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The mutualistic plant rhizobacteria which improve plant development and

productivity are known as plant growth-promoting rhizobacteria (PGPR). It is

more significant due to their ability to help the plants in different ways. The main

physiological responses, such as malondialdehyde, membrane stability index,

relative leaf water content, photosynthetic leaf gas exchange, chlorophyll

fluorescence efficiency of photosystem-II, and photosynthetic pigments are

observed in plants during unfavorable environmental conditions. Plant

rhizobacteria are one of the more crucial chemical messengers that mediate

plant development in response to stressed conditions. The interaction of plant

rhizobacteria with essential plant nutrition can enhance the agricultural

sustainability of various plant genotypes or cultivars. Rhizobacterial inoculated

plants induce biochemical variations resulting in increased stress resistance

efficiency, defined as induced systemic resistance. Omic strategies revealed

plant rhizobacteria inoculation caused the upregulation of stress-responsive

genes—numerous recent approaches have been developed to protect plants

from unfavorable environmental threats. The plant microbes and compounds

they secrete constitute valuable biostimulants and play significant roles in

regulating plant stress mechanisms. The present review summarized the recent

developments in the functional characteristics and action mechanisms of plant

rhizobacteria in sustaining the development and production of plants under

unfavorable environmental conditions, with special attention on plant

rhizobacteria-mediated physiological and molecular responses associated with

stress-induced responses.
KEYWORDS

adverse agroclimatic conditions, physiological and omic aspects, plant responses, plant
hormones, agricultural sustainability, rhizobacteria
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Introduction

Plant rhizobacteria-mediated abiotic stress reduction occurs

directly through hormone induction or indirectly via signaling in

the host plant. The direct function in nitrogen fixation, phosphate

solubilization, auxin, cytokinin, gibberellin, and abscisic acid

production are all documented. It also makes it easier for

necessary mineral elements to be absorbed from the rhizospheric

soil along with the production of plant growth regulators. However,

the indirect roles include the production of metabolites,

siderophores, antibiotics, volatile HCN, etc. Some of the

compounds that the microbes may produce include deaminase

enzyme, microbiocidal enzyme, siderophores, plant hormones,

and PO4-solubilizing enzyme (Gujral et al., 2013; Ekinci et al.,

2014; Saleem et al., 2015; Kumari and Khanna, 2016; Moustaine

et al., 2017). Plants have unique microbiota, and the microbial

structure in the rhizosphere is influenced by the bacteria and plants’

production of signal molecules and the chemical composition of

root exudates (Zhang et al., 2017; Jalmi and Sinha, 2022).

Plant-growth regulators, phytohormones, and various secondary

metabolites can be produced by PRs to stimulate plant development

(Islam et al., 2014; Kaushal and Wani, 2016) (Figure 1).

The upregulated synthesis of metabolites, such as phytohormone,

exopolysaccharides, siderophores, antioxidant enzymes, and volatile

compounds, primarily minimizes plant resistance to environmental

challenges. The production of phytohormones by rhizobacteria-

inoculated plants, including cytokinins (CK), gibberellic acid (GA),
Frontiers in Plant Science 02
indole-3-acetic acid (IAA), and abscisic acid (ABA) is employed

during plant stressed conditions. 1-aminocyclopropane-1-

carboxylate (ACC) deaminase plays a significant role in conferring

stress resistance capacity to plants by downregulating the level of

stress-induced ethylene level in plant roots system (Etesami and

Maheshwari, 2018; Shahid et al., 2023). Plant-rhizobacteria

downregulated the effects of abiotic stresses by modifying the

expression of genes associated with the biosynthesis of hormones,

i.e., ACO and ACS genes (ethylene biosynthesis),MYC2 (Jasmonate),

PR1 (SA), genes encoding antioxidant enzymes, transcription factor

NAC1, etc. (Tiwari et al., 2017) (Tables 1, 2). Extensive field trials are

required to investigate the interaction between the functional

activities of signaling networks and their association. The

interaction between PRs and plants based on various factors, such

as root composition, strains of bacteria, and exudation patterns from

their roots (Kumar et al., 2019). Numerous secondary metabolites

and root exudates depend as chemo-attractants in the rhizosphere,

attracting beneficial soil bacteria and inhibiting phytopathogens,

thereby stimulating a delicate network of signaling between

microbes and plants (Ullah et al., 2021; Joshi et al., 2022; Mellidou

and Karamanoli, 2022; Joshi et al., 2023). The physiological and

molecular responses activated in plants in response to stress

resistance are regulated by various key genes with metabolic and

regulatory roles. Research demonstrations focusing on plant gene

expression following plant-rhizobacteria inoculation may help

understand which can be an effective environmentally friendly

approach to alleviate the adverse environmental variables (Ferrante
FIGURE 1

Schematic representation of PRs-mediated abiotic and biotic stress resistance mechanism in plants. ABA, abscisic acid; JA, jasmonic acid, GA,
gibberellins, IAA, indole-3-acetic acid, SA, salicylic acid, EPS, exopolysaccharides, HCN, hydrogen cyanide; ACCD, 1-aminocyclopropane-1-
carboxylate deaminase; SOD, superoxide dismutase; CAT, catalase; PAL, phenylalanine ammonia-lyase; APX, ascorbate peroxidase; POD, peroxidase;
ASC, ascorbate; PPO, polyphenol oxidase; GPX, glutathione peroxidase; GR, glutathione reductase; Pas, polyamines; TPC, total phenolic content; PL,
proline; SS, soluble sugar; HSPs, heat shock proteins; HKT—High-affinity K+ transporters; expA1, expansin; TPC1, calcium transporter; ADC1 and
ADC2, putrescine synthesis; OsPCS1, phytochelatin synthase; OsMTP1, gene related to metal transport; OsMTP5, gene related to expulsion of
excess metal; trpAa, and trpEa, genes related to tryptophan biosynthesis; betA and betB, genes related to betaine biosynthesis; GmVSP and
GmPHD2, stress responsive genes; GSL1, gene related to cell wall synthesis; V-ATPase, Vacuolar-H+ -pyrophosphatase; LEA, late embryogenesis
abundant; NCED, WZE and SAMS = transcription factors.
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TABLE 1 PR-mediated abiotic stress reduction in crop plants and their tolerance mechanism.

Stress
condition

Plant PR strains PRs-mediated possible tolerance mechanism Source

Cold Tomato Streptomyces sp. TOR3209 Upregulation of genes related to biosynthesis of abscisic acid (ABA), stress-related
metabolism and photosynthesis

Ma
et al., 2023

Cold Maize Lysinibacillus fusiformis YJ4, L.
sphaericus YJ5

Upregulation of genes related to osmolytes, phenolic content, superoxide dismutase
(SOD), catalase (CAT), phenylalanine ammonia-lyase (PAL), indole-3-acetic acid (IAA),
and gibberellic acid (GA3)

Jha and
Mohamed,
2023b

Cold Wheat Bacillus spp. CJCL2, B.
velezensis FZB42

Downregulation of ABA and lipid peroxidation encoding genes ABARE and 4-HNE,
upregulation of gene related to Expansin (expA1), Cytokinin (CKX2), and Auxin (ARF)

Zubair
et al., 2019

Drought Barley Providencia rettgeri Increased production of IAA, siderophores (SDP), proline(PL), exopolysaccharides (EPS),
and reduced level of malondialdehyde (MDA)

Ferioun
et al., 2023

Drought Chickpea Stenotrophomonas sp. CV83 Upregulation of genes related to antioxidant enzymes SOD, POD, ascorbate peroxidise
(APX), and lipoxygenase

Sharma
et al., 2023

Drought Maize Cronobacter sp.Y501 Constrain ABA signaling, increase IAA biosynthesis, decrease MDA, SOD, CAT,
peroxidase (POD) activity

Gao
et al., 2023

Drought Rice Pseudomonas putida AKMP7 Polyamines (PAs)homeostasis through biosynthesis, back-conversion and catabolism
of PAs

Nikhil
et al., 2023

Drought Soybean Bacillus pumilus
SH-9

Downregulation of ABA, upregulation of SOD, POD, APX, glutathione (GSH), EPS
and SPD

Shaffique
et al., 2023

Drought Wheat Enterobacter
bugandensis WRS7

Overexpression of genes related to antioxidants (CAT, APX, GPX), osmolyte (P5CS,
P5CR, TPS1), stress hormone (NCED, WZE, SAMS, ACS1) and ACO encoding proteins
for ABA, ethylene, and calcium transporter (TPC1)

Arora and
Jha, 2023

Heat Tomato Bacillus safensis SCAL1 Increased level of ACCD, EPS, IAA, gibberellic acid (GA3), kinetin, SOD, CAT, POD Mukhtar
et al., 2023

Heat Maize Bacillus spp. AH-08, AH-67,
SH16 and Pseudomonas spp.
SH-29

Upregulation of heat shock proteins (HSP1, HSP18, HSP70, HSP101), CAT, POD,
and carotenoids

Ahmad
et al., 2023

Heat Mustered Bacillus aryabhattai NSRSSS-
1, B. licheniformis SSA 61,
Bacillus sp. MRD-17

Increased production of IAA, GA, CAT, SOD, APX, phenolic content and reduction in
PL, and soluble sugar (SS)

Kiruthika
et al., 2023

Heat Wheat Bacillus safensis Elicited expression of ADC1 and ADC2 linked to putrescine synthesis, modulated
expressions of HSPs, upregulate redox enzymes and antioxidants associated with
ascorbate (ASC)-GSH cycle, enhanced GB, SS, and phenols

Sarkar
et al., 2021

Heavy metal Barley Rhodospirillum sp. JY3 Enhanced production of POX, CAT, SOD, GSH, ASC, polyphenols, phytochelatins,
glutaredoxin, thioredoxin, peroxiredoxin

Alsiary
et al., 2023

Heavy metal Barley B. glycinifermentans
IS-2

Modulation of endogenous phytohormones and uptake of essential elements (K, P) Belhassan
et al., 2024

Heavy metal Maize Agrococcus terreus
(MW 979614)

Augmented levels of antioxidant enzymes (SOD, POD), and nutrient uptake Shahzad
et al., 2023

Heavy metal Maize Serratia CP-13 Upregulate IAA, osmolytes (SS, PL), antioxidants and downregulate MDA, ABA, and
Cd uptake

Tanwir
et al., 2023

Heavy metal Rice Serratia marcescens DB1 Decreased expression of genes related to phytochelatin synthase (OsPCS1),metal transport
(OsMTP1), expulsion of excess metal (OsMTP5)

Bhatta
et al., 2023

Heavy metal Tomato Serratia sp. D23,
Sphingomonas sp.

Upregulation of defense genes (Hsp90, MT2 and Nramp 3) Wei
et al., 2022

Salt Barley Siccibacter sp. C2 Overexpression of HVA1,
HvDREB1, HvWRKY38, HvP5CS genes

Sayahi
et al., 2022

Salt Chickpea Bacillus sp. BSE01 Maintained levels of ACC, ABA and K+/Na+ ratio, enhanced production of, antioxidant
enzyme, PL and decreased activity of NADPH oxidase

Basu
et al., 2023

Salt Lettuce Bacillus velezensis
JB0319

Induce SOD, POD activity and decreased MDA Bai
et al., 2023

(Continued)
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et al., 2023; Verma et al., 2023). The formation of the enzyme ACC

deaminase by rhizobacteria and reduction in ethylene level had been

the main function for enhanced plant growth and resistance ability

during different stresses (Bharti et al., 2014; Jalmi and Sinha, 2022).

Eco-physiological and omic responses of plant rhizobacteria

required more attention and extensive field research

demonstrations to increase stress resistance efficiency. Hence, the

present article focused on the interactions between plants and

rhizobacteria and their impact on tolerance to adverse

agroclimatic variables for agricultural sustainability in an eco-

friendly environment.
Impact of plant development,
biomass, and productivity

Plant rhizobacteria (PRs) effectively improve plant

morphological structures during adverse environmental

conditions. Abiotic stresses, such as acidic and alkaline soil,

insufficient water supply, low and high temperature, UV-

radiation, soil flooding, and contaminated/toxic soil, affect

agronomic, anatomical, cellular, and metabolic activities (Glick

et al., 2007; Verma et al., 2020a, b). Higher levels of

phytohormones, defense-related proteins and enzymes,

antioxidants, and epoxypolysaccharides cause PGPR-induced

resistance (Kaushal and Wani, 2016). It is accomplished by

changing transcriptional and signaling processes, which lead to

altered gene expression when PRs are present. Because PRs produce

phytohormones that change root shape and improve root
Frontiers in Plant Science 04
development, surface area, uptake, and accumulation of nutrients,

plant productivity increases in the presence of PRs (Mellidou and

Karamanoli, 2022). They can also increase total plant productivity

by helping to induce ACC-deaminase activity in plants. The

potential of PRs enhancing plant growth and development varies

due to differences in their properties, such as ACC-deaminase

activity, IAA generation, root colonization, P-solubilization, etc

(Ghosh et al., 2018; Gupta and Pandey, 2019). The defense

mechanisms of plants against unfavorable agroclimatic conditions

depend on the variation in the development of roots (Khoshru et al.,

2023). Different PGPR strains can enhance the overall root system

by increasing the total number of root tips, surface area, and

structure of the roots under stressful conditions (Brambilla et al.,

2022). Lowering the ethylene content increases the plant’s capacity

to withstand stress by facilitating improved nutrition and water

uptake capacity (Chieb and Gachomo, 2023) (Figure 1).

When under stress, PRs also improve the uptake of water and

nutrients. The absorption of nutrients and antioxidant activities are

associated with stress management. By diminishing the negative

consequences of saline soil, inoculation with Klebsiella oxytoca (Rs-

5) containing ACC-deaminase boosted plant establishment and

increased the absorption of key mineral nutrients (Yue et al., 2007;

Zahir et al., 2012). In a similar way, Pseudomonas spp. inoculation

increased the antioxidative enzymatic activities and promoted the

growth of plants during unfavorable climatic conditions (Fu et al.,

2010; Jalmi and Sinha, 2022) (Table 1).

According to Zahir et al. (2009) and Orozco-Mosqueda et al.

(2020), rhizobacterial strains have been explored to have a

substantial influence on the improvement of a variety of plants,
TABLE 1 Continued

Stress
condition

Plant PR strains PRs-mediated possible tolerance mechanism Source

Salt Maize Pseudomonas sp. MHR6 Induce production of EPS, reduce MDA and electrolyte leakage (EL) Liu
et al., 2022

Salt Mustered Pseudomonas fluorescens Augmented production of glycine-betaine (GB), PL, SOD, CAT, APX and GR Khan
et al., 2023

Salt Oat Bacillus sp. LrM2 Induced production of ACCD, non–enzymatic antioxidants, ASC, GSH, dehydroascorbate Zhang
et al., 2023

Salt Rice Pseudomonas promysalinigen
RL-WG26

Induce biosynthesis of tryptophan (trpAa, trpB, trpC, trpD, trpEa), IAA (iaaM, iaaH),
betaine (betA, betB, betT) and inhibit ethylene biosynthesis (acdS) related transcripts

Ren
et al., 2024

Salt Rice Lysinibacillus fusiformis, L.
sphaericus,
Brevibacterium pityocampae

Increased expression of JA,OsNHX1,OsAPX1, OsPIN1, OsCATA gene and reduced
expression of ABA, salicylic acid (SA), and OsSOS gene

Asif
et al., 2023

Salt Soybean Streptomyces lasalocidi
JCM 3373

Induce expression of indole-3-carboxaldehyde (ICA1d), expression of stress-responsive
genes (GmVSP, GmPHD2, GmWRKY54) and root growth related genes (GmPIN1a,
GmPIN2a, GmYUCCA5,
GmYUCCA6)

Lu
et al., 2024

Salt Tomato Bacillus halotolerans
Gb67, B. subtilis All3,
B. mojavensis Gb7

Induced production of PAs, VCs, EPS and ACCD Abdelkefi
et al., 2024

Salt Wheat Variovorax sp. P1R9 Increased SOD, CAT activity and reduced thiobarbituric acid reactive substances (TBARS) Acuna
et al., 2024

Salt Wheat Nocardioides sp. Induce expression of ACCD, TaABARE, TaHAk1, hkt1, CAT, MnSOD, POD, APX, GPX,
and GR gene transcripts

Meena
et al., 2023
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including cereals, legumes, and vegetables cultivated under

challenging conditions. They also enhanced the production

of exopolysaccharides and ACC-deaminase activity. PRs enhance

plant growth in polluted soil by downregulating the level of ethylene

(Dell’Amico et al., 2008). PRs with 1-aminocyclopropane-1-

carboxylic acid (ACC) deaminase activity may promote plant

development during stress. Compared to uninoculated plants, the

inoculated plants with PRs containing ACC-deaminase activity

improved plant growth and yield considerably. Pseudomonas sp.

and Acinetobacter sp. have increased IAA and ACC-deaminase

production in saline soil and enhanced stress tolerance efficiency in

barley and oats (Kang et al., 2019).

It can be indicated by the significantly increased levels of

chlorophyll, total phenolics, flavonoids, soluble sugars, protein

contents, and antioxidative enzymatic activities, as well as the

higher expression of stress-related genes, that resulted from

inoculating Cd-stressed with Serratia marcescens BM1 in Glycine
Frontiers in Plant Science 05
max L. plants. Phaseolus vulgaris subjected to the rhizobacterial

consortia experienced reduced stress caused by salinity and

improved overall plant growth and photosynthetic pigments

(Gupta and Pandey, 2019). In tomato plants, Streptomyces sp. has

been shown to reduce stress and promote growth (Palaniyandi et al.,

2014). It has been observed that Burkholderia phytofirmans helps

plants under drought stress (Naveed et al., 2014). They generate

exopolysaccharides (EPS) during water-deficit conditions,

enhancing seed germination and growth. Of all the strains,

Pseudomonas fluorescens has the highest capacity to produce EPS

and ACC deaminase. The saline rice field was employed by Sultana

et al. (2020) to isolate rhizobacterial strains, which they found to

enhance stomatal conductance, transpiration, and photosynthetic

CO2 assimilation rate, all of which contributed to increased crop

yield, fruit and grains quality. According to the latest research,

Azospirillum brasilense Sp245 increased Arabidopsis thaliana

growth, suggesting that MAMPs produced from plant-
TABLE 2 PR-mediated biotic stress reduction in crop plants and their tolerance mechanism.

Stress condition Crop PR strains PRs-mediated possible tolerance mechanism Source

Net blotch fungus
(Drechslera teres)

Barley Paraburkholderia
phytofirmans B25

Upregulation of genes related to cell wall synthesis (GSL1,GSL3, and
downregulation of genes related to defense (CAT2, AOC, PRB),
phenylpropanoid pathway (PAL2, F3’H), isovitexin, and lipid compounds

Backes
et al., 2021

Wilt disease
(Fusarium oxysporum)

Faba
bean

Bacillus velezensis,
B. paramycoides,
paramycoides

Induced production of hydrogen cyanide (HCN), siderophores (SPD),
indole-3-acetic acid (IAA), abscisic acid (ABA), benzyl, kinten, ziaten, and
gibberellic acid (GA3)

El-Sersawy
et al., 2021

Wilt disease
(Fusarium oxysporum)

Maize Pseudomonas
pseudoalcaligenes
(EU921258), Bacillus
pumilus (EU921259)

Induce expression of b-1,3 glucanase genes, improved photosynthetic
pigment, and cell membrane stability

Jha and
Mohamed,
2023a

Wilt disease
(Fusarium oxysporum f. sp.
pisi

Pea Bacillus subtilis (IS1), B.
amyloliquificiens (IS6), B.
fortis (IS7)

Upregulation of total phenolic compounds and enzymes of
phenylpropanoid pathway

Raza
et al., 2024

Sheath blight disease
(Rhizoctonia solani)

Rice Bacillus velezensis,
B. megaterium, B. toyonensis

Increased activity of polyphenol oxidase (PPO), superoxide dismutase
(SOD), catalase(CAT)

Patil
et al., 2024

Leaf stripe disease
(Burkholderia)

Sorghum A. chroococcum
Beijerinck 1901 (MCC
2351),
B. megaterium
(MCC 2336),
P. fluorescens (NAIMCC
B-00,340)

Decreased levels of malondialdehyde
(MDA), proline, CAT, SOD

Rizvi
et al., 2024

Speck disease
(Pseudomonas syringae
pv. tomato)

Tomato Pseudomonas koreensis 5,
Bacillus mycoides 68, B.
mojavensis 36,B. simplex 47

High levels of proline, POD, CAT Yildiz
et al., 2023

Wilt disease
(Ralstonia solanacearum)

Tomato Pseudomonas
fluorescens Pf3,
Trichoderma
longibrachiatum
UNS11

Increased activity of peroxidase (POX), phenylalanine ammonia-lyase (PAL),
and PPO enzymes

Konappa
et al., 2020

Spot blotch disease
(Bipolaris sorokiniana)

Wheat Bacillus subtilis
BS87

Increased levels of nutrient solubilization, SPD, IAA, HCN and decrease
levels of SOD, POD, PPO, MDA, PAL, proline

Chandra
et al., 2024

Fungal pathogens
(Alternaria alternata,
Rhizoctonia solani, F.
oxysporum,
Ustilaginoidea virens)

Wheat Beijerinckia fluminensis
BFC-33

Increased levels of carotenoid, PAL, PPO, b-1,3 glucanase and reduce
proline, thiobarbituric acid reactive substances (TBARS) and
electrolyte leakage

Al-
Shwaiman
et al., 2022
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rhizobacteria are essential for plant cultivation (Méndez-Gómez

et al., 2021) (Tables 1, 2).
Photosynthetic leaf gas exchange and
chlorophyll fluorescence efficiency

Plant-rhizobacteria enhance inoculated plants’ photosynthetic

response and leaf gas exchange capability during stress (Verma

et al., 2020b; Jalmi and Sinha, 2022). By modifying the

photosynthetic characteristics, osmolytes production, antioxidant

machinery, and expression of stress-related genes, inoculating

soybean plants with Serratia marcescens BM1 (PR) provides Cd

tolerance to plants (El-Esawi et al., 2020). Under salt stress, Bacillus

amyloliquefaciens SQR9 has demonstrated higher efficiency in

photosynthesis and overexpression of the RBCS and RBCL genes

in Zea mays plants (Chen et al., 2016). During bacterial strain

inoculation, Arabidopsis helleri showed elevated photosynthesis and

proteins associated with abiotic stress (Khan et al., 2021).

Enhanced photosynthetic pigments and the expression of

important genes (RBCS and RBCL) regulating RUBISCO activities

during stress condition (Sherin et al., 2022; Amaral et al., 2023). By

modulating ion homeostasis, redox potential, photosynthetic CO2

assimilation rate, and the expression of stress-related genes, maize

plants inoculated with Serratia liquefaciens KM4 revealed enhanced

growth and stress tolerance (El-Esawi et al., 2018). Reduced phenol,

flavonoid, and leaf relative water content and photosynthetic

responses in maize plants have resulted from salinity stress, which

also decreased root damage and water uptake. However, inoculating

maize under salt stress with Serratia liquefaciens KM4 enhanced

LRWC, photosynthetic characteristics, and the biosynthesis

pathways of phenols and flavonoids, enhancing plant stress

tolerance efficiency. In comparison to uninoculated plants,

rhizobacteria-inoculated maize and white clover have

demonstrated enhanced photosynthesis, soluble proteins, sugars,

and enzymatic activities following inoculation with HAS31

rhizobacteria (Han et al., 2014) (Figure 1; Table 1).
Uptake and accumulation of mineral
nutrients and water balance

By altering the solubility and absorption of nutrients, PRs

improve the bioavailability of nutrients in plants under abiotic

factors. Through N2-fixation, mobilization, and the promotion of

N2-fixers through their secretions, several rhizobacteria can reduce

the volume of nitrogen (N2) supplementation required for plant

growth (Shah et al., 2022; Khoso et al., 2024). Additionally, they

change the shape and surface area of the roots, improving nitrogen

bioavailability (Olenska et al., 2020). Elevating ammonium

transporters’ expression improves nutritional absorption during

stresses (Calvo et al., 2019). According to Gomez-Godıńez et al.

(2023), phosphorus (P) solubilizing PRs, such as Azotobacter,

Bacillus, Burkholderia, Erwinia, Pseudomonas, Serratia, and

Rhizobium, generate organic acids that chelate P-bound cations
Frontiers in Plant Science 06
and make it available to plant roots. Furthermore, under Fe-

deficient conditions, PRs assist in acquiring iron (Fe) by

generating siderophores, which are low molecular weight organic

molecules (Mohanty et al., 2021). Reducing metal ion availability

and decreasing metal uptake, siderophores that generate PRs

enhance plants’ survival under heavy metal stress (Dimkpa et al.,

2009; Kumar et al., 2021) (Tables 1, 2).

Ocimum basilicum L. has demonstrated the ability of PRs to

enhance nutrient absorption and downregulate abiotic stresses

(Rakshapal et al., 2013). Under salinity stress, PRs, such as

Pseudomonas sp. and Azospirillum sp., increase nutrient

availability, improving plant growth, biomass, and productivity

(Noorieh et al., 2013). The application of rhizobial inoculants has

been observed to trigger delayed senescence, as evidenced by higher

potassium (K) ion levels and lower ethylene and cytokinin

production. In plants with a higher K+/Na+ ratio, PRs boost the

absorption of K+ ions by synthesizing AtHKT1, a high-affinity ion

channel that promotes stress tolerance (Mahmud et al.,

2021) (Figure 1).
Biosynthesis of plant hormones and
compatible solutes

Along with metabolites and signaling molecules, the majority of

rhizobacteria produce phytohormones (Ahmad et al., 2022; Shah

et al., 2022). Among these include gibberellic acid, cytokinins,

indole acetic acid (IAA), and abscisic acid (ABA) (Tariq et al.,

2023). IAA is produced by 80% of soil microorganisms, including

Pseudomonas sp., Bacillus sp., Burkholderia sp., and Rhizobium sp

(Khan et al., 2021). It has been shown that IAA-producing

rhizobacteria stimulate crop production and plant growth when

exposed to abiotic stress (Mellidou and Karamanoli, 2022).

Numerous IAA-producing rhizobacteria increase root biomass,

length, and surface area, which improves nutrient accumulation,

uptake, and plant growth (Fasusi et al., 2023). Increased IAA levels

also foster lateral roots’ growth, minerals’ absorption, and root

exudates’ formation. It is well known that some PRs, including

Arthrobacter, Azotobacter, Bacillus, Pseudomonas, and Pantoea,

synthesize cytokinins that enhance nutrient availability as well as

plant tolerance responses (Shah et al., 2022) (Table 1).

According to dos Santos et al. (2020), gibberellin-releasing PRs

such as Azospirillum, Shingomonas, Bacillus amyloliquafaciens, and

Bacillus pumilus can also promote plant growth and yield.

Regulation of abscisic acid also played a significant role in stress

resistance capacity influenced by rhizobacteria (Herrera-Medina

et al., 2007). When pepper (Capsicum annum) is inoculated with

Serratia nematodiphila (that produces gibberellin), the plant

expands more under low-temperature stress, releases more GA4

and ABA, and lower salicylate and jasmonate activities (Kang

et al., 2015).

The plant and bacterial species may impact the mechanism of

ABA-mediated tolerance to stressful conditions. Under abiotic

stress, specific PRs (strains of Rhizobium spp., B. pumilus, B.

lycheniformis, Achromobacter xylosoxidans, and Azospirillium
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brasiliense) serve as ABA-stimulators or ABA-producers (Salomon

et al., 2014; Egamberdieva et al., 2017). It can assist plants minimize

water loss by activating Ca+2 channels that cause stomatal closure

(Goswami and Deka, 2020; Grover et al., 2021). Greater ABA

biosynthesis has been observed in Arabidopsis plants inoculated

with the spermidine-producing B. megaterium strain (Zhou et al.,

2016). By upregulating the gene expression that regulates ABA

production, the rhizobacteria inoculation of rice with Pseudomonas

fluorescens enhanced the plant’s resistance to stress. The

upregulation of TaWRKY and TaMYB expression in ABA-

signaling cascades has also been observed. It has also been

suggested that specific rhizobacteria can use ABA as a carbon and

energy source, limiting ABA uptake throughout the plant organs.

These results indicated the changes in ABA-mediated signaling

pathways as a means by which inoculated plants can survive abiotic

challenges (Olenska et al., 2020; Mellidou and Karamanoli,

2022) (Figure 1).

It has also been demonstrated that using rhizobacteria

minimizes the negative effects of ethylene generated under abiotic

stress circumstances (Grichko and Glick, 2001; Nadeem et al., 2007;

Zahir et al., 2008). Under abiotic stresses, rhizobacteria-inoculated

plants have been demonstrated to modify ethylene biosynthesis-

related gene expression (Lephatsi et al., 2021; Verma et al., 2021;

Fadiji et al., 2022). Plants can be spared the toxicity of ethylene

through the presence of rhizobacteria that contain ACC deaminase,

which can hydrolyze ACC, the precursor of ET (Mellidou and

Karamanoli, 2022).

The impact of Paenibacillus lentimorbus B-30488 inoculation

on the reduction of abiotic stress in Arabidopsis thaliana, as well as

by modifications in plant hormones and RSA-related gene

expression. According to Khoshru et al. (2023), specific PRs also

generate polyamines, which enhance root architecture and promote

stomatal conductance and photosynthesis. The microbial

community in the rhizosphere is mainly influenced by the

exudates produced by plant roots, such as organic acids,

mucilage, carbohydrates, sugars, and proteins, which also confer

tolerance to inoculated rhizobacterial plants (Backer et al., 2018).

Under abiotic stress, Azospirillum sp. has been demonstrated to

accumulate appropriate solutes such as glutamate, proline, glycine,

betaine, and trehalose (Saleena et al., 2002). Phaenibacillus

polymyxa has been shown to possess the drought-responsive gene

ERD15 (Timmusk and Wagner, 1999). Conjugated phytohormones

and flavonoids in root tissue can be extracted or hydrolyzed by

Azospirillum, releasing them in their active forms (Spaepen et al.,

2007; Dardanelli et al., 2008; Saikia et al., 2010; Fahad et al., 2015).

The mechanisms of photosynthetic activity, hydraulic

conductance, osmotic accumulation, and sequestering toxic ions

are associated with rhizobacteria-stimulated resilience to stress

(Figure 1). Groundnut inoculated with Bradyrhizobium under

drought conditions demonstrated stress resistance due to amino

acids produced from the nitrogenase to catalyzed the conversion of

atmospheric nitrogen (N2) to ammonia (NH3) ions (Delfini et al.,

2010; Enebe and Babalola, 2018). Furthermore, nitrogenase assists

the supply of nitrogen to inoculated legumes, and these plants have

been shown to produce more leaves due to more root nodules

(Ferreira et al., 2011). To avoid desiccation, lower toxicity, and
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promote root growth, PRs also generate polysaccharides (Arora

et al., 2010). A vital aspect of stress mitigation under environmental

stress at the plant rhizosphere consists of forming biofilm and

exopolysaccharide. One fascinating strategy PRs employ to mitigate

the impacts of heat stress in plants involves the induction of

osmoprotectants and heat shock proteins (HSPs) (Enebe and

Babalola, 2018). Under stressful conditions, pepper plants treated

with gibberellin-producing rhizobacteria showed a reduction in the

level of salicylate and jasmonate. When the bacteria Burkholderia

phytofirmans occurs, tomato plants produce more phenolics,

proline, and starch under stress (Issa et al., 2018).

In plants under abiotic stress, PRs also improve proline

synthesis. Arthrobacter, Bacillus, and Burkholderia are the main

rhizobacteria that synthesize proline. Better stress tolerance in

rhizobacteria-inoculated plants is mostly due to increased

dissolved sugar levels and solute storage. Other potential

strategies to reduce oxidative stress include stabilizing

membranes, protein–protein complexes, and osmolytes, such as

proline, glycine betaine, amino acids, and total sugars (Chieb and

Gachomo, 2023).
Influence of enzymatic, non-
enzymatic, and lignin biosynthesis

The synthesis of the enzyme ACC deaminase is a well-known

mechanism for rhizobacteria-led abiotic stress tolerance (Etesami

et al., 2015; Gupta and Pandey, 2019). By lowering ABA levels,

plants inoculated with ACC-producing PRs expand more rapidly;

the growth hormones regulate the synthesis of secondary

metabolites (Kang et al., 2019). By promoting the activity of

antioxidant enzymes (SOD, APX, and CAT) and upregulating the

genes involved in the ROS pathway, it enhanced stress tolerance

(Habib et al., 2016). Because ethylene causes stress-induced H2O2

accumulation and apoptosis induction, ACC deaminase-producing

PRs provide plants resistance against abiotic stress by lowering

ethylene synthesis. It has been observed that inoculating different

crops under stress with strains that include ACC-deaminase

enhances plant development (Li et al., 2017; Singh and Jha, 2017;

Namwongsa et al., 2019; Danish et al., 2020; Mellidou et al., 2021;

Mellidou and Karamanoli, 2022).

Plant-to-microbe communication also occurs by an array of

non-hormonal signaling molecules. Microbes produce volatile

compounds (VOCs), signaling molecules that control plant

growth and modify soil and plant health in response to stress

(Ullah et al., 2021). Moreover, plants tolerate heavy metal stress due

to rhizobacteria-releasing extracellular polymeric substances (EPS),

which primarily help by lowering the metals’ bioavailability in the

soil (Mishra et al., 2017). Some species of Bacillus, Azotobacter,

Burkholderia, Enterobacter, and Pseudomonas can reprogram

plants’ redox states, increasing their tolerance to environmental

stresses. During stress, the overproduction of reactive oxygen

species (ROS) changes redox states and causes DNA damage,

proteins, and membrane fluidity, ultimately resulting in cell

death. However, plants inoculated with PRs defended against

abiotic stressors by activating their defense mechanisms.
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Antioxidant enzyme activity enhanced in an array of growth-

promoting rhizobacterial species to assist them in combatting

oxidative stress (Mitra et al., 2021; Mellidou and Karamanoli,

2022) (Figure 1; Tables 1, 2).

Additionally, rhizobacteria are essential in reducing oxidative

damage caused by various stressors, including heavy metals, water

deficit, low and high temperatures, salt, and water scarcity. By

lowering ROS levels in plant roots, rhizobacteria-induced

antioxidant enzymes assist in reducing the stressors that plants

experience in the environment. Additionally, they accelerate the

growth rate in response to abiotic stressors by promoting the

generation of antioxidant enzymes. Better stress tolerance in

inoculated plants may be due to increased activities of antioxidant

enzymes, such as catalase (CAT), ascorbate peroxidase (APX), or

glutathione peroxidase (GPX) (Mellidou et al., 2021; Swain et al.,

2021; Fadiji et al., 2022). Ascorbate peroxidase increased when

tomato seedlings were inoculated with Enterobacter and subjected

to abiotic stress. Gladiolus plants treated with rhizobacteria revealed

increased levels of CAT and SOD activities as compared to their

control group (Figure 1).

Tomato seedlings inoculated with P. oryzihabitans AXSa06

(having ACC deaminase) experienced mild oxidative stress and

enhanced lipid peroxidation to trigger the antioxidant machinery

(Mellidou et al., 2021). Under abiotic stress, tomato plants

inoculated with a strain of Sphingomonas sp. revealed reduced

lipid peroxidation, increased glutathione levels, and antioxidant

enzyme activities (Halo et al., 2015; Mellidou and Karamanoli,

2022). In contrast, rhizobacteria inoculation has been demonstrated

in additional studies to decrease the production of ROS-scavenging

or stress-responsive enzymes that are important for plant

protection in stressful environments (Gupta and Pandey, 2019;

Goswami and Deka, 2020; Song et al., 2021; Verma et al., 2022a, b,

c). The generation of defensive enzymes like chitinase and glucanase

to the rhizobacteria stress-tolerance mechanism (Garcıá-Fraile

et al., 2015). Glycine max plants inoculated with Bacillus firmus

SW5 exhibit stress tolerance through alterations in root

ultrastructure, antioxidant levels, and stress-related gene

expression (El-Esawi et al., 2020). The production of oxalic acid,

gluconic acid, and citric acid by stressed rhizobacteria plays a

crucial role in the mobilization of heavy metals. Biofilm-forming

rhizobacteria were inoculated into Spartina densiflora plants,

resulting in increased levels of SOD, CAT, and APOX activities as

well as a decrease in the induced oxidative stress index (OSI) (Perez

et al., 2019; Khan et al., 2021; Bhat et al., 2022).

In Cicer arietinum plants, Pseudomonas putida MTCC5279 has

been shown to reduce stress by enhanced ROS scavenging ability,

modulation of membrane integrity, and accumulation of osmolyte

(proline, glycine, betaine). These findings have also been validated

by differential expression of genes involved in dehydration-

responsive element binding, transcription factors expressed under

abiotic stress, salicylic acid, jasmonate, transcription activation,

SOD, CAT, APX, and GST (Tiwari et al., 2016; Chieb and

Gachomo, 2023). In Abelmoschus esculentus plants, the presence

of ACC-producing PRs was associated with increased activities of

antioxidant enzymes (SOD, APX, and CAT) and up-regulated

genes of the ROS pathways (CAT, APX, GR, and DHAR) (Habib
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et al., 2016). These pathways have also been linked to enhanced

POD/CAT activity, decreased cell death, and increased glutathione

levels for ROS scavenging. When Dietzia natronolimnaea was

inoculated into wheat (Triticum aestivum), it was observed that

the ABA-signaling cascade genes, ion transporters, salt overly

sensitive (SOS) pathway, and antioxidant enzymes upregulated

(Bharti et al., 2016) (Figure 1).
Conclusion and future prospects

Adverse environmental variables severely affect crop growth,

development, and output and downregulate the overall socio-

economic growth of sustainable agriculture. Different application

strategies have been developed to challenge stress, its benefits, and

its applications. Nowadays, the requirement for higher food grain

productivity and safety, enhanced plant yield, fertility of soil

properties, and agricultural sustainability are upregulating. The

research demonstrations are shifting toward soil rhizospheric-bio-

based engineering to facilitate a better pollution-free environment

for combining plants and rhizobacteria. The application of PRs is

more beneficial in overcoming stressed conditions besides

providing other significant direct and indirect ways to upregulate

overall plant responses. PRs are more convenient, economical, and

eco-enviro-friendly and can be applied in small cultivating areas to

large fields. Variations in the modifications of plant responses under

stress have been observed in inoculated plants, and these variations

are dependent on the PRs mode of action, which represents the

multifactorial processes regulated in stressful environments. The

positive symbiotic associanship that plants develop with microbial

physiology is fundamental for the plant development, especially in

terms of biotic and abiotic stresses. It is necessary to set up deeply

extensive field research demonstrations to understand better the

interaction between the PRs-mediated signal and the metabolic/

molecular reprogramming that improves plant tolerance to

unfavorable environmental variables. Multi-strain bacterial strains

can be substantial if a single strain of bacteria is not more significant

in reducing stress resistance efficiency. The application, duration,

and applicability of inoculation are more crucial as unmanaged

methods may lead to consistent and correct results. Its successful

agro-commercialization will based on the involvement of plant

physiologists, plant biologists, plant pathologists, biotechnologists,

agro-industrialists, and farmers. A better and deep understanding of

the action mechanisms and interactions of plants and associated

plant rhizobacteria directly in the matrix of interest can be favored

by the adoption of a holistic approach that uses “omic” applications.
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