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Daniel Kurjak 5,6, M. Masroor A. Khan 4

and Alexander Lux 7,8

1Food and Plant Biology Group, Department of Plant Biology, School of Agriculture, Universidad de la
Republica, Montevideo, Uruguay, 2Department of Phytology, Faculty of Forestry, Technical University
in Zvolen, Zvolen, Slovakia, 3Plant Physiology Section, Department of Botany, Government Degree
College for Women, Pulwama, Jammu and Kashmir, India, 4Advance Plant Physiology Section,
Department of Botany, Aligarh Muslim University, Aligarh, India, 5Department of Integrated Forest and
Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia, 6Institute
of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia, 7Department of Plant Physiology,
Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia, 8Institute of
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Phytotoxicity of trace elements (commonly misunderstood as ‘heavy metals’)

includes impairment of functional groups of enzymes, photo-assembly, redox

homeostasis, and nutrient status in higher plants. Silicon nanoparticles (SiNPs)

can ameliorate trace element toxicity. We discuss SiNPs response against several

essential (such as Cu, Ni, Mn, Mo, and Zn) and non-essential (including Cd, Pb,

Hg, Al, Cr, Sb, Se, and As) trace elements. SiNPs hinder root uptake and transport

of trace elements as the first line of defence. SiNPs charge plant antioxidant

defence against trace elements-induced oxidative stress. The enrolment of SiNPs

in gene expressions was also noticed on many occasions. These genes are

associated with several anatomical and physiological phenomena, such as cell

wall composition, photosynthesis, and metal uptake and transport. On this note,

we dedicate the later sections of this review to support an enhanced

understanding of SiNPs influence on the metabolomic, proteomic, and

genomic profile of plants under trace elements toxicity.
KEYWORDS

silica, trace elements, metal stress, nanoparticles, heavy metal, oxidative stress,
metalloid stress, sequestration
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1 Prologue: ‘heavy metals’ or ‘trace
elements’: a terminological dilemma?

The term ‘heavy metal’ loosely signifies metals with a density

higher than 7 g/cm3 (Bjerrum, 1936). The group supposedly enlist

metals considered contaminants and can cause phytotoxicity or

ecotoxicity sensu lato. However, there are several inconsistencies.

Firstly, no authoritative list exists till now that notes all the heavy

metals. Secondly, the ‘heaviness’ is somehow perceived as ‘toxicity’,

which gave rise to anomalies such as including arsenic and

antimony in this group even when they are not metals. Thirdly,

density is neither a promising predictive factor when studying metal

interaction with living organisms nor explains significant details

about the element itself (Nieboer and Richardson, 1980). Thus,

categorising them according to density is crude and non-scientific.

Understandably, this classification has been refuted several times by

plant scientists and others alike (Hodson, 2004; Appenroth, 2010).

While Chapman (2007) amusingly suggests that the term would be

better off with the ‘music’ industry rather than science, Duffus

(2002) considers the word ‘meaningless’ and ‘misleading’. The

IUPAC (International Union of Pure and Applied Chemistry) has

neither recommended this term. It is unfortunate to witness the

ever-increasing use of ‘heavy metals’ in the title and topic of refereed

publications from several highly cited journals of plant and

environmental science (see Pourret and Bollinger, 2017). It poses

a moral dilemma for young researchers whether to use this term

since the keyword ‘heavy metals’ still has massive indexing and

visibility on scientific databases e.g., Web of Science and Scopus.

Maybe it is what encourages the established research from the field

to still use this misnomer (Cobbett and Goldsbrough, 2002; Rascio

and Navari-Izzo, 2011; Ali et al., 2013; Pollard et al., 2014; Adrees

et al., 2015).

Contrary to ‘heavy’ metals, other more appropriate and

scientifically sound terms should be used to signify the

characteristics and properties of the studied element. This could

include ‘trace metals’, ‘toxic trace elements’, or ‘potentially toxic

trace elements’ in perspective research. ‘Trace elements’ are those

elements ‘found in low concentration, in mass fractions of ppm or

less, in some specified source, e.g., soil, plant, tissue, groundwater,

etc.’ (Duffus, 2002). However, referring to these elements or metals

as toxic is imprecise again or redundant at best. Paracelsus (1493-

1541) laid the fundamental rule of toxicology: all elements and their

derivatives are toxic in high enough doses (see Duffus, 2002).

Therefore, we recommend the usage of ‘trace elements’ in the title

and as a topic for future studies related to toxic trace elements. We

also urge the responsible authorities, particularly editorial board

members, to discourage the usage of the ‘heavy metals’ keyword in

future submissions.
2 Introduction

A plant’s health chiefly depends on soil composition. Soils have

frequently been exposed to excessive amounts of essential and non-

essential nutrients through industrial wastes, municipal composts,
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agricultural effluents, sewage sludge and surface mining wastes, and

their toxic levels damage plant species differently (DalCorso, 2012).

Trace elements (TEs) are a group of elements present in low

concentration (mass fraction of ppm or less) in the specified

medium (soil, plant, etc.) and includes Cd, Pb, Mn, As, Fe, Cr,

Cu, Ni, Co, Ag, Zn, Sb, Ti, and Hg. TEs contamination has become a

severe environmental threat worldwide. Besides naturally deriving

from parent rocks, most of the TEs in the soils result from

anthropogenic activities such as mining and processing of metal

ores, energy and fuel production, intensive agriculture, and sewage

processing, including several other industrial processes (Tóth et al.,

2000; Khan et al., 2008; Brunetti et al., 2009; Yadav et al., 2019). TEs

are not bio- or thermo-degradable so that they may persist in the

soil for thousands of years, given their relative non-mobility and

their technically and financially demanding remediation from the

soil (Rahimi et al., 2017; Masindi and Muedi, 2018). Natural soils

are the primary source of TEs in plants. Despite the selective

membrane of root cells, much of the elements present in the soil

translocate into plant tissues. In contrast, their availability depends

mainly on the solubility in the soil solution or the root exudates

(Blaylock and Huang, 2000). Therefore, the plants may efficiently

uptake hazardous TE levels, affecting their functioning and animal

and human health through the food chain (Adriano, 2001).

Some trace elements such as Zn, Cu, Ni, Fe, Mo, and Mn are

essential for plant metabolism. Zn has been shown to play a crucial

role in enzyme systems involved in carbohydrate and protein

metabolism, auxin formation, and stabilises cell membrane

integrity (Hafeez, 2013). There is also evidence that Zn may

contribute to the plant defence system by regulating stress protein

expression and stimulating the antioxidant enzymes (Cabot et al.,

2019; Hassan et al., 2020). Ni has been reported as an integral

component of various enzymes essential for ureolysis, nitrogen

fixation, hydrogen metabolism, and antioxidant system (Fabiano

et al., 2015; Lavres et al., 2016; Siqueira Freitas et al., 2018).

Similarly, Fe forms cofactors of many vital enzymes and is a

central component of the electron transport chain and a crucial

element for chlorophyll biosynthesis (Schmidt et al., 2020). Cu plays

a pivotal role in regulating the photosynthetic and respiratory

electron transport chain, besides affecting cell wall formation,

antioxidant activities, and hormone perception (Yamasaki et al.,

2008; Printz et al., 2016). Furthermore, Mn is crucial for

photosynthetic machinery as the primary cofactor for the oxygen-

evolving complex in photosystem II (PSII) and may participate in

plant antioxidative system (Millaleo et al., 2010; Alejandro et al.,

2020). Besides the earlier mentioned TEs, several studies proved the

beneficial role of Co and Cr for plant growth and yield, although

they are not classified as essential nutrients (Samantaray et al., 1998;

Gad, 2012; Akeel and Jahan, 2020). On the contrary, TEs such as Pb,

Cd, Hg, and As have no documented beneficial role in the

metabolism of higher plants. They are considered the “main

threats” even in trace amounts (Chibuike and Obiora, 2014). The

effect of TEs toxicity depends, of course, on a particular element

involved in the process and its concentration in the soil. However, it

may vary significantly among plant species and varieties. Such

variations result from the different (i) pathways and mechanics

through which TEs are absorbed by roots (Williams et al., 2000), (ii)
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mechanisms of their releasing and redistribution into the shoot, and

(iii) abilities to exclude, chelate or accumulate TEs in particular

structures, which plants have adopted (Salt et al., 1998). These

mechanisms are involved in the maintenance of essential TEs

homeostasis. Furthermore, the plant species can be divided into

(hyper)accumulating and non-accumulating plants, whereas most

of the plant kingdom is considered non-accumulators (Viehweger,

2014). However, in general, TEs toxicity leads to the blocking of

functional groups of many enzymes (Tang et al., 2020),

malfunctions in photosynthetic machinery (Giannakoula et al.,

2021), production of reactive oxygen species (ROS) and

associated oxidative damage (Ma et al., 2022; Sardar et al., 2022),

and impairment of plant mineral nutrition through the replacement

of essential nutrients at cation exchange sites of plants (Arif et al.,

2016). Such alterations in overall biochemistry and physiology affect

plant development and growth and may lead to plant death in

severe cases (Chibuike and Obiora, 2014).

To date, only a handful of published articles target the

interaction of TEs with silicon nanoparticles (SiNPs). The existing

reviews on this nexus deal mostly with heavy metals, the term which

is in itself confusing (vide supra section Prologue), and therefore,

several toxic elements were purposefully left behind. Also, the

existing literature reviews often need to restrict their significant

discussion to SiNPs over bulk silicon or address the omics aspect

sufficiently. In our earlier review article, we demonstrated SiNPs

potential in mitigating the abiotic stress in general, where heavy

metal stress was also discussed (Mukarram et al., 2022).

Nonetheless, one of this article’s limitations was the absence of an

elaborated mechanism on SiNPs dialogue with TEs toxicity.

To overcome these concerns, we included a wide range of toxic

elements in the present review that were studied with SiNPs,

irrespective of their ‘heavy metals’ stigma. We also addressed how

SiNPs could interact with plant metabolomics, proteomics, and

genomics during TEs toxicity. So, the novelty of this review article
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over the existing ones lies in its understanding of the SiNPs-TEs

interaction and its omics perspective. Through this article, we hope

to instigate a discussion among the silicon community regarding its

active correspondence with plant physiology, especially when there

are still several ambiguities around this nexus.
3 Trace elements phytotoxicity

Although several TEs are essential to plants, their

overaccumulation in agricultural soils endangers plant growth

and development while compromising crop marketability and

global food security (Asati et al., 2016; Figure 1). Variations in

responses of different plant species to TEs toxicity have been

observed. Plant behaviour can change with soil pH and

composition and specific TEs. TEs toxicity potentially alters root

and shoot morphology and anatomy (Martinka et al., 2014). It

adversely affects photosynthesis and respiration by changing the

leaf’s structural integrity and physiology, damaging energy (photon)

allocation, and regulating critical metabolic processes (Küpper et al.,

2002; Ying et al., 2010; Chandra and Kang, 2016). Hampered

growth, chlorosis, necrosis, changes in stomatal functions, leaf

rolling, lowered water potential, altered membrane function,

efflux of cations, and changes in the activities of critical metabolic

enzymes are the widely reported symptoms of TEs toxicity in plants

(Van Assche and Clijsters, 1990; Marschner, 2012; Hasan et al.,

2017; Aponte et al., 2020). TEs toxicity severely affects PSI and PSII,

restricting photosynthetic output. TEs accumulation targets two

crucial photosynthetic enzymes, i.e., ribulose 1,5-bisphosphate

carboxylase (RuBisCO) and phosphoenol pyruvate carboxylase.

Cd has been reported to alter the structure and activity of

RuBisCO by substituting Mg++ ions, which are needed as a

cofactor of carboxylation reactions (Ashfaque et al., 2016). At the

cellular level, these TEs cause configurational changes in the
FIGURE 1

Trace elements (TEs) phytotoxicity in higher plants. The optimum concentration of several TEs promotes plant growth and development (such as Zn,
Cu, Ni, Fe, Mo, Mn, Cu, and Cr) (panel on the left). Nonetheless, their overaccumulation, in addition to other toxic elements (such as Hg, As, Cd, and
Pb), jeopardises cellular homeostasis and retard plant physiology and productivity (panel on the right).
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endoplasmic reticulum, Golgi apparatus, chloroplast, and

mitochondria and increase nucleus size and cellular vacuolisation

(Małkowski et al., 2019; Sperdouli et al., 2022; Liu et al., 2023). A

rise in oxidative stress linked with excessive accumulation of TE

ions is strongly considered the first symptom of TE-induced toxicity

(Rodrıǵuez-Serrano et al., 2009; Sharma and Dietz, 2009; Ghori

et al., 2019; Gupta et al., 2019; Ma et al., 2022). To cope with the

oxidative stress caused by TEs toxicity and protect cellular and

subcellular compartments, plants have developed several

mechanisms to sustain the essential TEs ion concentrations and

lessen exposure to non-essential TEs. Among these tolerance

mechanisms, some are required for metal homeostasis that lowers

the damage via exclusion, detoxification, the restriction of metal

ions into the apoplast, and the extracellular chelation of metal ions

(Ovečka and Takáč, 2014). However, other mechanisms involve

extruding individual TE ions from the intracellular environment or

their sequestration into the compartments to separate them from

other important cellular components (Manara, 2012). Hyper-

tolerance and the hyperaccumulation of TEs in the plant body

without having any harmful effect on viability are the best-known

strategies employed by plants under a TEs-induced toxic

environment (Baker and Brooks, 1989; Assunção et al., 2001,

Assunção et al., 2003; Vaculıḱ et al., 2009, Vaculıḱ et al., 2012;

Van der Ent et al., 2013; Baker et al., 2020; Pinto Irish et al., 2023).
4 SiNPs and plants: uptake and action
during the optimal environment

Although biogenic silicon (bulk-Si) is classified as a non-

essential element for plant growth and development, its stress-

mitigating potential has been widely reported (Korndörfer and

Lepsch, 2001; Ma, 2004; Liang et al., 2015; Luyckx et al., 2017;

Vaculıḱ et al., 2020). Silicon is the most abundant metalloid on the

earth’s surface. However, most Si is present in the soil as insoluble

oxides or silicates, which is unavailable for plant uptake. The

chemical weathering of silicate minerals liberates dissolved Si as

plant-available monosilicic acid, whereas its concentration in soil

solution commonly varies between 0.1 and 0.6 mM (Epstein, 1994;

Hodson et al., 2005). In this context, recent advances in

nanotechnology could alleviate the scarfed amount of monosilicic

acid in most cultivated soil and the limits of silicate fertilisation via

the connection of Si-derived benefits with benefits associated with

the properties of nanoparticles (Bhat et al., 2021). The smaller size

and broader absorption surface area of SiNPs over bulk-Si should

enable their easier absorption, distribution, and accumulation in

plants (Galbraith, 2007). However, Etxeberria et al. (2009) consider

nanoparticle uptake an active transport requiring various other

cellular mechanisms such as recycling, signalling, and regulating the

plasma membrane.

Despite a scarcity of available reports, Mukarram et al. (2022)

discussed the SiNPs could follow a similar transport route as their

bulk counterpart – the plant root absorbs Si from the soil solution in

the form of monosilicic acid (Si(OH)4) (Mitani-Ueno and Ma,

2021). The absorption and distribution of Si in the plant are ensured
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by two different types of Si transporters: channel-type transporters

(referred to as Low Silicon 1, Lsi1) and efflux transporters (referred

to as Low Silicon 2, Lsi2), which were first described in rice (Ma

et al., 2006, Ma et al., 2007). The Lsi1 from the nodulin-26 major

intrinsic protein (NIP) III subgroup of aquaporins drives the

passive influx of Si from the apoplast into the root cells. At the

same time, Lsi2, belonging to an uncharacterised anion transporter

family, is responsible for the active efflux of Si from the root cells

towards the xylem, i.e., xylem loading (Ma and Yamaji, 2015).

Following monosilicic acid absorption in the root stele, Si is

transported to the shoot through the xylem by transpirational

flow, with subsequent Si unloading to the leaf epidermal cells. As

the content of monosilicic acid in the cells increases, monosilicic

acid becomes highly polymerised and changes to form an

amorphous silica gel (SiO2·nH2O) (Mitani et al., 2005; Schaller

et al., 2021; de Tombeur et al., 2022). The silica can accumulate

under the epidermal cell wall, forming cuticle-silica double layers

which provide additional protection against mechanical injury and

fungal, bacterial, nematode, and insect attacks (Debona et al., 2017;

Rastogi et al., 2019; Zellner et al., 2021). The transporter ensuring

the xylem loading is not yet fully known undoubtedly. However,

Yamaji et al. (2008) described the Lsi6 transporter in rice, which is

responsible for the Si unloading from the xylem and subsequently

regulating its deposition in the shoots (Figure 2).

All abovementioned transporters are localised in the plasma

membrane; however, they show different tissue and/or cellular

specificity of their localisation, indicating that they are involved in

different steps of absorption, xylem loading, and distribution of Si

(Ma et al., 2011; Ma and Yamaji, 2015). Besides, interspecific

differences in the presence, tissue, cellular localisation, and

polarity of transporters, as well as their expression patterns, exist,

determining the different abilities to accumulate Si in various plant

species (Ma et al., 2011; Ma and Yamaji, 2015; Mitani-Ueno and

Ma, 2021). Accordingly, the plant species are divided into

accumulators, intermediate accumulators, and non-accumulators

(Takahashi et al., 1990). The Poaceae, Equisetaceae and Cyperaceae

families are known accumulators (>4% Si), the Cucurbitales,

Urticales and Commelinaceae intermediate Si accumulators (2–

4% Si), while most of the other species have little or no ability to

accumulate Si (Hodson et al., 2005; Currie and Perry, 2007).

SiNPs involvement with several metabolic and physiological

activities has been described under optimal and stress conditions

(El-Shetehy et al., 2021; Fan et al., 2022; Naaz et al., 2023). SiNPs

can improve photosynthesis by PSII reaction centres opening and

promoting the absorption, transmission, and transformation of

light energy, the electron transport rate of PSII, chlorophyll and

carotenoid biosynthesis, and other related enzymes (Sharifi-Rad

et al., 2016; Fatemi et al., 2020; Mukarram et al., 2021). Moreover,

SiNPs can upregulate the expression of many genes encoding

proteins directly involved in photosynthetic machinery (Song

et al., 2014; Hassan et al., 2021). The smaller sized-SiNPs can

penetrate seed coat promptly and improve seed germination and

growth and later overall growth, development, and crop yield

(Epstein, 1994; Haghighi et al., 2012; Azimi et al., 2014;

Janmohammadi et al., 2016; Karunakaran et al., 2016; Sun et al.,

2016; Kheyri et al., 2019). In addition, SiNPs can trigger the
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multiplication of growth-promoting rhizobacteria responsible for

nutrient recycling and soil health maintenance, promoting plant

maturation (Karunakaran et al., 2013). All these functions

contribute to plant resistance against various physical, chemical,

and biological stressors (Figure 2).
5 SiNPs-mediated TEs sequestration

The TEs sequestration from plant environs, such as soil, air, and

water, is a constant challenge. Several experiments have recently
Frontiers in Plant Science 05
targeted sustainable approaches to remedy TEs excess. Among

various methods, the application of SiNPs in the form of a foliar

spray, seed priming, and soil incorporation has emerged as a novel

and eco-friendly approach to combat TEs stress (Asgari et al., 2018;

Hussain et al., 2019; Rizwan et al., 2019). SiNPs treatment effectively

enhanced the photosynthesis and growth in plants exposed to TEs-

stressed conditions (Cui et al., 2017; Khan et al., 2020a). At the

latest, the magnetic properties of SiNPs are curative towards

contaminated water (Mahboub et al., 2022). SiNPs might operate

in several ways to sequestrate different TEs, such as forming

complexes with toxic TE ions, arresting their uptake, TEs
FIGURE 2

The hypothetical model for SiNPs uptake, transport, and action in higher plants under physiological settings. It is possible that SiNPs, like bulk
silicates, could be absorbed by plant roots in the form of silicic acid (Si(OH)4) and transported to endodermis by aquaporin channel Lsi1. Lsi2 might
facilitate xylem loading at the endodermis-stellar apoplast junction. From there, it could join the transpiration stream to move to aerial parts. Lsi6
could assist xylem unloading at the shoot for distribution to shoot tissues or deposition in the cell walls or as specified silica cells (phytoliths). Silica
deposition at the cell wall, silica cells or phytoliths are crucial to cell wall strengthening, reduced palatability for herbivores, and resisting wind, rain,
and lodging. This action can be understood as the ‘direct’ effects of SiNPs. Additionally, SiNPs supplementation shows a strong correlation with
superior plant physiology. This includes improved seed germination and seedling development, photosynthesis, gas-exchange, plant-water relation,
nutrient uptake, and redox homeostasis. The direct involvement of SiNPs in these upgrades still lacks unequivocal proof. Nonetheless, several
research findings support the possible ‘indirect’ interaction of SiNPs with plant biochemistry and physiology. These mechanical and physiological
enhancements mediate SiNPs-induced growth and productivity in higher plants.
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compartmentalisation within plants, stimulating the antioxidant

defence system, and other omics aspects (Kopittke et al., 2012;

Lukačová et al., 2013; Tripathi et al., 2016; Zhou et al., 2021). We

will explore these possibilities in the later sections.
5.1 Cadmium

Being a non-essential trace element, the accumulation of Cd in

agricultural soils is an onerous threat to plants (Haider et al., 2021).

Thus, eliminating Cd from the soil is crucial to sustaining food

security and environmental safety. SiNPs-mediated amelioration of

Cd has been reported in several plant species, including

Phyllostachys edulis (Emamverdian et al., 2021), Satureja hortensis

(Memari-Tabrizi et al., 2021), Oryza sativa (Cui et al., 2017;

Hussain et al., 2020), and Triticum aestivum (Hussain et al.,

2019). Applying SiNPs against Cd stress has been considered

more efficient than regular fertilisers (Chen et al., 2018). The

experiment on Phyllostachys edulis suggested that SiNPs make a

complex with Cd ions via adsorption and reduce the accumulation

of Cd in roots and leaves (Emamverdian et al., 2021). It

subsequently enhances the germination and growth parameters.

Soil-applied SiNPs can alleviate Cd stress in Triticum aestivum

plants with improved growth and chlorophyll content (Ali et al.,

2019; Khan et al., 2020a). Further, SiNPs minimise Cd

accumulation and oxidative stress while improving nutrient

uptake and antioxidant defence system in Triticum aestivum

(Thind et al., 2021). Roots treated with SiNPs have increased the

xylem cell wall lignification in Trigonella foenum-graceum

(Nazaralian et al., 2017). The increased cell wall lignification was

coupled with an improved xylem cell wall thickness. Such cell wall

adjustments improve nutrient transport and silicon for faster

growth (Asgari et al., 2018). SiNPs engage the Cd ions on the

root surface to terminate their translocation in the aerial parts or

immobilise them in the soil (Silva et al., 2017). Cui et al. (2017) also

reported the downregulation of OsLCT1 and OsNramp5, genes with

SiNPs application involved in Cd uptake and transport,

respectively, in Oryza sativa. At the same time, SiNPs upregulated

genes involved in Cd transport into the vacuole (OsHMA3) and Si

uptake (OsLsi1). Higher silicon uptake can further restrict Cd

uptake and transport and, thus, Cd toxicity.
5.2 Lead

Pb is a non-essential element and a detrimental contaminant for

agricultural soils. It hampers plant metabolism, cell adhesion, and

signalling by accumulating ROS in the cell wall (Küpper, 2017;

Aslam et al., 2021). Foliar application of SiNPs boosted

photosynthetic machinery and antioxidant enzymes in

Coriandrum sativum and restricted Pb toxicity (Fatemi et al.,

2020). A tissue culture experiment on Pb stress mitigation via

silicon dioxide nanoparticles in Pleioblastus pygmaeus showed a

reduction in the soluble protein content assimilated in the cell

membrane while maintaining the cell membrane vitality

(Emamverdian et al., 2019).
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5.3 Arsenic

Arsenic contaminates groundwater globally, and irrigation with

As-rich water amplifies its bioaccumulation and toxicity in several

crops (Finnegan and Chen, 2012; Farooq et al., 2016; Vaculıḱ and

Vaculıḱová, 2017; Abbas et al., 2018; Abedi and Mojiri, 2020).

Nonetheless, SiNPs application arrests As uptake and translocation

to aerial parts of tissues and alleviates phytotoxicity in Solanum

lycopersicum (González-Moscoso et al., 2019, González-Moscoso

et al., 2022). SiNPs were reported to lower oxidative stress via

improving antioxidative defence (SOD, APX, GR, and DHAR) in

Zea mays seedlings (Tripathi et al., 2016). Further, SiNPs increase

the mechanical strength of the cell wall in rice suspension cells

under As toxicity via increasing pectin content, cation exchange

capacity, and pectin methyl-esterase activity, reducing pectin

methyl-esterification. SiNPs also blocked the uptake of As by

inhibiting the expression of genes encoding As uptake (OsLSi 1,

low silicon 1;OsLSi 2, low silicon 2) (Cui et al., 2020) since As and Si

share a common transport system. Thus, adding SiNPs into the As

medium causes a direct competition for the transport proteins (Cui

et al., 2020). Moreover, SiNPs treatment enhances the expression

levels of plasma-membrane localised NIP aquaporin family

proteins, OsNIP1;1 and OsNIP3;3, which are permeable to

arsenite (Mitani-Ueno et al., 2011; Sun et al., 2018). The

overexpressed OsNIP1;1 and OsNIP3;3 are reported to reduce the

As accumulation in Oryza sativa plants (Sun et al., 2018).
5.4 Mercury

Mercury (Hg) is a highly toxic pollutant that contaminates

cropland to different extents worldwide (Liu et al., 2020a). Li et al.

(2020) demonstrated that exogenously applied SiNPs ameliorate the

adverse effects of Hg in Glycine max seedlings. SiNPs significantly

reduced Hg uptake, accumulation, and translocation in these

seedlings. Further analysis with synchrotron radiation X-ray

fluorescence showed lower Hg accumulation in the epidermis and

pericycle of roots and stems of Glycine max plants treated

with SiNPs.
5.5 Chromium

SiNPs-mediated alleviation of Cr toxicity has been reported in

Pisum sativum via reduced Cr uptake and accumulation in plant

tissues (Tripathi et al., 2015). It was proposed that SiNPs facilitated

mineral nutrient uptake and downplayed ROS synthesis

by triggering antioxidant enzymes. SiNPs protected leaf

ultrastructure under Cr toxicity in Triticum aestivum (Manzoor

et al., 2022). While Cr deteriorated cellular organelles, SiNPs

protected the cell walls, cell membranes, mitochondria, granal

lamellae, thylakoids, nucleoli, and nuclear membrane. In a

hydroponic study with Brassica napus, Huang et al., 2024

witnessed 100 um SiNPs (20 nm) boosted Si content in leaves

increased by 169%, mostly restricted to intercellular spaces,
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chloroplasts, guard cells, and stomata. This can upgrade PSII

biochemistry (NPQ, ETR, and quantum yield of PSII) and

photosynthetic productivity. In the same study, SiNPs hampered

the expression of Cr (and related TEs) transporter genes such as

ST1, ST8, ABCG37,HMA, andMT, resulting in decreased Cr uptake

(by 92% in roots and 76% in leaves). In Oryza sativa seedlings,

SiNPs reversed the Cr-induced cell cycle arrest at the G2/M phase

along with IAA application (Sharma et al., 2022). Similarly,

endogenous NO levels in root tips were improved which could

assist in ROS scavenging and upregulated antioxidant activity as

was reported in the study.
5.6 Copper

Emamverdian et al. (2020) demonstrated the mitigative effect of

SiNPs on three different TEs stresses: Mn, Cu, and Cd on

Arudinaria pygmaea. Enhanced localisation of Cu and Mn by

SiNPs was observed in the root surface, which could minimise

TEs accumulation in the stem and leaves. Also, SiNPs treatment

enhanced the photosynthetic capacity, biomass, and overall growth,

which authors correlated with the reduced TEs uptake and

accumulation in the plant shoot. Similarly, Riaz et al. (2022)

suggested that SiNPs can relieve Cu2+ toxicity in wheat seedlings.

SiNPs treated plants showed increased root length and plant height

and enhanced antioxidant defence system. It was manifested by

decreased malondialdehyde (MDA) and H2O2 contents and Cu2+

concentrations in shoots.
5.7 Manganese

Si-induced alleviation of Mn toxicity has been reported in

several studies, suggesting Si could contribute to the depression of

Mn uptake and transport (Li et al., 2015). It could restrict lipid

peroxidation by upregulating non-enzymatic and enzymatic

antioxidants (Shi et al., 2005; Li et al., 2015). The reduced ·OH

accumulation was also detected in the leaf apoplast (Dragis ̌ić
Maksimović et al., 2007, Dragis ̌ić Maksimović et al., 2012).

Moreover, Doncheva et al. (2009) observed a substantial

thickening of epidermal layers after the Si treatment in the Mn-

sensitive maize variety over a tolerant one. It suggests that Si could

induce Mn storage in non-photosynthetic tissue to prevent Mn-

toxicity effects on chloroplast functions. Similarly, Iwasaki and

Matsumura (1999) assume that Si could assist in displacing and

storing Mn in a metabolically inactive form around the base of the

trichomes on the leaf surface. The mitigative effect of Si in the form

of nanoparticles on Mn-toxicity was also described in the

aforementioned study (Emamverdian et al., 2020; see Chapter 5.6).
5.8 Zinc

Generally, Zn is a vital element for plant growth, as it is

imperative in numerous metabolic pathways. Its deficiency is one

of the plant’s most widespread micronutrient deficiencies (Anwaar
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et al., 2015; Kaur and Garg, 2021). However, as was reported by

Long et al. (2003), a concentration above 3000 mg kg−1 Zn in dry

soil can have a noxious effect on plant yield and growth as it alters

the ionome of plants through the inhibition of nutrients’ uptake and

translocation (Bokor et al., 2015). The potential utilisation of Si in

alleviating Zn toxicity has been studied, for example, in cotton or

bamboo species (Anwaar et al., 2015; Emamverdian et al., 2018a).

Both studies suggested that Si can limit Zn bioavailability and

instigate the plant defence system by increasing antioxidant

capacity and non-enzymatic activity, thus alleviating cellular

oxidative damage. Similarly, Song et al. (2014) described that Si

activated and regulated some photosynthesis-related genes in Oryza

sativa with high-Zn exposure, improving photosynthesis over Zn-

stressed plants that lacked Si treatments. These studies operated

with bulk-Si, whereas using the SiNPs could potentially support its

beneficial effects. However, in highly Zn-polluted soils, Zn can

coexist with silica in the form of a Zn-silicate complex (Goswami

et al., 2022), and Bokor et al. (2015) revealed such a complex can

have a comparable negative effect on Lsi gene expression and

mineral nutrition homeostasis as high concentration of Zn alone.
5.9 Antimony

Sb is a non-essential metalloid with noxious effects for plants.

However, studies to manage Sb-toxicity with SiNPs are rare. Still, there

are several reports of Si-induced mitigation of Sb-toxicity in higher

plants that could point in the right direction. Vaculıḱová et al. (2014,

2016) described Si-induced alleviation of Sb-toxicity on root growth

and architecture in maize seedlings. Si supported the antioxidant

defence system and thus reduced oxidative stress symptoms, and

although Si did not reduce Sb content in roots, it considerably

restricted Sb translocation to shoot. Shetty et al. (2021) attributed the

blocked Sb translocation to root lignification, which was observed to a

greater extent in Si-treated plants of Arundo donax. Moreover,

enhanced photosynthetic pigments and overall photosynthetic yield

were described. In poplar callus exposed to Sb-stress, Si declined the

content of Sb in the calli and supported overall callus growth and

nutrient uptake as well as the content of photosynthetic pigments. The

improved Sb tolerance was secured via the Si-induced modification of

antioxidant enzyme activity (Labancová et al., 2023). These findings

also correspond to results obtained from the wild-type and the low-

silica rice mutant cultivated with 10 or 30 mmol L−1 Sb (Huang et al.,

2012). Si treatment promoted growth and decreased Sb content in the

shoots of both mutants by regulating the Sb distribution between the

roots and shoots.
5.10 Nickel

Although Ni is an essential component of several metalloenzymes

of plants, it could be very toxic at supraoptimal concentrations. Like Sb,

Ni-toxicity management is something least discussed in the literature

with SiNPs. Exogenous Si was investigated in rice as a possible

mitigative driver for Ni stress. Si protected the seedlings by

upregulating the antioxidant defence components and glyoxalase
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systems, helping the ROS scavenge and detoxify cytotoxic

methylglyoxal (Hasanuzzaman et al., 2013). The Si-induced recovery

of growth, gas exchange, and pigment contents in cotton seedlings

under the Ni stress was observed. It was secured by decreasing the Ni

uptake and accumulation in the leaf, stem, and roots. It also increased

antioxidant enzyme activities to restrict MDA, H2O2, and electrolyte

leakage in leaves and roots (Khaliq et al., 2016). The enhanced

antioxidant system, improved integrity of cell membranes and

averted Ni-induced root anatomy alteration were also denoted as the

mechanisms of Si-induced mitigation of Ni toxicity in maize plants

(Vaculıḱ et al., 2021). Improved leaf water status, enzymatic and non-

enzymatic defence systems, and increased content of assimilatory

pigments and leaf area were also described by Fiala et al. (2021).
6 Mechanisms underlying SiNPs-
mediated defence responses

There are several mechanisms and pathways that SiNPs can

adopt to mitigate TEs phytotoxicity. For instance, silicon can limit

TEs uptake and translocation by lowering the ion activities in the

medium. At a cellular level, it can regulate the co-precipitation of

elements, antioxidant machinery, gene expression concerning TE

transport and chelation, and morphological adjustments (Adrees

et al., 2015; Emamverdian et al., 2018b). Here, we discussed the

active processes of SiNPs against TEs toxicity (Figure 3).
6.1 TEs immobilisation in soil

Exogenous SiNPs ameliorate toxic TEs effects and improve

overall plant growth (Tripathi et al., 2016; de Sousa et al., 2019;

El-Saadony et al., 2021). These overcome responses have been

correlated with soil physical properties, including TEs speciation,

changes in soil pH, or deprivation of TEs due to co-precipitation

with silicon (Bhat et al., 2019). Pretreatment of bulk-Si enhances

phenolic root exudation (Chen et al., 2016) and organic acid

exudation (Fan et al., 2016), which might be critical in TEs

mitigation. Silicon immobilises TEs on the root’s outer surface by

increasing the soil’s pH or altering TEs speciation by forming

silicate complexes in soil solution. He et al. (2013) observed the

complexification of most Cd with wall-bound silicon in rice root

cells, leading to reduced Cd uptake and translocation. Kopittke et al.

(2017) performed synchrotron studies and confined most of the Al

complexed with Si in the Sorghum bicolor root cap. They evinced

that this Si-Al complex formation in the root periphery could

minimise the metal accumulation in the cell wall. Thus, the Si-

mediated extrinsic defence mechanism through organic acid or

phenolic exudation could be crucial in TEs toxicity mitigation.
6.2 Barrier to uptake and transport

Non-controlled silica deposition can harm a plant; hence, plants

evolved effective mechanisms of cell walls’ silicification (Kumar
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et al., 2017). Silicon binds to lignin in the cell wall to form a Si-TE

ion complex that subsequently arrests ion translocation from the

root to the other plant organs (He et al., 2013; Sheng and Chen,

2020; Soukup et al., 2020). Most Si-mediated fruitful effects are

reported to be linked with the accumulation of Si in roots, stems,

leaves, and hulls, which acts as a physical barrier by enhancing the

mechanical strength of plant tissues (Ma et al., 2006; Emamverdian

et al., 2018b). Si, along with lignin, can deposit in dermal regions of

the cell walls, thickening the Casparian strips and blocking the TE

transport in plants (Kim et al., 2014). Si-induced changes in the cell

wall binding properties might be essential in mitigating TEs

toxicity. Si reduced Cd accumulation in roots and grains of rice

(Chen et al., 2019) and maize (Liu et al., 2020b) which could result

from Si deposition in root cells apoplast hindering Cd uptake (Song

et al., 2009; Wang et al., 2015). It is stipulated that Si enhances Lsi

expression while suppressing Nramp 5 (Cd transporter gene) in rice

roots, suggesting that upregulated Si transporters resist Cd toxicity

under ample silicon supply (da Cunha and do Nascimento, 2009;

Ma et al., 2015). Considerable amounts of covalent-bound Si are

also complexed with hydroxyl groups of pectin contained in the cell

wall (Schwarz, 1973; Sheng and Chen, 2020). He et al. (2015)

suggests that hemicellulose, rather than pectin and cellulose, is the

primary ligand bound to Si complexes in rice. Si accumulated in the

cell walls in hemicellulose-bound organosilicon compounds can

improve cell wall mechanical properties and regeneration and

inhibit the Cd uptake by a mechanism of Cd complexation and

subsequent co-deposition (He et al., 2015; Ma et al., 2015).
6.3 Active participation in the antioxidant
defence system

TEs overaccumulation stages the ROS-induced oxidative

emergency, threatening many vital processes. Thus, the plant’s

top priority for survival under such scenarios is scavenging ROS.

This goal is facilitated by an antioxidant system comprising

several enzymatic (SOD, CAT, APX, POD, and GR) and non-

enzymatic (ascorbic acid, a-tocopherol, proline, carotenoids,

flavonoids, and reduced glutathione) antioxidants. In this

context, pretreatment of SiNPs was reported to stimulate the

enzymatic antioxidants against TEs toxicity in Solanum

lycopersicum under As stress (González-Moscoso et al., 2019,

González-Moscoso et al., 2022), Glycine max under Hg stress (Li

et al., 2020), and Satureja hortensis (Memari-Tabrizi et al., 2021)

and Triticum aestivum under Cd toxicity (Ali et al., 2019). The

formation of free radicals under TEs toxicity directly damages the

cell membrane permeability and stability that, in time, would

cause the homeostasis collapse of cells and tissues. However,

silicon counteracts it by enhancing the stability of the plasma

membrane under TEs stress (Vaculıḱ et al., 2020). Another TEs

detoxifying mechanism is the synthesis of various chelating

agents, i.e., flavonoids, phenolics, and organic acids (Bhat et al.,

2019). Silicon reportedly influences the synthesis of several

chelating compounds, including cysteine, glutathione, and

phytochelatins, under TEs toxicity (Rahman et al., 2017).
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7 ‘Omics’ bases of SiNPs-induced
TEs sequestration

7.1 Metabolomics
Plants evolved several responsive manoeuvers against TEs

toxicity, such as minimising TEs bioavailability and uptake,

enriching plants with nutrients, and stimulating the antioxidant

system and the biosynthesis of protective agents (osmolytes, organic

acids, metallothioneins, and phytochelatins) (Tripathi et al., 2015;

Moharem et al., 2019; Cao et al., 2020; Lian et al., 2020; Wang et al.,

2020a, Wang et al., 2020b). Among the different NPs applied, SiNPs

have proven to be quite promising (Tripathi et al., 2015; Wang et al.,

2015; Tripathi et al., 2017; Khan et al., 2020a). Though not an

exclusively effective metal/metalloid barricade, the apoplasmic

barrier also fulfils essential defensive functions in plant roots by
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regulating the flow of ions, oxygen and water (Lux et al., 2004; Chao

et al., 2013). The efficiency of apoplasmic barriers as contaminant

barricades can be enhanced by NPs application (Rossi et al., 2017).

NPs attach to the TEs in the root cell walls, making stable complexes

and rendering them unavailable. NPs-TEs complexes, once

adsorbed, become immobile, obstructing the mobility of the TEs

inside the plants and reducing their biological activity (Cui et al.,

2017; Wang et al., 2021; Zhou et al., 2021). Accumulating organic

acids (behaving as metal chelators) and chelating TE contaminants

are necessary adaptations to TEs tolerance. The biosynthesis of such

protective organic acids is improved by SiNPs, reducing the damage

caused by TEs like Cd and As (Cui et al., 2017; Tripathi et al., 2017;

Zhou et al., 2021). The interaction of SiNPs with the TEs is crucial

while studying the different characteristics of TEs stress alleviation.

SiNPs can also reduce the mobility and bioavailability of TE

contaminants in the soil (Tripathi et al., 2015; Wang et al., 2015;

Tripathi et al., 2017; Khan et al., 2020a). The application of
A
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FIGURE 3

The mechanistic overview of silicon nanoparticles (SiNPs)-mediated TEs tolerance. SiNPs can increase the pH of the growing medium (soil and
hydroponics) or alter elemental speciation by forming silicate complexes. It leads to TEs adsorption and immobilisation (A). Further, the remaining
TEs translocation is discouraged by blocking TEs receptors (B). At inter- and intracellular spaces, SiNPs boost the biosynthesis of chelators
compound, organic acid, and phenolic root exudation to minimise TEs toxicity (C). SiNPs optimise redox status under TEs excess through supporting
enzymatic and non-enzymatic antioxidant defence systems (D) and contribute to overall TEs tolerance in higher plants. TEs: trace elements; SiNPs:
silicon nanoparticles; AsA: Ascorbic acid; GSH: glutathione; APX: ascorbate peroxidase; ROS: reactive oxygen species; H2O2: hydrogen peroxide;
CAT: catalase; POD: peroxidase; alphabetic abbreviations inside panel (D) – C: chloroplast; P: Peroxisomes; N: Nucleus; V: Vacuole;
M: mitochondria.
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mercapto SiNPs increased the stability of Cd and, thus, decreased its

mobility (Wang et al., 2020b). Alternatively, Si may co-precipitate

with metals/metalloids as silicates in the roots and leaves of different

plants. Co-precipitation of Zn as Zn silicates or Si–Zn complexes in

the cell walls of leaf epidermal cells was seen inMinuartia verna and

Cardaminopsis halleri (Neumann et al., 1997; Neumann and Zur

Nieden, 2001). Gu et al. (2011, 2012) suggested the sequestration of

Zn–Si and Zn-Cd precipitates in rice to the cell walls of less

bioactive tissues. Similarly, Mn, Cu, and Cd might co-precipitate

with Si to restrict their accumulation in shoot phytoliths, but it is

not fully confirmed yet (Iwasaki et al., 2002; Zhang et al., 2008;

Oliva et al., 2011; Emamverdian et al., 2020).

SiNPs regulate a variety of physiological phenomena in plants,

notably nutrient assimilation, CO2 fixation, accretion of secondary

metabolism products and activities of different enzymes under

normal as well as perturbed environmental conditions (Tripathi

et al., 2015, Tripathi et al., 2017; Ahmad et al., 2019; Khan et al.,

2020a; Mukarram et al., 2021). Al-toxicity alleviation in barley and

maize after Si supplementation has been endorsed to accumulate

phenolic compounds (Adrees et al., 2015; Vega-Mas et al., 2019).

SiNPs have also been observed tomodulate the regulatory enzymes of

the shikimic acid pathway, leading to increased accretion of phenols

in the leaves, as has been reported in Mentha piperita (Ahmad et al.,

2019). Because of their metal-chelation capacity with flavonoid-

phenolics, phenols play a critical role in TE toxicity mitigation by

reducing the uptake and translocation of toxic TEs, as has been

reported for Al andMn (Kidd et al., 2001; Dragisǐć Maksimović et al.,

2007; Shahnaz et al. , 2011). Bulk-Si facilitates phenol

overaccumulation by triggering phenylalanine ammonia-lyase

(PAL), a critical regulatory enzyme of the phenylpropanoid

pathway (Rahman et al., 2015; Ahanger et al., 2020). It also

upregulated PAL, cinnamyl alcohol dehydrogenase, and chalcone

synthase in Rosa hybrida (Shetty et al., 2011). Likewise, Si-induced

PAL activity also assisted in managing Cu stress in Arabidopsis

thaliana roots (Li et al., 2008).

Bulk-Si can influence the biosynthesis of H2O2, nitric oxide (NO),

and hydrogen sulphide (H2S) to govern Ag and Cd toxicity in mustard

and pepper (Soundararajan et al., 2018; Vishwakarma et al., 2020; Kaya

et al., 2020a). Si decreases electrolyte leakage and H2O2 and MDA

content by boosting the antioxidant system, possibly with NO

involvement, and regulates plant growth and development under TE

toxicity (Tripathi et al., 2021). SiNPs-induced NR biosynthesis in

Mentha piperita and restricted H2O2 production in Cymbopogon

flexuosus suggests SiNPs crosstalk with H2O2 and NO (Ahmad et al.,

2019; Mukarram et al., 2023). Thus, it does not seem hasty speculation

that SiNPs could interact with gaseous signalling molecules in a similar

fashion to bulk-Si. It will hold relevance during TEs stress alleviation as

well. The nitrate reductase (NR) pathway is the best-characterised NO

biosynthetic pathway (Planchet and Kaiser, 2006). In addition to the

general function of nitrate-to-nitrite reduction, NR also performs a

crucial part in plants by transferring an electron to nitrite using NAD

(P)H as a source of electrons, ultimately resulting in NO biosynthesis

(Planchet and Kaiser, 2006). The synergistic interaction of NO and Si

can discourage As uptake and increase phytochelatin biosynthesis,

reducing As translocation in mustard (Ahmad et al., 2021). In a similar

study, Liu et al. (2020b) established the collegial effect of Si and NO in
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mitigating Cd toxicity in Triticum aestivum seedlings. Si stimulates

endogenous H2S accretion that upregulates antioxidants’ activity in

Capsicum annuum raised on Cd- and B-spiked soils (Kaya et al.,

2020a, 2020b).
7.2 Proteomics

Given the scanty literature concerning the SiNPs-mediated TEs

tolerance in plants, the proteomic approach is comparatively novel to

gaining insights into the expression of various stress-related enzymes

and proteins. TEs-stimulated oxidative stress leads to altered protein

expression and structure, leading to loss of protein activity or its

content. Nevertheless, silicon and SiNPs supplementation regulates

the expression of several proteins and enzymes of signal transduction

cascades of the antioxidant defence system (Tripathi et al., 2015;

Muneer and Jeong, 2015a; Mukarram et al., 2022). Once inside the

cells, silicon plays an imperative role in stress alleviation bymaintaining

ion homeostasis and structural rigidity, upregulating antioxidant

metabolism, and increasing the expression of genes and proteins

involved in stress alleviation (Ma, 2004). SiNPs-induced upregulation

of the different primary and secondary metabolic enzymes is well-

reported. Mukarram et al. (2021) reported that the expression of

terpene (neral, geranial) and NR enzyme activity was upregulated in

SiNPs-treated Cymbopogon flexuosus. Si application improves PSII

polyprotein expression under Zn toxicity (Song et al., 2014). Further,

the bulk-silicon enhanced the protein content related to stress (17%),

hormones (11%), and other cellular biosynthesis (11%), and many

others associated with gene expression and secondary metabolism in 25

mM salt-stressed Lycopersicon esculentum plants (Muneer and Jeong,

2015b). The stress-related proteins included zinc finger A20, COPINE 1

family protein, caffeoyl-CoA O-methyltransferase, and others. Down-

regulation of Zn transporter (OsZIP1) protein after Si supplementation

decreases Zn uptake in Oryza sativa (Huang and Ma, 2020). Si

accumulation involves both influx and efflux transporters. The SiNPs

application has been endorsed for upregulating the menthol-reductase

enzyme to proliferate menthol in mint oil (Ahmad et al., 2019).

Similarly, geraniol dehydrogenase enzyme activity was positively

influenced by SiNPs foliar application in Cymbopogon flexuosus

under 160 mM and 240 mM salt stress (Mukarram et al., 2023).

SiNPs-induced antioxidants can improve isoenzyme patterns and

genomic alterations to restrict TE toxicity in Pisum sativum and UV-

B stress in Triticum aestivum (Tripathi et al., 2015, Tripathi et al., 2017).

Further, Si can delay chlorophyll-protein complex degradation such as

supercomplexes, PSI core binding LHCI, PSI core, F1-ATPase binding

Cytb6/f complex, PSII core, and trimeric and monomeric LHCII

(Wang et al., 2019). Si can also improve photosynthetic performance,

given its observed benefits on absorption, transformation, and transfer

of light energy through optimising thylakoid membrane proteins in

water-deprived Oryza sativa seedlings (Wang et al., 2019).
7.3 Genomics

Studies on TEs-stressed plants have indicated that ROS-induced

DNA damage was more pronounced in the Cd and Pb-exposed
frontiersin.org

https://doi.org/10.3389/fpls.2024.1377964
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Mukarram et al. 10.3389/fpls.2024.1377964
plants, as indicated by the disappearance of several normal bands in

the RAPD pattern of the DNA. In contrast, new DNA amplicons

could be located in TE-exposed plants treated with different NPs.

Moreover, oxidation of proteins is a common TEs toxicity symptom

as TEs ions directly interact with protein molecules due to their

strong affinity with carboxyl- thionyl- and histidyl groups (Hossain

et al., 2015). Studies have revealed that the NPs within the plant cell

systems may interact with these sulfhydryl and carboxyl groups,

eventually altering the protein activity by acting and reacting

similarly to the metal ions (Hossain et al., 2015). As discussed,

different NPs upregulate the expression of various genes in plants,

speeding up the biosynthesis of several primary and secondary

metabolism products (Večerǒvá et al., 2016; Marslin et al., 2017).

The role of SiNPs exemplifies regulating an array of

transcription factors (TFs) implicated in abiotic mitigation,

notably DREB2, NAC, NAM, and CUC. These TFs overexpress

genes associated with scavenging free radicals and maintaining

osmotic potential and ionic homeostasis (Manivannan and Ahn,

2017). Moreover, silicon can induce regulatory proteins coupled to

gene expression under stress, particularly TFs for transcription

elongation (SPT4), ribosomal protein L16, RNA polymerase

mediator, tRNA-lysidine synthase, MADS-box, ribosome-

recycling factor and reverse transcriptase (Muneer and Jeong,

2015b; Al Murad et al., 2020).

Exogenous application of SiNPs modifies plant’s nutrient status,

facilitating N, Fe, Mg, Zn, and Si absorption (Wang et al., 2015;

Ahmad et al., 2019; Mukarram et al., 2021). SiNPs-mediated

increase in Si uptake leads to a decrease in the Cd uptake,

facilitating the growth of Oryza sativa seedlings raised on Cd-rich

soils. Cui et al. (2017), in their study on rice, observed that SiNPs

upregulate the expression of Si transporter (OsLsi1) while the

expression of Cd-transporters (OsLCT1, OsNramp5) is down-

regulated. Down-regulation of essential abiotic stress tolerance

genes, notably ERF5 (ethylene response factor 5, RBOH1

(respiratory burst oxidase), MAPK2, and MAPK3 (mitogen-

activated protein kinases), by the application of SiNPs, is well-

reported (Almutairi, 2016). SiNPs-mediated regulation of primary

metabolism, biosynthesis and modifications of secondary

metabolism products, particularly phenols, possibly enhances the

tolerance against stress (Rahman et al., 2015; Tripathi et al., 2015,

Tripathi et al., 2017; Ahmad et al., 2019; Ahanger et al., 2020).

Furthermore, SiNPs were suggested to induce different transcripts

(CfADH2a-b, CfADH1, CfAKR2b, CfAAT3, and CfALDH) to

regulate the constitutional makeup of plant essential oil

(Mukarram et al., 2021).

Despite growing studies on SiNPs, most publications need more

genomic insights. Here we introduce significant recent findings

dealing with the influence of Si on gene activity, generally to

indicate a possible role with SiNPs. Different studies have

suggested the positive regulation of gene transcripts of various

metabolic processes by Si application (Brunings et al., 2009;

Chain et al., 2009; Debona et al., 2017). The role of Si in

upregulating photosynthetic genes has been studied in detail. For

example, Zn-induced damage in PsbY expression was overcome by

Si supplementation (Song et al., 2014). Moreover, increased PSII

activity and electron transfer rate by upregulating PsbY mRNA
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transcripts are endorsed for Si supplementation in rice under Zn

stress. The other Si-upregulated genes under Zn-toxicity include

PetC, PsaH, PetH encoding chloroplast, cytochrome proteins, and

ferredoxin NADP+ reductases, respectively (Song et al., 2014).

Moreover, Si upregulates several genes encoding for electron

transport chain proteins and light-harvesting complex viz., PetE,

PetF, PsbQ, PsbP, PsbW, and Psb28. Furthermore, increased

expression of gene transcripts (PsbW, Psb28, PsbQ, and PsbP)

involved in the photolysis of water has been attributed to Si

application (Zhang et al., 2018). PetH, Os03g57120 and

Os09g26810 genes involved in stress mitigation, NAD(P)H and

glutathione biosynthesis are also upregulated by Si (Manivannan

and Ahn, 2017). Kaushik and Saini (2019) have reported the

upregulation of LeGR (glutathione reductase gene) in Solanum

lycopersicum after Si supplementation. In Triticum aestivum, Si

attenuates TEs toxicity by upregulating metallothionein and

phytochelatin synthase gene expression (TaMT1, TaPCS1)

(Hossain et al., 2018). Genes coding for enzymatic oxidants

(SlCAT, SlGR, SlGST, SlSOD, SlPOD, SlGPX) have been observed

to be upregulated by exogenous sourcing of Si attenuating stress

response in Solanum lycopersicum (Khan et al., 2020b).
8 Conclusion and future trends

Only a few published articles have focused on the interaction

between SiNPs and TEs toxicity, with existing reviews mainly

discussing heavy metals and neglecting other toxic elements.

These reviews also fail to emphasise SiNPs over bulk silicon or

adequately address the omics aspect. In our previous review

(Mukarram et al., 2022), we explored SiNPs potential in

alleviating abiotic stress, including metals stress, but needed TEs

and a detailed modus operandi. To address these concerns, our

present review includes a wide range of toxic elements studied with

SiNPs, regardless of the ‘heavy metals’ label, and explores how

SiNPs interact with plant metabolomics, proteomics, and genomics

during TEs toxicity. The novelty of our review lies in its

understanding of the SiNPs-TEs interaction and its omics

perspective, aiming to stimulate a discussion within the silicon

community about its active involvement (if any) in plant

physiology, particularly given the existing uncertainties in this field.

In the present review, we focused mainly on the action of SiNPs

during TEs presence. It could be understood from several studies

that SiNPs have superior benefits against TEs excess over bulk-Si.

The modus operandi relies upon SiNPs-induced chelation and

immobilisation of TEs at the first contact site, i.e., soil. Once toxic

elements are inside the plant, SiNPs might compartmentalise TEs or

restrict them in vacuoles and cell walls. SiNPs further attenuate TEs

stress by inducing biochemical defence such as antioxidants,

osmolytes, and other specialised compounds. Several proteins

and genes have been identified to support SiNPs action in TEs-

stressed plants. Nonetheless, future studies could address the

following concerns:
1. Much prospective research is encouraged on SiNPs

interaction with TEs toxicity.
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2. It is high time to produce empirical proof of whether SiNPs

provide more anatomical and structural support or

physiological participation during TEs toxicity.

3. More research is required for SiNPs action on certain (less-

discussed) trace elements such as Mo and Se.

4. A lack of omics approaches in contemporary studies is

still prevalent.

5. The aquaporins for TEs uptake and distribution need to be

identified and sequenced.

6. Silicon channels are needed for other model plant species,

especially C4 plants, such as sorghum and sugarcane where

silica can be stored at higher concentrations.
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young maize plants exposed to nickel stress. Plant Physiol. Biochem. 166, 645–656.
doi: 10.1016/j.plaphy.2021.06.026

Finnegan, P. M., and Chen, W. (2012). Arsenic toxicity: the effects on plant
metabolism. Front. Physiol. 3, 182. doi: 10.3389/fphys.2012.00182

Gad, N. (2012). Physiological and chemical response of groundnut (Arachis
hypogaea) to cobalt nutrition. World Appl. Sci. J. 2, 327–335.

Galbraith, D. W. (2007). Silica breaks through in plants. Nat. Nanotechnol. 2, 272–
273. doi: 10.1038/nnano.2007.118

Ghori, N. H., Ghori, T., Hayat, M. Q., Imadi, S. R., Gul, A., Altay, V., et al. (2019).
Heavy metal stress and responses in plants. Int. J. Sci. Environ. Technol. 16, 1807–1828.
doi: 10.1007/s13762-019-02215-8

Giannakoula, A., Therios, I., and Chatzissavvidis, C. (2021). Effect of lead and copper
on photosynthetic apparatus in citrus (Citrus aurantium L.) plants. The role of
antioxidants in oxidative damage as a response to heavy metal stress. Plants 10, 155.
doi: 10.3390/plants10010155
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D., SenGupta, B., and Martıńez-Villegas, N. (2022). Silicon nanoparticles decrease
arsenic translocation and mitigate phytotoxicity in tomato plants. Environ. Sci. pollut.
Res. 29, 34147–34163. doi: 10.1007/s11356-021-17665-2
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