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An aldehyde dehydrogenase
gene, GhALDH7B4_A06,
positively regulates fiber
strength in upland cotton
(Gossypium hirsutum L.)
Liyuan Tang, Cunjing Liu, Xinghe Li , Haitao Wang,
Sujun Zhang, Xiao Cai and Jianhong Zhang*

Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Cotton
Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs,
Shijiazhuang, Hebei, China
High fiber strength (FS) premium cotton has significant market demand.

Consequently, enhancing FS is a major objective in breeding quality cotton.

However, there is a notable lack of known functionally applicable genes that can

be targeted for breeding. To address this issue, our study used specific length–

amplified fragment sequencing combined with bulk segregant analysis to study FS

trait in an F2 population. Subsequently, we integrated these results with previous

quantitative trait locus mapping results regarding fiber quality, which used simple

sequence repeat markers in F2, F2:3, and recombinant inbred line populations. We

identified a stable quantitative trait locus qFSA06 associated with FS located on

chromosome A06 (90.74–90.83 Mb). Within this interval, we cloned a gene,

GhALDH7B4_A06, which harbored a critical mutation site in coding sequences

that is distinct in the two parents of the tested cotton line. In the paternal parent

Ji228, the gene is normal and referred to as GhALDH7B4_A06O; however, there is a

nonsense mutation in the maternal parent Ji567 that results in premature

termination of protein translation, and this gene is designated as truncated

GhALDH7B4_A06S. Validation using recombinant inbred lines and gene expression

analysis revealed that this mutation site is correlated with cotton FS. Virus-induced

gene silencing of GhALDH7B4 in cotton caused significant decreases in FS and fiber

micronaire. Conversely, GhALDH7B4_A06O overexpression in Arabidopsis boosted

cell wall component contents in the stem. The findings of our study provide a

candidate gene for improving cotton fiber quality through molecular breeding.
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Introduction

Cotton is a primary natural fiber source in the textile industry

(Wen et al., 2023). Upland cotton (Gossypium hirsutum L.) is

extensively cultivated because of its high yield and adaptability,

and it accounts for over 95% of cultivated cotton (Yuan et al., 2019).

Because of the negative correlation between cotton yield and fiber

quality, relying on traditional breeding to simultaneously improve

yield and quality is challenging (Wang et al., 2020). This has

resulted in moderate fiber quality of commonly cultivated

varieties. With the improvement of modern textile processes, the

growing consumer demand for high-quality cotton products, and

damage to cotton fibers caused by current mechanical harvesting,

there is a substantial market demand for premium cotton with high

fiber strength (FS) (Zang et al., 2022). Enhancing FS has become a

major goal in cotton quality breeding.

Cotton fiber, a single-cell trichome with an extended and

thickened seed surface, also serves as an excellent model for

investigating cellular development processes (Haigler et al., 2012;

Xu et al., 2021). Cotton fiber development progresses through four

interconnected stages: fiber initiation, elongation, secondary cell

wall (SCW) thickening, and desiccation maturation. Fiber length

(FL; mm), fiber strength (FS; cN/tex), fiber uniformity ratio (FU),

fiber micronaire (FM), and fiber elongation (FE) are the primary

variables regulating the fiber’s characteristics (Liu et al., 2016). FS

primarily develops during the SCW thickening stage (Zang et al.,

2022). SCW thickening is an intricate biological process that is

controlled by the biosynthesis-related genes responsible for cell wall

primary components, cellulose, hemicellulose, and lignin, and it is

regulated by numerous transcription factors, microRNAs, and

phytohormones (Kumar and Turner, 2015; Zang et al., 2022; Ma

et al., 2018; Huang et al., 2018; Li et al., 2018; Cao et al., 2020; Sun

et al., 2020; Zhang et al., 2021; Tang et al., 2023). Furthermore, it is

apparent that there are numerous genes and complex regulatory

networks associated with SCW. For example, among NAC (NAM,

ATAF and CUC) type transcription factors, a total of 38 GhNAC

genes have been identified to be involved in cotton fiber

development (Sun et al., 2018). FS value is influenced by cellulose

deposition, which determines cell wall thickness, and cellulose fiber

organization, which determines cellulose crystallinity, during the

critical period of SCW thickening (Zang et al., 2022).

Previous researchers revealed numerous qualitative trait loci

(QTLs) related to FS by employing linkage analysis or genome-wide

association study using various markers such as amplified fragment

length polymorphisms, restriction fragment length polymorphisms,

and simple sequence repeats (SSRs) on samples from different

populations (Fang et al., 2017; Ning et al., 2014). With the

refinement of cotton reference genome sequencing (Li et al., 2015;

Zhang et al., 2015; Hu et al., 2019; Wang et al., 2019; Ma et al.,

2021), high-density single-nucleotide polymorphisms (SNPs),

individually and in conjunction with SSRs and other markers,

were used to identify several FS-related genes (Islam et al., 2016;

Li et al., 2016; Sun et al., 2017; Zhang et al., 2017; Ma et al., 2018;

Feng et al., 2020; He et al., 2021; Yang et al., 2022). For example, Ma

et al. (2018) conducted a re-sequencing study on 419 core

germplasm resources and detected 630 FS-related SNPs. Keerio
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et al. (2018) mapped six FS-related QTLs on three chromosomes

using specific length–amplified fragment sequencing (SLAF-seq) of

an introgression line population and its parent. These studies

identified FS-related SNPs and genes, which increased the density

of marker loci in intraspecific genetic maps and greatly improved

candidate gene location accuracy.

Numerous FS-related candidate genes have been identified and

the functions of some genes validated (Zang et al., 2021).

Nonetheless, many potential genes have yet to be confirmed, and

this is largely attributed to genotypic limitations and protracted

transformation periods involved in establishing stable transgenic

cotton plants with targeted characteristics via genetic modification

(Ge et al., 2023). Virus-induced gene silencing (VIGS) is a rapid

method commonly employed for preliminary gene function

determination (Tian et al., 2022). VIGS studies have revealed the

role of strigolactone biosynthetic genes and strigolactone-

responsive transcription factor genes in modulating cotton fiber

development because they affect SCW thickness and fiber

elongation (Tian et al., 2022; Wen et al., 2023). Other research

has used VIGS to demonstrate the involvement of genes such as

GhERF41, GhLTP1, GhSTLs, and GhAPs in the formation of FL or

FS, respectively (Deng et al., 2016; Guo et al., 2022; Gao et al., 2023;

Zhang et al., 2024). Similarly, Arabidopsis serves as a useful model

for fiber trait investigations, with studies showing that

overexpression of genes such as GhMYB7, GhMYB25-like, and

GhCesAs can modify cell wall composition and boost cellulose

content, which impact fiber quality (Huang et al., 2016; Chen

et al., 2006; Betancur et al., 2010). Sun et al. (2020) found that the

cellulose and lignin contents in the stems and roots of transgenic

Arabidopsis lines were reduced, which revealed that GhFSN5 is a

negative regulator of SCW formation.

In our previous studies, F2, F2:3, and recombinant inbred line

(RIL) (F2:9) populations were used for genetic mapping to identify

QTLs associated with fiber quality traits in upland cotton. A stable

FS QTL on chromosome A06 was consistently identified across

multiple generations (Zhang et al., 2020). In this study, we used

SLAF-seq combined with bulk segregant analysis (SLAF-BSA-seq)

to map a candidate interval for FS for the F2 population. We were

able to fine map a smaller genomic region, qFSA06, with which the

identified QTL overlapped on chromosome A06. Cloning analysis

revealed GhALDH7B4 as the potential candidate gene for qFSA06,

and this was supported by a nonsense mutation and the correlation

of GhALDH7B4 gene expression with FS. Functional validation

experiments using VIGS in cotton and overexpression in

Arabidopsis thaliana demonstrated that GhALDH7B4 positively

regulates cotton FS.
Materials and methods

Plant materials

The parents (Ji567 and Ji228) of the high fiber quality hybrid

cotton Jı1́518 and its offspring F2 and RIL populations were

employed in this study. Zhang et al. (2020) presented an

extensive overview of the population’s growth process and the
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phenotypic evaluation of fiber quality. Ji567, the female parent, has

a high yield and moderate FS. Ji228, the male parent, has high fiber

quality and high FS; it has the genetic background of sea island

cotton and carries the chromosomal segments from island cotton

(Liu et al., 2009). RIL131 and RIL229 were selected from the RIL

population because they have similar genome composition except

that RIL 229 harbors the target FS QTL on chromosome A06; these

RILs exhibited maintained stability of agronomic traits over the past

5 years (Tang et al., 2023).
SLAF-BSA-seq

Both parents and two bulks were chosen to perform SLAF-BSA-

seq. In the F2 population, 26 plants had the highest FS (H-bulk), and

31 plants had the lowest FS (L-bulk) (Table 1). Genomic DNA from

all plants in each group was combined in equal quantities to

produce bulks that had a final purity level of 40 ng/µL. The SLAF

library construction followed Sun et al. (2013), with 364- to 414-bp

DNA strands prepared by Biomics Technologies Company (Beijing,

China) for pair-end sequencing using Illumina High-seq 2500

platform (Illumina, CA, USA). The data has been deposited in

the NCBI database with the accession number PRJNA1049971.

After sequencing, the clean reads from the four bulks were mapped

to the G. hirsutum reference genome (Zhang et al., 2015). GATK

and Samtools were employed for SNP analysis (Li et al., 2009;

McKenna et al., 2010). Polymorphic SNPs between bulks were used

for association research. SNP-index correlation by Abe et al. (2012)

and Euclidean distance (ED) by Deza et al (2009). were integrated

for association mapping.
Physical location search of SSR markers

The study employed SSR markers previously used for fiber

quality QTL mapping in the population (Zhang et al., 2020) and

analyzed their physical locations through literature reported (Liu

et a l . , 2016) and the Cot tonGen database (ht tps : / /

www.cottongen.org/) (Yu et al., 2021).
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Sequence alignment and analysis

Using the PrimeStar HS high-fidelity enzyme (TaKaRa, China),

potential genes were amplified from fiber cDNA of the two parents.

For each PCR product, a minimum of eight clones from the pEASY-

Blunt cloning vector (Transgen, China) were sequenced. Sequence

alignment was performed using the DNAMAN 8.0, and the protein

sequence was subjected to BLAST search in the NCBI database

(https://blast.ncbi.nlm.nih.gov/Blast.cgi). Conserved domains of

proteins were analyzed by the Pfam database (http://

pfam.xfam.org/).
Verification of the association between FS
and a SNP in the candidate
gene GhALDH7B4_A06

Twenty RILs were arbitrarily selected to investigate the

potential association between the GhALDH7B4_A06 SNP and FS.

The SNP was confirmed through Sanger sequencing, and the

primers used are listed in Supplementary Table 1. The FS

phenotype was determined on the basis of the average over the

preceding 3 years.
Gene expression analysis using quantitative
real-time PCR (qRT-PCR)

Various tissues (leaf, stem, and root); ovules at 0 days post-

anthesis (DPA); and fibers at 5, 10, 15, 20, and 25 DPA were

retrieved from healthy plants of both parents, RIL131 and RIL229.

Three biological copies were used in this research. RNA extraction,

cDNA synthesis, and qRT-PCR were carried out with the RNAprep

Pure Plant Kit (TIANGEN, China), the PrimeScript RT Reagent Kit

(TaKaRa, China), and TB Green Premix Ex Taq II (TaKaRa,

China), respectively, following the manufacturer’s instructions. As

internal control, histone3 (AF024716) and TUB2 were employed for

gene expression analysis in cotton and Arabidopsis, respectively.

Relative expression rates were assessed using the 2−DDCt method

(Livak and Schmittgen, 2001). Supplementary Table 1 lists the
TABLE 1 FS characters statistics of parents, F2 population, and RIL lines.

Parents/
Generation

Individuals
Mean
value

Full
distance

Minimum
value

Maximum
value

Standard
deviation

Variance Skewness Kurtosis

M – 28.86 – – – 0.16 – – –

P – 34.34 – – – 0.22 – – –

F2 244 29.36 8.9 24.8 33.7 1.84 3.39 0.18 −0.5

L-bulk 31 26.39 2.3 24.8 27.1 0.56 0.31 −0.79 0.4

H-bulk 26 32.01 2.6 31.1 33.7 0.70 0.49 0.66 −0.19

RIL131 – 26.42 – – – 1.35 – – –

RIL229 – 36.06 – – – 0.63 – – –
fr
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specific primers that were designed using Primer-BLAST (http://

www.ncbi.nlm.nih.gov/tools/primer-blast/).
VIGS of GhALDH7B4 in cotton

The 300-bp GhALDH7B4 fragment was cloned into the cotton

leaf crumple virus (CLCrV) vector using SpeI and AscI restriction

enzymes because recent investigations established the virus’s

capacity to influence SCW synthesis during cotton fiber

development (Liu et al., 2019; Tian et al., 2022). Primers used are

shown in Supplementary Table 1. Agrobacterium strain LBA4404

was used to transform the VIGS vectors. The bacterial liquid

involved in the test mainly included the auxiliary plasmid

CLCrVB, the empty vector CLCrVA, the positive control vector

CLCrVA-PDS, and the target gene vector CLCrVA-GhALDH7B4.

The transformed LBA4404 was injected into the RIL229 plants

with high FS using established protocols (Gu et al., 2014; Tian et al.,

2022). The silencing effect was initially evaluated by the whitening

symptoms observed in the cotton plants expressing the positive

control CLCrV : PDS. To extend the duration of gene silencing and

maintain its efficacy during later stages, a secondary injection was

administered at the leaf axil of the primary stem in the early phase

of cotton squaring.

Gene silencing efficiency was determined by qRT-PCR using

25-DPA fibers of CLCrV:00 negative control and CLCrV :

GhALDH7B4 plants. The cotton fiber was harvested per plant

when the cotton boll opened naturally and matured. Six strains

with high silencing efficiency were selected, and fiber samples from

two plants were randomly combined as a biological replicate. Each

set comprised three biological replicates for the assessment of

fiber quality.
Overexpression of GhALDH7B4_A06
in Arabidopsis

The open reading frame of GhALDH7B4_A06O was inserted

into the pCAMBIA1302 vector with 35S CaMV promoter using

homologous recombination and Golden Gate seamless assembly

techniques to construct the GhALDH7B4_A06O overexpression

vector. The primers that were used are outlined in Supplementary

Table 1. Arabidopsis thaliana transformation was conducted with

the flower dipping method (Qin et al., 2017). Positive plants were

screened in a medium of 1/2 Murashige and Skoog (MS) +

Hygromycin B (75 mg/L) to the T3 generation. Both wild-type

(WT) and transgenic Arabidopsis plants were subjected to

consistent growth conditions and standard maintenance

protocols. At maturity, which typically occurred after

approximately 8 weeks, the first stem node of flower stems from

both transgenic and WT plants, measuring approximately 10 cm in

length from the base to the apex, was chosen for evaluation. The

cellulose, hemicellulose, and lignin contents of samples were

analyzed using specific detection kits (G0715W, G0716W, and

G0708W) (Grace, China) designed for plant material.
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Phenotypic detection and
statistical analysis

USTER HVI1000 M700 (Uster Technologies, Switzerland)

large-capacity cotton detector was used to test the characteristics

of cotton fiber quality, including FL, FS, FM, FU, and FE. All

experiments were independently repeated a minimum of three

times. Data were analyzed with Microsoft Excel 2021 and

SigmaPlot 14.0. Significant differences were determined

by ANOVA.
Results

Fiber qualities of parents, recombinant
lines, and populations

In this investigation, the parents and offspring of the hybrid

Ji1518 were examined. Overall, there were significant variations in

FS between the two parents (Ji567, 28.86 cN/tex; Ji228, 34.34 cN/

tex), and the F2 population consisting of 244 individuals displayed a

continuous range of FS variation (Table 1). Significant discrepant

FS values were observed between the H-bulk (31.1–33.7 cN/tex) and

L-bulk (24.8–27.1 cN/tex) selected from the F2 population, which

can serve as representatives of high and low FS phenotypes (Table 1;

Figure 1A). RIL131 and RIL229 displayed differences in the loci of

the FS QTL on chromosome A06, as evidenced by genotyping

indicating the presence of a SNP in the coding sequence (CDS)

region of the candidate gene GhALDH7B4_A06, with RIL131

carrying the GhALDH7B4_A06S allele and RIL229 carrying the

GhALDH7B4_A06O allele. RIL229 displayed comparable

agronomic traits to RIL131 but demonstrated significantly higher

FS, with a notable average difference of 9.64 cN/tex (Table 1).
FS QTL identification by SLAF-seq in
(Ji567×Ji228) F2 population

To identify the major QTL governing cotton FS, SLAF-seq was

performed on four libraries from two parents and two bulks from its

F2 descendants (H bulk and L bulk). A total of 307,849 SLAF tags

were obtained (Supplementary Table 2), with a uniform

distribution across the genome’s chromosomes (Supplementary

Figure 1A). The average sequencing depth of parents was 25.01×

and that of gene bulk with different FS was 34.17× (Supplementary

Table 3). A total of 125,969 SNPs were uniformly distributed on

each chromosome (Supplementary Figure 1B). Subsequently, an

association analysis was performed using 6,758 high-quality SNPs,

which were obtained after rigorous fi ltering processes

(Supplementary Table 4).

The ED and SNP-index methodologies were applied to identify

QTLs linked to FS. The ED approach, with a threshold of 0.10,

revealed that nine QTLs spanning a cumulative length of 26.43 Mb

were identified on seven chromosomes (A01, A06, A07, A09, D06,

D07, and D11) and encompassed 1,270 genes (Figure 1B; Table 2).
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TABLE 2 QTL regions by the two association analysis methods.

Association analysis methods Chromosome Start (bp) End (bp) Size (Mb) Gene_Number

Euclidean distance

chrA01 54,443,439 55,480,277 1.04 4

chrA06 1,464,921 2,617,853 1.15 79

chrA06 90,575,709 90,898,748 0.32 5

chrA07 21,370,741 21,506,919 0.14 1

chrA09 5,527,944 5,809,446 0.28 5

chrD06 9,146,483 27,491,385 18.34 583

chrD07 1,580,214 1,580,214 0 1

chrD11 11,392 4,988,373 4.98 582

chrD11 18,574,183 18,751,309 0.18 10

Total – – 26.43 1270

SNP_index

chrA06 90,738,206 90,826,117 0.09 2

chrD06 10,178,496 10,670,314 0.49 24

chrD06 24,434,721 27,581,372 3.15 72

chrD06 27,625,118 27,804,679 0.18 1

chrD11 11,392 1,332,349 1.32 145

Total – – 5.23 244

Combination

chrA06 90,738,206 90,826,117 0.09 2

chrD06 10,178,496 10,670,314 0.49 24

chrD06 24,434,721 27,491,385 3.06 71

chrD11 11,392 1,332,349 1.32 145

Total – – 4.96 242
F
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FIGURE 1

BSA gene bulk and genetic mapping of FS phenotypes. (A) FS values in different BSA gene bulks. Error bars represent the SD of different individuals in
respective bulks, ** indicates significant difference at p < 0.01. (B, C) Statistical algorithms used to map FS candidate genes under default parameters:
Euclidean distance association analysis (B) and SNP-index association analysis (C). Each colored point represents the calculated ED value or DSNP-
index value, whereas the black lines indicate the respective fitted values. In the ED algorithm graph (B), red dashed lines indicate thresholds. In the
SNP-index algorithm graph (C), the red, blue, and green lines represent thresholds with confidence levels of 0.99, 0.95, and 0.90, respectively.
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Among these, two QTLs were located on both chromosomes A06

and D11, whereas the rest were single-locus QTLs. Additionally,

employing the DSNP-index method with a confidence level of 0.99

revealed five QTLs that included 244 genes covering a range of 5.23

Mb on three chromosomes (A06, D06, and D11) (Figure 1C;

Table 2). Integration of results from both methodologies led to

the identification of four potential FS-associated QTLs distributed

on chromosomes A06, D06, and D11, with a total length of 4.96 Mb

and encompassing 242 genes (Table 2; Supplementary Table 5).

Notably, the mapping interval on chromosome D06 exhibited the

greatest size, whereas the region on chromosome D11 harbored the

highest number of genes, with the smallest mapping interval and

least number of genes identified on chromosome A06.
Identification of FS-related candidate
genes on chromosome A06

To narrow down the target region within the identified extensive

interval, integration of previous QTL mapping results for fiber quality

traits using SSR markers was conducted. Previous investigations across

various populations, including F2, F2:3, and RIL populations, identified

linkage groups associated with FS on chromosome A06, and two SSR

markers—HAU2119 and HAU2349—consistently co-segregated
Frontiers in Plant Science 06
within the same linkage group. In the F2/F2:3 populations, three FS

QTLs were positioned between these markers, which explained the

phenotypic variances ranging from 3.33% to 13.14%. However, in the

RIL population, a single QTL was identified as the exclusive FS QTLs

using SSR markers and was associated with 5.10% of the phenotypic

variance. We tentatively hypothesize the existence of a stable major-

effect QTL between the twomarkers on chromosome A06 based on the

study population. Upon retrieving the physical positions of these

markers from the CottonGen database (Supplementary Table 6), we

identified that the QTL (90.74–90.83 Mb) on chromosome A06 via

SLAF-BSA-seq fell within the region demarcated by HAU2119 and

HAU2349 (Figure 2A), whereas the stability of the presence of QTL on

chromosome D06 and D11 by SLAF-BSA-seq cannot be confirmed as

no relevant QTL were previously mapped in the RIL population by SSR

markers. Therefore, the region on chromosome A06 was selected for

further investigation and designated as qFSA06, and it spanned an 87.9-

kb interval.
Structural and expression analyses of
candidate gene GhALDH7B4 _A06

A gene located within the chromosome A06 interval was

isolated from fiber cDNAs of the parental lines Ji567 and Ji228
B

C

D E

A

FIGURE 2

Designation, sequence variations, and differential expression of GhALDH7B4_A06. (A) QTL interval determination by comparing QTL mapping results
based on SSR markers and SLAF-BSA-seq. (B) Allelic variations in GhALDH7B4_A06. (C) Prediction of the protein domain and conserved site of
GhALDH7B4_A06. ** indicate significant differences at p < 0.01. (D) Correlation of FS and allelic variations in GhALDH7B4_A06 in 20 RILs. (E)
GhALDH7B4 expression in different tissues of parents and two RILs. Lowercase and uppercase letters indicate significance at p < 0.05 and p <
0.01, respectively.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1377682
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Tang et al. 10.3389/fpls.2024.1377682
and demonstrated a substantial genetic variation between the two

lines. In Ji228, the gene’s CDS full length was determined to be

1,527 bp, whereas an SNP variant was identified at position 772 bp

in Ji567 that resulted in a G-to-T substitution. This nucleotide

change led to the conversion of the normal codon (GAG) to a stop

codon (TAG) (Figure 2B), which caused premature termination of

protein translation.

Protein domain prediction analysis indicated that the presence

of stop codons resulted in incomplete structural domains and the

absence of conserved glutamic acid active sites (PS00687)

(Figure 2C). This alteration was discovered to be associated with

FS variations in 20 RILs (Figure 2D). In particular, the gene did not

exhibit any nonsense mutations in the RILs with FS exceeding 34

cN/tex. Therefore, the gene could be divided into full-length and

truncated types in the study population. We tentatively assigned

this gene as a candidate for qFSA06.

The candidate gene encoded a protein consisting of 508 amino

acids with aldehyde dehydrogenase activity and exhibited 84.84%

similarity with AtALDH7B4; thus, it was named GhALDH7B4 in

cotton. This gene had one copy in each of the At and Dt sub-

genomes in upland cotton, with 17 nucleotide differences in the

CDS region, which led to the nomenclature of GhALDH7B4_A06

and GhALDH7B4_D06 (GenBank: PP584503) based on their

chromosomal locations. The full-length variant on chromosome

A06 was named GhALDH7B4_A06O (GenBank: PP210923),

whereas the truncated form was named GhALDH7B4_A06s

(GenBank: PP584502) (Supplementary Table 7). Cloning results

indicated no differences in the GhALDH7B4_D06 CDS between the

two parents (Supplementary Table 7).

qRT-PCR was employed to assess the expression pattern of

GhALDH7B4 (Figure 2E). The consistent predominance of

GhALDH7B4 expression in cotton fibers during 15–25 DPA,

irrespective of the sample source, indicated its potential
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involvement in SCW formation; therefore, it likely contributes to

FS development in cotton. Furthermore, the parent Ji228 and its

progeny RIL229, which carry GhALDH7B4_A06O, displayed

significantly higher or extremely significantly higher expression

levels across diverse tissues compared with Ji567 and RIL131,

which carry GhALDH7B4_A06S, indicated a possible association

between gene expression levels and genotypes.
Functional analysis of GhALDH7B4 _A06 by
silencing in cotton and overexpression
in Arabidopsis

AVIGS experiment was performed in cotton to confirm the role

of GhALDH7B4_A06 in FS formation. The findings demonstrated

the persistence of whitening symptoms in various tissues, including

cotton boll bracts, boll shells, and leaves, throughout boll

development in the positive control group, which indicated

successful silencing (Figure 3A). Notably, CLCrV : GhALDH7B4

plants exhibited a slender and fragile phenotype, although no

discernible changes in external morphology were observed post-

injection compared with the WT plants (Figure 3A). qRT-PCR

analysis displayed a silencing efficiency of 65.16% for GhALDH7B4,

with values ranging from 52.91% to 70.18% (Figure 3B). Fiber

quality test results indicated a significant reduction in FS and FM in

CLCrV : GhALDH7B4 cotton fiber, with reductions of 2.83cN/tex

and 0.97, respectively. However, no substantial differences were

observed in other fiber quality parameters compared with the

negative control (Figure 3C). This VIGS experiment provided

compelling evidence that supported the potential positive role of

GhALDH7B4 in cotton FS development.

For complementary functional assessment, we executed an

overexpression experiment of GhALDH7B4_A06O in Arabidopsis
B

C

A

FIGURE 3

Phenotype, gene expression in fiber, and fiber quality traits of GhALDH7B4-silenced cotton plants. (A) Phenotypic characteristics in flowering and
boll stages after the VIGS injection. (B) Gene expression analysis of GhALDH7B4 by qRT-PCR. (C) Fiber quality trait analysis. Error bars represent the
SD of three replicates. * and ** indicate significant differences at p < 0.05 and p < 0.01, respectively, and n.s. indicates not significant.
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to investigate its potential regulatory role in SCW biosynthesis.

Phenotypic evaluation of the transgenic lines revealed accelerated

growth rates (Figure 4A) and enhanced stem strength compared

with the WT (Figure 4B). Subsequent evaluation focused on two

transgenic lines (OE-3 and OE-15) characterized by elevated

expression levels of GhALDH7B4_A06O (Figure 4C). Analysis of

cell wall constituents indicated higher levels of cellulose,

hemicellulose, and lignin in the transgenic progenies relative to

the WT (Figure 4D). In particular, the most prominent disparity in

cellulose content was observed in the overexpression lines compared

with the WT, which demonstrated that GhALDH7B4_A06O

overexpression may stimulate augmentation of compounds

associated with SCW synthesis.
Discussion

GhALDH7B4_A06 is a candidate gene
associated with cotton FS

The combination of BSA and sequencing is effective for rapidly

mapping major QTLs and is widely used in various crops (Takagi

et al., 2013; Illa-Berenguer et al., 2015; Chen et al., 2021). In cotton,

this approach has been applied to studies on important traits such

as fiber quality, boll weight, agronomic traits, and disease resistance

(Zhang et al., 2016; Cui et al., 2021; Ma et al., 2022; Jia et al., 2023;

Zhang et al., 2024). In our study, an F2 population was used for

SLAF-BSA-seq, and four QTLs associated with FS were mapped to

three chromosomes. The large interval encompassed 242 genes.

However, we focused on the small mapping region qFSA06,

primarily because FS-related QTLs were detected within the

linked region of chromosome A06 across the F2, F2:3, and RIL

populations using SSR markers. As qFSA06 resides within this

region, we hypothesize that it represents a stable major-effect

QTL within these populations. Through gene cloning analysis in

the parents, one gene, GhALDH7B4_A06, was identified within

qFSA06, and it had a critical nonsense mutation within the CDS
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region. Subsequent genotyping of RILs and gene expression analysis

confirmed the stable presence of this variant locus, which showed

significant correlation with FS in these populations.

Liu et al. (2016) employed 6,975 F2 populations to mapQTL clusters

associated with FL, FS, FM, and FU on chromosome A06 of upland

cotton. The QTL identified in their investigation overlapped with qFSA06
in our research, and GhALDH7B4_A06 was also considered one of

candidate genes.Moreover, Liu et al. (2023) identifiedGhALDH7B4_A06

as a candidate gene related to SCW biosynthesis through comparative

transcriptome analysis of fiber tissues between Gossypium barbadense

and G. hirsutum. However, neither of those studies reported on the

presence of site mutations in this gene. Our findings revealed that a

nonsense mutation in GhALDH7B4_A06 determined the functional

expression of the protein. On the basis of the expression of this gene

reported in the above studies, we speculate that this site mutationmay be

prevalent in upland cotton because one parent, Ji228, is the genetic

background of sea island cotton and has chromosomal segments from

island cotton (Liu et al., 2009). The full-length–type protein

GhALDH7B4_A06O showed 100% similarity in sequence alignment

with the gene on chromosome A06 of G. barbadense (GenBank:

KAB2078339.1). Such high similarity was not found in proteins from

upland cotton, which indicates that the full-length GhALDH7B4_A06O

likely originated from high fiber quality island cotton. In a future study,

wewill investigate the germplasm of upland cotton fromdifferent sources

to test our hypothesis that qFSA06 represents a stable major-effect QTL.

Furthermore, FS is a quantitative trait controlled by multiple genes

(Zhang et al., 2017). Because of the broad mapping intervals, we will

perform detailed finemapping studies in the future to pinpoint candidate

genes for the other candidate regions identified by SLAF-BSA-seq in

this study.
GhALDH7B4_A06 positively regulated FS in
upland cotton

FS primarily develops during the SCW thickening stage (Zang

et al., 2022). On the basis of identified genes with regulatory
B

C DA

FIGURE 4

GhALDH7B4_A06 overexpression in Arabidopsis. (A) Phenotypic characteristics in 3-week-old Arabidopsis plants. (B) Phenotypic characteristics in 5-
week-old Arabidopsis plants. (C) Gene expression analysis of GhALDH7B4 by qRT-PCR. (D) Assay of cell wall component (cellulose, hemicellulose,
and lignin) contents from the stem in GhALDH7B4_A06 transgenic Arabidopsis. Cell wall component contents were determined in Arabidopsis stems
older than 8 weeks of age. Error bars represent the SD of three replicates. * and ** indicate significant differences at p < 0.05 and p < 0.01,
respectively. WT, wild type; OE3 and OE15, GhALDH7B4 _A06 transgenic lines.
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functions during this period in cotton, Wen et al. (2023)

constructed a model to enhance our understanding of the

regulatory mechanisms of genes expressed during SCW

development. However, there is still no comprehensive

understanding of the intricate regulatory network, which

necessitates further identification of FS-related genes.

GhALDH7B4 encodes an aldehyde dehydrogenase and is the

sole member of the ALDH7 family in upland cotton, with one copy

present in each of the At and Dt sub-genomes (Dong et al., 2017;

Guo et al., 2017). ALDH7B4 has been commonly documented in

plants to operate under abiotic stress conditions, including drought,

abscisic acid, and salinity (Hou et al., 2022), with its role in cotton

fiber development remaining largely unexplored. Our experiments

involving gene silencing of GhALDH7B4_A06O in cotton and

overexpression in Arabidopsis revealed that GhALDH7B4_A06O

may positively regulate upland cotton FS.

A multitude of ALDHs have been identified in various crops

such as A. thaliana, poplar, and maize, and it was proposed that

they likely participate in SCW synthesis (Nair et al., 2004;

Guillaumie et al., 2008; Bosch et al., 2011; Tian et al., 2015). It

was suggested that ALDHs may have distinct roles in different stages

of cell wall biosynthesis (Islam and Ghosh, 2022). However, the

molecular regulatory mechanisms of ALDH genes remain unclear.

As previously mentioned, FS is a quantitative trait controlled by

a complex network of multiple genes (Zhang et al., 2017).

GhALDH7B4_A06 is unlikely to act independently but rather

exists within this network of interactions. However, the role of

GhALDH7B4_A06 in the regulatory network and its upstream

substrate and downstream products remain unknown. Future

investigations using transgenic lines for overexpression and gene

knockout are anticipated to provide further insight into its function

and metabolic pathways and to facilitate its practical application

through the development of linked marker combinations.
Conclusion

This study employed forward genetics using SLAF-BSA-seq and

SSR markers to locate a stable FS locus, qFSA06, and identified the

candidate gene GhALDH7B4_A06. A premature stop codon within

the candidate gene was associated with FS lines of RIL populations

and resulted in a truncated variant, GhALDH7B4_A06S, which may

lead to functional protein loss. The subsequent VIGS and

overexpression experiments demonstrated that GhALDH7B4_A06

likely plays a positive regulatory role in FS of upland cotton. This

discovery significantly contributes to advancing our understanding

of the regulatory network associated with cotton fiber development.
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