and RKN. Ca is required for plant growth and

development due to its involvement in cell wall and cell membrane

formation, and N metabolism in plants (Thangavelu and Rao, 2004;

Hepler, 2005). Mg is also required for plant growth and

development due to its key role in photosynthesis and

phosphorus transport (Thangavelu and Rao, 2004; Huber and

Jones, 2013). A more recent study showed that increasing Ca/Mg

ratio was associated with a decrease in RKNs’ densities (Noronha

et al., 2021). C/N ratio and CEC improve soil nutrient retention

capacity, enabling a steadier release of nutrients, thus having a

positive impact on host and RKN populations (Garcia et al., 2022).

The presence of heavy metals such as Zn or Cu in the soil suppresses

RKN development (Park et al., 2011; Garcia et al., 2022). This effect

could be indirect through reduced plant growth and thus lower

quality nutritional content for RKN, as these organisms depend on

their host plants for nutrition (Garcia et al., 2022). Thus, the

imbalance of nutrients in the soil can affect the metabolism of the

crop which can indirectly influence RKNs’ development (Coyne

et al., 2004; Noronha et al., 2021; Garcia et al., 2022). Soil nutrients

and their bioavailability influence the abundance, richness, and

diversity of PGPB, and the interaction between host and RKN. For

instance, addition of Fe and N influences microbial richness in the

soil (Lakshmanan et al., 2014; Yang et al., 2015). Soil nutrients also

influence the tripartite interaction by reducing the volatiles in soil.

Sorption of volatiles to minerals are subject to degradation and

catalyzed by mineral surfaces which reduce their diffusion and the

sensing by plants, RKN and PGPB (Erktan et al., 2020).
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7 Importance of agricultural practices
in modulating host-RKN-
PGPB interactions

Agricultural practices (APs) modulate the host-RKN-PGPB

interactions by affecting plant and RKN development as well as

altering soil’s physicochemical and biological properties (Habteweld

et al., 2022). Common APs in conventional agriculture such as

tillage, the use of inorganic fertilizers, and chemical pesticides and

herbicides, may increase plant growth but often have harmful effects

on the environment and human health (Lal, 2008; Diacono and

Montemurro, 2010). For instance, conventional tillage has a

negative impact on PPN populations by changing the

physicochemical properties of the soil (Dick, 1992; Freckman and

Ettema, 1993; Pankaj et al., 2006; Duplay et al., 2014). These

changes can modify nematodes’ metabolism and reduce their

mobility or access to food sources by removing weeds and

altering their living habitats (e.g. living depth and soil structure)

(McSorley and Dickson, 1990; Ou et al., 2005; Ekschmitt and

Korthals, 2006; Mateille et al., 2014; Palomares-Rius et al., 2015;

Garcia et al., 2022). The repeated use of synthetic fertilizers causes

decline in soil physicochemical and biological properties (Odunze

et al., 2012; Eche et al., 2013; Singh et al., 2013) that can in turn

affect plant-RKN interactions. Acidic soil pH caused by the repeated

application of chemical fertilizers negatively affects soil biological

property which favors some pathogens. It also reduces plant growth,

nutrient availability, and may affect the tripartite interactions (Singh

et al., 2013; Habteweld et al., 2020a). N fertilizers, for example,

promote plant growth leading to high carrying capacity for RKNs

(Noronha et al., 2021) or decreasing RKN population density due to

the release of nitrogenous compounds such as NH3 (Karajeh and

Al-Nasir, 2012; Wei et al., 2012; Patil et al., 2013; 2014). Moreover,

the use of insecticides and fungicides and soil disturbances due to

tillage could eliminate potential natural enemies of RKN such as

nematophagous fungi (Stirling, 2014; Kumar et al., 2017) leading to

increased RKN populations and reduced plant growth (Garcia

et al., 2022).

In contrast, cultural APs such as organic amendments,

mulching, crop rotation, cover cropping and conservation tillage

increase the availability of nutrients, improve soil structure leading

to better moisture retention and soil microbial activity, reduce

fertilizer loses to the environment, and increase plant growth

(Oquist et al., 2007; Forge and Kempler, 2009; Glover et al., 2010;

Zhang et al., 2014, 2016; Habteweld et al., 2020a, 2020b). Compost

stands as one of the most widely employed organic amendments,

demonstrating its ability to enhance soil organic matter, augment

nutrient content, stimulate microbial activity, suppress pests, and

contribute to overall soil health improvement (Bulluck et al., 2002;

Forge and Kempler, 2009; Ferris et al., 2012; Habteweld et al., 2018,

2022). Incorporating compost as soil amendment increases soil pH

by forming an aluminum complex and increasing base saturation

(Shiralipour et al., 1992; Van den Berghe and Hue, 1999). In

addition, organic amendments (composts, plant residues, animal

manures, and plant derivatives) increase plant growth parameters
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(shoot fresh weight or dry weight) and decrease RKNs damage

attributes, i.e. soil RKNs numbers, number of root galls, and

number of eggs/egg masses in roots (Peiris et al., 2020). Organic

APs are also known to enhance soil microbial activities including

RKN antagonists (Silva et al., 2022). Rhizosphere soil under organic

cultivation recruit RKN antagonistic bacteria genera such as

Pseudomonas, Serratia, Bradyrhizobium, Burkholderia and

Azospirillum and fungal genera such as Beauveria, Clonostachys,

Metarhizium, Purpureocillium and Arthrobotrys (Silva et al., 2022).

Thus, organic APs are potential candidates to modify soil and crop

management as part of integrated strategies, thus enhancing the

tripartite interactions towards RKN suppression and promoting

plant growth and environmental safety.
8 Concluding remarks

RKNs are the most widespread PPNs in agricultural soils,

infecting thousands of crops and causing annual losses of billions

of dollars around the globe. The currently most effective and widely

used RKNs control technique is the use of chemical nematicides.

However, due to human health and environmental concerns, the use

of many of these nematicides was banned or restricted. Therefore,

there is a pressing need for effective and environmentally friendly

alternative RKN control strategies. One such alternative is the use of

RKN antagonistic microorganisms. However, microbial agents that

were found to be effective in controlling RKN in the laboratory and/

or in the greenhouse conditions often do not replicate the same level

of control in the more complex soil ecosystems. The low efficacy of

microbial agents may be attributed to overlooking native microbiota

that possesses protective abilities for RKN, as well as to soil abiotic

factors that modulate the host-RKN-PGPB interactions.

Consequently, a deeper understanding of the dynamics of host-

RKN interactions in varied biotic and abiotic environments could

be pivotal in devising novel RKN control strategies.

9 Future perspectives of host-RKN-
PGPB interactions for RKN mitigation

The utilization of PGPB for controlling RKN and fertilizing

plants holds significant importance in agroecosystems, primarily

due to their positive environmental impact. The application of

PGPB, which facilitates RKNs’ control and increases soil fertility,

plant growth, and crop safety, is poised to drive sustainable

agriculture. However, the use of PGPB as an RKN control

strategy requires a comprehensive understanding of the host-

RKN-PGPB interactions and of how soil physicochemical and

biological properties modulate the interactions. The concept of

the holobiont indicates that plants have fostered a symbiotic

relationship with specific microorganisms that play a role in their

fitness, and that the microbial moiety of a holobiont can experience

alterations in response to environmental stress (Bordenstein and

Theis, 2015). Soil microbiota can also protect RKN in soil by

outcompeting nematode antagonists for attachment sites on
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nematode surface, reducing nematode recognition, or by producing

compounds that are toxic to nematode antagonists (Topalović and

Vestergård, 2021; Topalović et al., 2023). So far, there are very

limited studies to understand the role of RKN protective soil

microbiota, soil edaphic factors and different agricultural practices

in modulating the tripartite interactions. Hence, unraveling the

tripartite interactions and understanding their relationship with soil

biotic and abiotic factors may provide us with more knowledge on

how to enhance PGPB efficiency in controlling RKN in

agroecosystems. This knowledge may pave the way for the

development of novel PGPB strains capable of competing and

establishing themselves in soil ecosystems. It may also aid in

selecting appropriate APs that increase PGPB efficiency.

Moreover, the incorporation of PGPB into integrated RKN

management strategies, particularly through APs such as organic

amendments, cover cropping, and crop rotations, can improve soil

physicochemical and biological properties. This, in turn, positively

influences tripartite interactions, leading to more effective RKN

control. However, several pressing questions remain to be

addressed. For instance, how do we get deeper insight into the

tripartite interactions to weaponize it for sustainable RKN

management? How to find the most effective RKN-PGPB species

combination that enhances host fitness? How does PGPB and RKN-

protective microbiota competition influence the microbial

composition in rhizosphere? What are the mechanisms RKN use

to recruit protective soil microbiota in soil? What specific

component of root exudates are involved in RKN and protective

microbiota interactions? What abiotic factors favor RKN-protective

microbes? Is RKN protective microbiota directly involved in

infection and feeding site establishment? Which APs may help to

enhance the abundance and activities of indigenous PGPB, and

their communication through volatiles? Answers for these kinds of

questions will lead to effective integration of PGPB in sustainable

RKN control and ecologically sound agroecosystems.
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Topalović, O., Bredenbruch, S., Schleker, A. S. S., and Heuer, H. (2020a). Microbes
attaching to endoparasitic phytonematodes in soil trigger plant defense upon root
penetration by the nematode. Front. Plant Sci. 11. doi: 10.3389/fpls.2020.00138
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