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Introduction: Individual leaves in the image are partly veiled by other leaves,

which create shadows on another leaf. To eliminate the interference of soil and

leaf shadows on cotton spectra and create reliable monitoring of cotton nitrogen

content, one classification method to unmanned aerial vehicle (UAV) image

pixels is proposed.

Methods: In this work, green light (550 nm) is divided into 10 levels to limit soil

and leaf shadows (LS) on cotton spectrum. How many shadow has an influence

on cotton spectra may be determined by the strong correlation between the

vegetation index (VI) and leaf nitrogen content (LNC). Several machine learning

methods were utilized to predict LNC using less disturbed VI. R-Square (R2), root

mean square error (RMSE), and mean absolute error (MAE) were used to evaluate

the performance of the model.

Results: (i) after the spectrum were preprocessed by gaussian filter (GF), SG

smooth (SG), and combination of GF and SG (GF&SG), the significant relationship

between VI and LNC was greatly improved, so the Standard deviation of datasets

was also decreased greatly; (ii) the image pixels were classified twice sequentially.

Following the first classification, the influence of soil on vegetation index (VI)

decreased. Following secondary classification, the influence of soil and LS to VI

can be minimized. The relationship between the VI and LNC had improved

significantly; (iii) After classifying the image pixels, the VI of 2-3, 2-4, and 2-5 have

a stronger relationship with LNC accordingly. Correlation coefficients (r) can

reach to 0.5. That optimizes monitoring performance when combined with

GF&SG to predict LNC, support vector machine regression (SVMR) has the

better performance, R2, RMSE, and MAE up to 0.86, 1.01, and 0.71, respectively.

The UAV image classification technique in this study can minimize the negative

effects of soil and LS on cotton spectrum, allowing for efficient and timely

predict LNC.
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1 Introduction

Nitrogen is an essential element for crop growth and

development, and its abundance and deficiency have great

influence on cotton yield and quality (Snider et al., 2021).

Traditional nitrogen monitoring methods require human and

material resources during sampling, determination, and data

analysis, among other processes, and appear to be not commonly

applied (Bacsa et al., 2019). The rapid development of spectral

technology, particularly rapid non-destructive and spectrum

integrated monitoring technology, has balanced the limitations of

traditional nitrogen monitoring methods (Johnson et al., 2016).

Precision agriculture is vital for cotton nitrogen monitoring by

gathering field data for precision management and decision making

in big fields. Spectral technology has become an important direction

and research hotspot in precision agriculture. Hyperspectral remote

sensing extracts spectroscopic data from a target using

electromagnetic spectra with extremely narrow wavelengths,

generating a continuous and full spectral curve with spectral

information perfectly reflecting the intrinsic features of the target

(Govender et al., 2008). At present, remote sensing technology is

divided into aerospace, aviation, low-altitude remote sensing, and

near-ground remote sensing. Low-altitude remote sensing is the

collection of data via unmanned aerial vehicle (UAV) photography

(Sun et al., 2017). Compared with near-ground remote sensing, UAV

remote sensing has higher temporal and spatial resolution (Zheng

et al., 2018), tend to be highly flexible and relatively inexpensive, and

is suitable for large-scale monitoring (Delavarpour et al., 2021),

whereas remote sensing from aerospace and aviation has a time

and space lag with crops (McConkey et al., 2004; Yang et al., 2014), in

addition to several limitations due to cloud coverage and high costs,

making UAV technology a complementary to near-ground and

satellite technology (Manfreda et al., 2018). In agriculture, much of

the work is done using UAV, including growth assessment (Tao et al.,

2020; Gong et al., 2021) and nutrition assessment, among others

(Kerkech et al., 2020; Das et al., 2022).

Academic research on nutrition assessment has been conducted

on a variety of crops, such as winter wheat (Sun et al., 2018; Song

et al., 2022), rice (Bacsa et al., 2019), corn (Xu et al., 2021), cotton

(Chu et al., 2016; Volkova et al., 2018), and sorghum (Shafian et al.,

2018). However, there are still significant barriers to agricultural

nutrition monitoring, such as the complicated growing

environment of field crops, which results in UAV images with a

huge quantity of soil and leaf shadow, among others. According to

Liu et al. (2020), the key elements influencing the accuracy of

monitoring the aforementioned agricultural information include

the specific vegetative growth stages, the vegetation cover, the crop

canopy structure, and the crop types. This may be the result of non-

static cotton leaf shadow or soil. Cotton has a dwarf form and more

leaves. The lower leaves in the binary images are partially or entirely

shaded by canopy leaves, casting shadows on another leaf. While

the reflectance of shadows is likewise relatively lower, these areas are

either explicitly directly deleted or ignored in target recognition,

leading to the acquisition of vegetation spectra lower than the actual

spectral reflectance (Tong et al., 2017; Liu et al., 2020). To increase

the inversion performance, some researchers have used the canny
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edge detection technique to eliminate the soil background and leaf

shadow (Zhang et al., 2018). Caturegli et al. (2015) claimed that the

magnitude of the normalized difference vegetation index (NDVI) is

vulnerable to the surrounding environment. To minimize as much

as possible the influence of soil and leaf shadows on the cotton

spectrum, a significant amount of research has been conducted by

numerous experts on ways to lessen the interference of soil and leaf

shadows on the spectrum, which is the most valuable information

for precision farming. Three points are summarized below. Firstly,

specific spectral pretreatment techniques can successfully minimize

the disturbance of soil, such as the first-order derivative and

Savitzky–Golay (SG) smoothing (Zhang et al., 2022; Yin et al.,

2022). Secondly, the vegetation index (VI) is a product of the

enhanced remote sensing image that can efficiently emphasize

spectral features while reducing redundant information, which is

more stable and dependable than spectral reflectance (Feng et al.,

2014; Yao et al., 2014). For example, Chen et al. (2010) proposed

that the double-peaked canopy nitrogen index (DCNI) could

mitigate the effect of canopy structure. Stroppiana et al. (2009)

claimed that the optimal normalized difference index (NDIopt)

based on the blue/green regions has a smaller impact on the rice leaf

area index (LAI) and canopy structure than the NDVI and is more

sensitive to changes in the plant N concentration. Zhu et al. (2007)

demonstrated that the link between various VIs and N changed with

crop type and crop phenology. As a result, the VI may be more

stable for target detection than spectral reflection information.

Thirdly, strategies to reduce the interference of soil and shadow

have been developed by many scholars. Woebbecke et al. (1995)

evaluated the capacity of various color indices to differentiate the

vegetation from the background and hypothesized that the excess

green (ExG) vegetation index may offer a near-binary intensity

image to highlight a plant area of interest. M-Desa et al. (2022)

performed picture shadow and non-shadow discrimination using

color characteristics and supervised classification. There are

numerous studies on the shadow rejection of buildings in UAV

images; however, for agricultural images, these studies have all

focused on trees with simple canopy structures (Prado Osco et al.,

2019), such as apples and oranges, where shadows are easy to reject

(Khekade and Bhoyar, 2015). Therefore, leaf shadows are difficult to

remove completely. With advancement of the phenological stage of

cotton, cotton leaves will gradually expand and the soil in the

captured image could be covered. Therefore, the impact of soil on

cotton field nutrient monitoring can be easily removed than the leaf

shadow. Thus, rejecting cotton leaf shadowing is sophisticated

compared with cotton nitrogen monitoring. Woebbecke et al.

(1995) proposed that the color difference coordinates of green

were significantly higher than those of other colors and used red–

green–blue (RGB) primary colors to determine a color index that

best distinguishes between the various color images of plant

materials, weeds, soil, residues, and background light conditions.

Guyer et al. (1986) discovered that the intensity of the pixels in the

plant images was higher than that of the soil pixels by shining visible

light on the plants.

Undeniably, in addition to these factors that might affect the

cotton leaf spectra, modeling methods can also directly contribute to

the precision of forecasts. Miphokasap et al. (2012) provided proof
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that, in comparison to narrow-band multiple linear regression

(MLR)-based model applications, the model model developed by

SMLR demonstrated a higher correlation coefficient with nitrogen

content than the model based on narrow vegetation indices. In recent

decades, numerous nonlinear and nonparametric methods that go

beyond linear regression and linear transformation have been

developed. These methods are also known as machine learning

regression algorithms (Verrelst et al., 2015). Therefore, this study

classified image pixels to eliminate redundant information and to

reduce the impact of leaf shading and soil on the drone spectra.

Machine learning methods were used to improve the accuracy of the

large-scale monitoring of cotton leaf nitrogen content (LNC) in order

to provide guidance for the rational application of nitrogen fertilizer.
2 Materials and methods

2.1 Experimental area

This experiment was carried out in July of 2020 at the

experimental station of Shihezi University (44°19′53.83″ N, 85°

59.65″ E). Figure 1 depicts the map of the experimental area.

Various amounts of N fertilizer were randomly applied to each

plot, resulting in a total of 6 N fertilizer gradients and three

repetitions. There were 18 pilot zones.

The application of six N fertilizers was intended to enhance the

presence of numerous N fertilizers. The nitrogen fertilizer gradients

were 0, 120, 240, 360, and 480 kg ha−1 to ensure the stability of the

model estimates, which were correspondingly indicated as N0,

N120, N240, N360, and N480. Cotton was the first plant to be

cultivated at the experimental site. Prior to planting, 30% N

fertilizer was applied to the cotton. The second half of April was

used to grow cotton. Of the N fertilizer, 70% was sprayed on June

22, July 9, July 18, August 5, and August 15 at respective rates of

10%, 10%, 20%, 20%, and 10%. The water was irrigated on June 13,

June 23, July 14, July 25, August 5, and August 16 according to the

combined local standard drip irrigation.
Frontiers in Plant Science 03
2.2 Data collection

2.2.1 Hyperspectral images using an unmanned
aerial vehicle

The UAV images were captured at 100 m above the cotton

canopy on July 16, 2020. Clear weather and the absence of wind and

clouds are essential for capturing the images. The flight was

scheduled to depart between 1200 and 1400 hours local time.

When the UAV was flying at 100 m altitude, the ground spatial

resolution was 0.03 m. The UAV is an aircraft in the domestically DJI

M600 series (Supplementary Figure 1). The sensor used was Nano-

Hyperspec (Supplementary Figure 2). The sensor has a GPS integrated

inertial measurement unit (IMU). The GPS and IMU signals were used

for orthorectification. The parameters are listed in Table 1.

2.2.2 Cotton leaf nitrogen content
For this study, cotton plants were destructively sampled during

their bud phase. The chopped leaves were placed in ice trays and

returned to the laboratory for LNC measurements. The leaves were

oven-dried to constant weight at 80°C and then crushed using a

crusher. The cotton LNC was determined through micro-Kjeldahl

analysis (Tian et al., 2014).
2.3 Data processing methods

2.3.1 UAV image pre-processing
The acquired UAV images were pre-processed with the

instrument’s own software, “Spectral View,” which also included

atmospheric and orthorectification adjustments. ENVI 5.3 was used

to complete the image mosaic and radiometric calibration

procedures. Radiometric calibration is the conversion of the

normalized difference (ND) values into spectral reflectance. The

reflectance of UAV at the same physical position as the LNC sample

point was extracted. Before extraction, the soils that can be seen

with the naked eye were excluded via unsupervised classification,

leaving just the vegetation for further investigation (Figure 2).
FIGURE 1

Experimental area.
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2.3.2 Classification method of the image pixels
As the image is susceptible to shadow interference (Figure 3), in

this study, green light was extracted for image pixel classification.

Refer to Figure 4 for the classification process. Focusing on the

green light value, all image pixels were classified into 10 categories.

In this study, two classifications were performed, and the 10

categories for the first classification were labeled as follows: 1-0, 1-1,

1-2, 1-3, 1-4, 1-5, 1-6, 1-7, 1-8, and 1-9. After determining that 1-4,

1-5, and 1-6 adequately represented the cotton canopy, a second

classification was performed in conjunction with 1-4 and 1-5, which

were labeled as 2-0, 2-1, 2-2, 2-3, 2-4, 2-5, 2-6, 2-7, 2-8, and 2-9.

Following classification, the extracted hyperspectral reflectance

corresponding to each group was used to generate the VI. The

results are listed in Table 2. In this investigation, 20 spectral indices

with the highest association with N were chosen from the available

literature for content analysis and model development. Refer to

Table 2 for the index results.

2.3.3 Extraction of spectral reflectance
The region of interest (ROI) was divided on the

corresponding position of the UAV image, and the average
Frontiers in Plant Science 04
spectral information of ROI was used as the spectral value of

this sampling point. There were two types of ROI. The first ROI

was for acquiring 900 (30 × 30) pixels around the sampling point,

which was 0.9 m × 0.9 m and covered an entire row of cotton.

Supplementary Figure 3 shows a schematic representation. The

second ROI was for obtaining the mean values of all spectra

within 900 pixels at each sampling point after identification of the

image pixels.
2.3.4 Spectral pre-processing
In order to minimize the influence of noise and soil on the

collected spectra, three pretreatments were applied to the original

spectrum (OS) reflectance. The OS was without pre-processing.

Gaussian filter (GF) is a linear smoothing filter used to remove

Gaussian noise in image processing. Application of a GF to UAV

spectral reflectance generates the appropriate VI for modeling.

Savitzky and Golay invented SG smoothing, also called

convolutional smoothing. The signal form and width are

preserved while the noise is removed. After SG smoothing of the

UAV spectral reflectance, the appropriate VI is produced for

modeling. Gaussian and SG (GF&SG) means that the Gaussian-

processed spectrum was further smoothed with SG.
2.3.5 Methods for predicting LNC
Based on the Pearson’s coefficient of correlation approach to

define the VI substantially correlated with the nitrogen content as

the independent variable of the model, partial least squares

regression (PLSR), MLR, principal component regression (PCR),

and support vector machine regression (SVMR) were used to

develop cotton nitrogen content estimation models. R2, the root

mean square error (RMSE), and the mean absolute error (MAE)

were used to evaluate the performance of the model (Yin

et al., 2022).
TABLE 1 Main parameters of the nano-imaging spectrometer.

Parameter Value

Name Nano-Hyperspec

Spectral band range (nm) 400–1,000

Spectral interval (nm) 270

Spectral resolution (nm) 6

Sampling interval (nm) 2.2

Space channel 640

Aircraft quality (kg) 0.6
B CA

FIGURE 2

(A) Red–green–blue (RGB) map of cotton in the experiment area. (B) True color map after removing the soil visible to the naked eye, with white
displaying the soil and the background and green representing the cotton. (C) Enlargement of the cotton in (B).
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3 Results

3.1 De-interference effect of
spectral pretreatment

In this paper, reflectance was obtained from the UAV

hyperspectral images and pre-processed using GF, SG, and

GF&SG. After pre-processing of the spectra, the indices were

calculated and compared (Figure 5). The results revealed that all

20 VIs demonstrated significant correlations with the cotton LNC.

The correlation coefficients between the pretreated spectral indices

calculated using GF, SG, and GF&SG and the LNC of cotton were

successively increased. There were seven indices with correlation
Frontiers in Plant Science 05
coefficients above 0.4 between the OS and the cotton LNC: the

green–red vegetation index (GRVI), the resistant vegetation index

(RVI), the modified anthocyanin content index (MACI), the NDVI

(780, 550) (810, 660), the green normalized difference vegetation

index (GNDVI), and the modified red edge normalized difference

vegetation index (mND705), with correlation coefficients of −0.44**,

−0.43**, −0.41**, −0.41**, −0.44**, and −0.43**, respectively. The

correlation coefficients of these seven indices with the cotton LNC

were improved by 0.02, 0.03, 0.02, 0.02, 0.02, 0.02, and 0.03,

respectively, after GF pretreatment. After pretreatment with SG,

these indices were improved by 0.04, 0.08, 0.04, 0.04, 0.04, 0.04, and

0.07, respectively. After pretreatment with GF&SG, the correlation

coefficients improved by 0.05, 0.09, 0.04, 0.04, 0.04, 0.05, and 0.08,
FIGURE 4

Classification flowchart.
FIGURE 3

Non-shaded leaf and shaded leaf.
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respectively. Therefore, pretreatment with GF&SG significantly

improved the association between VI and cotton LNC.

This study analyzed the changes in sample errors following

pretreatment of 108 samples (Figure 6). A number of spectrum

samples had higher standard errors, including GRVI, RVI, MACI,

the Gitelson and Merzlyak index (GMI), and the Meris terrestrial

chlorophyll index (MTCI), which reached roughly 0.02, whereas the

other indices had less change before and after pretreatment. These

five indices with substantial standard error variations are

susceptible to environmental conditions such as soil, while the

others are not. After several pretreatments, the standard errors were

dramatically reduced, indicating that pretreatment can eliminate

the effect of soil on the index.

Table 3 displays the results of the significance tests of the

derived indices for the OS and after three pretreatments. After

pretreatment, the VIs were significantly different from the OS. No

substantial difference exists between the indices for GF and SG,

indicating that they have similar functions. The indices computed

after GF&SG were significantly different from those calculated with

the single treatment, indicating that the overlap of the GF&SG can
Frontiers in Plant Science 06
significantly increase the single pretreatment effect in reducing the

interference of soil.
3.2 Pixel classification

The results of the classification of the image pixels into cotton

and others are displayed in Table 4. Cotton comprised a total of

1,273,202 image pixels, or 65.74% of the total image pixels.

Consequently, this study focused on green light and separated it

into 10 classes proportional to its intensity. The spectral reflectance

corresponding to each class was then determined and labeled as 1-0,

1-1, 1-2, 1-3, 1-4, 1-5, 1-6, 1-7, 1-8, and 1-9 (Figure 7). Viewed in

conjunction with the classification results in Figure 7, among them,

the result for 1-0 was the same as that for 1-1 and, considering the

layout, was not included in the figure. It was apparent that 1-4, 1-5,

and 1-6 were all at the edge position of the cotton and soil and that

the soil can be effectively reduced. Moreover, 1-1, 1-7, 1-8, and 1-9

indicate that the image pixels accounted for very little information

and that almost none was expressed.
TABLE 2 Vegetation indices used in this study.

No. Spectral index Calculation formula Reference

1 Zarco-Tejada–Miller index ZMI = R750/R710 Zarco-Tejada et al. (2001)

2 Vogelmann red edge index 1 VOG1 = R740/R720 Vogelmann et al. (1993)

3 Green–red vegetation index GRVI = R800/R550 Gitelson et al. (2005)

4 Resistant vegetation index RVI = R800/R700 Merzlyaket al. (2003)

5 Red/green ratio R/G = RRed/Rgreen Sims and Gamon, (2002)

6 Modified anthocyanin content index MACI = RNIR/Rgreen Gitelson et al. (2010)

7 Red edge chlorophyll index RECI = (R750/R550) − 1
Gitelson et al. (2010)

8 Gitelson and Merzlyak index GMI = (R750/R720) − 1

9 Green normalized difference vegetation index GNDVI = (R780 − 550)/(R780 + R550) Leprieur et al. (2000)

10 Normalized difference vegetation index NDVI = (R810 − R560)/(R810 + R560) Aparicio et al. (2000)

11 Infrared percentage vegetation index IPVI = R800/(R800 + R670) Crippen (1990)

12 Meris terrestrial chlorophyll index MTCI = (R754 − R709)/(R709 − R681) Dash and Curran, (2007)

13 Structure insensitive pigment index SIPI = (R800 − R450)/(R800 + R450) Penuelas et al. (1995)

14 Modified simple ratio 705 mSR705 = (R750 − R445)/(R705 + R445) Sims and Gamon, 2002

15 Normalized difference vegetation index 801 NDVI801 = (R801 − R550)/(R801 + R550) Gitelson et al. (2005)

16 Red edge normalized difference vegetation index RENDVI = (R750 − R705)/(R750 + R705) Gitelson and Merzlyak, (1994)

17
Modified red edge normalized difference
vegetation index

mND705 = (R750 − R705)/(R750 + R705 − 2R445) Sims and Gamon, (2002)

18 Normalized phaeophytinization index NPQI = (R415 − R435)/(R415 + R435) Barnes et al. (2000)

19
Hyperspectral normalized difference
vegetation index

HNDVI=(R827 − R668)/(R827 + R668) Oppelt and Mauser, (2004)

20 Soil-adjusted vegetation index SAVI = 1.5(R800 − R670)/(R800 − R670 + 0.5) Rondeaux et al. (1996)
R415, R435, R445, R450, R550, R668, R670, R681, R700, R705, R709, R710, R720, R740, R754, R780, R800, R810, R801, and R827, represent the spectral reflectance values of the cotton canopy at wavelengths of
415, 435, 445, 450, 550, 668, 670, 681, 700, 705, 709, 710, 720, 740, 75, 754, 780, 800, 810, 801, and 827 nm, respectively. RRed, Rgreen, and RNIR are the red, green, and near-infrared reflectance
values, respectively.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1380306
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yin et al. 10.3389/fpls.2024.1380306
As a result, after classification, the spectral indices of 1-4, 1-5,

and 1-6 were obtained for this investigation. The results revealed

that the index values corresponding to each class after classification

differed significantly. The correlation coefficients were calculated

for each category of VIs. Figure 8 shows that the indices were highly

correlated with each other. In general, the normalized

phaeophytinization index (NPQI) of 1-4 and 1-6 had low

correlation coefficients with the other indices. None of them

exceeded 0.4, while the maximum correlation coefficient between

the NPQI of 1-5 and the other indices was close to 0.6. This is
Frontiers in Plant Science 07
because NPQI is a normalized index with two bands, 415 and 435

nm, while all other indices had reflectance in the near-infrared

region (NIR) [at around 780 nm, except for the red/green ratio (R/

G)]. The correlation coefficients among the other indices were

consequently high. The correlation coefficients of R/G determined

in 1-5 and 1-6 were similarly relatively negative with the other

indices, as R/G is a ratio index derived from the reflectance of the

red and green bands and therefore had a negative correlation with

the other indices. Overall, the correlation coefficients between

indices 1-4, 1-5, and 1-6 were high, but those among the
FIGURE 5

Correlation coefficients between the leaf nitrogen content (LNC) and the vegetation index (VI) with pretreatments.
FIGURE 6

Standard errors of the vegetation indices with pretreatments.
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individual indices were low. For instance, the correlation

coefficients between the Zarco-Tejada–Miller index (ZMI) and

Vogelmann red edge index 1 (VOG1) for 1-6 did not reach 0.4

with R/G, MACI, the red edge chlorophyll index (RECI), GNDVI,

infrared percentage vegetation index (IPVI), structure insensitive

pigment index (SIPI), NPQI, the hyperspectral normalized

difference vegetation index (HNDVI), and the soil-adjusted

vegetation index (SAVI), although the correlation coefficients of

1-4 and 1-5 all increased. This shows that the picture pixel

classification method had a significant impact on the index.

The coefficients of correlation were computed between the VI

and the cotton LNC (Figure 9). The results indicated that the ZMI,

VOG1, RVI, GMI, MTCI, the modified simple ratio 705 (mSR705),

the red edge normalized difference vegetation index (RENDVI), and

the modified red edge normalized difference vegetation index

(mND705) of 1-4, ZMI, GMI, MTCI, RENDVI, mND705, NPQI,

HNDVI exhibited a significant relationship with the cotton LNC,

whereas the GRVI, R/G, MACI, RECI, GNDVI, NDVI, IPVI, SIPI,

and SAVI were not substantially correlated with the cotton nitrogen

content. Therefore, 1-6 was excluded from this study, and 1-4 was

paired with 1-5 (C4&5) for reclassification.
3.3 Quadratic classification of images

Observation of the second classification results (Figure 10)

revealed that the result for 2-0 was the same as that for 2-1 and,
Frontiers in Plant Science 08
considering the layout, was therefore not included in the figure. It

was also found that 2-3 (category 4), 2-4 (category 5), and 2-5

(category 6) might have been more representative of cotton.

The correlation coefficients among the indices dropped since

the initial categorization, as seen in Figure 11. Overall, the

correlation coefficients between index 18 and index 5 and the

other indices were modest and did not surpass 0.4, in general, for

the same reason as that of the first categorization results. The other

indicators showed strong relationships with each other, with the

majority of the values being greater than 0.4. The correlation

coefficients among a few particular individual indices were also

lower; for instance, the correlation coefficients between MACI or

RECI and mND705 did not exceed 0.6, and the correlation

coefficients among the individual indices of 2-6 were lower than

those of the other two categories. Table 5 displays the results of the

significance tests conducted on the indices. It can be inferred that

the indices calculated by the three classes showed substantial

discrepancies; however, VOGI, SIPI, NPQI, and HNDVI did not,

indicating that these indices were more stable and less susceptible to

external influences. The rest of the indices exhibited substantial

variance, indicating that they were less stable than the four

aforementioned indices.

The calculated correlation coefficients between the VIs and

cotton LNC are shown in Figure 12. The results indicated that

VOGI, GRVI, RVI, MACI, RECI, GNDVI, NDVI, IPVI, mSR705,

RENDVI, mND705, HNDVI, and SAVI were significantly

correlated with LNC (r > 0.2). There was a substantial link

between LNC and the ZMI, GRVI, RVI, MACI, GNDVI, NDVI,

IPVI, MTCI, SIPI, RENDVI, mND705, HNDVI, and SAVI of 2-5

and the ZMI, GRVI, RVI, MACI, GNDVI, NDVI, IPVI, MTCI,

SIPI, mSR705, and RENDV of 2-6. In contrast, R/G, GMI, and

NPQI had no significant relationship with LNC. Nonetheless, the

initial categorization findings revealed that R/G, GMI, and NPQI

had a substantial relationship with LNC. All 20 VIs demonstrated

a significant association with the cotton LNC in various picture

pixel conditions. In general, the correlation coefficients between
TABLE 3 Significance test of the vegetation indices before and after pretreatment.

Spectral index OS GF SG GF-SG
Spectral
index

OS GF SG GF-SG

ZMI 0.10 b 3.05 a 3.05 a 3.05 a IPVI 0.51 c 0.89 b 0.89 b 1.23 a

VOG1 1.01 c 1.71 b 1.71 b 2.84 a MTCI 0.21 c 3.85 a 3.82 a 1.24 b

GRVI 7.36 a 5.23 b 5.22 b 2.61 c SIPI 0.65 c 0.75 b 0.75 b 1.16 a

RVI 0.10 c 5.10 a 5.09 a 2.43 b mSR705 0.68 c 1.94 a 1.94 a 1.09 b

R/G 5.92 a 0.71 c 0.71 c 2.06 b NDVI801 0.76 b 0.68 c 0.68 c 1.07 a

MACI 7.39 a 5.17 b 5.16 b 1.94 c RENDVI 0.00 c 0.77 b 0.77 b 1.04 a

RECI 6.44 a 3.66 b 3.66 b 1.64 c mND705 0.00 c 0.58 b 0.58 b 1.06 a

GMI 0.00 c 0.92 b 0.92 b 1.56 a NPQI 0.12 c 0.07 b 0.07 b 1.02 a

GNDVI 0.76 b 0.67 c 0.67 c 1.41 a HNDVI 0.00 c 0.78 b 0.78 b 1.04 a

NDVI 0.68 c 0.68 c 0.76 b 1.35 a SAVI 0.12 c 0.76 b 0.76 b 1.04 a
Different lowercase letters in the same column indicate significant differences in the vegetation index before and after pretreatment (p < 0.05). See Table 2 for the definitions of the
different indices.
OS, original spectra; GF, Gaussian filter; SG, Savitzky–Golay smoothing; GE-SG, Gaussian filtering + Savitzky–Golay smoothing.
TABLE 4 Statistics on image pixel information.

Total no.
of pixels

Proportion (%)

Total no. of pixels 1,936,498 100

Total cotton image pixels 1,273,202 65.75

Total pixels of the other images 663,296 34.25
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the indices and N in classifications 2 through 4 were higher than

those in the other two categories. Spectral pre-processing greatly

enhanced the correlation coefficients between the indices and

LNC. The correlation between the OS and LNC was poor, but

the correlation coefficient improved greatly after Gaussian

filtering + SG smoothing, with GF&SG > SG > GF > OS offering

the superior effect. GF&SG, SG, and GF all calculated indices with

a superior link to LNC.

In conclusion, it can be seen that soil (1-2, 1-3, 1-7, 2-1, and 2-2)

and shading (1-6) were effectively eliminated following the initial

classification. After classifying the image pixels twice, the influence

of soil on nitrogen monitoring was effectively minimized, and the

link between the VIs and the cotton LNC was greatly improved.

The correlation coefficients of the indices with each other were

greatly reduced after two classifications; however, the correlation

coefficients of the indices with LNC were significantly increased.

Consequently, this study will be an additional attempt to analyze

the LNC based on a triple result of 2-3, 2-4, and 2-5 and with
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Pearson’s correlation coefficient to filter the sensitivity

indices (Table 6).
3.4 Cotton nitrogen monitoring with
machine learning

Based on the VIs shown in Section 3.2, we used several machine

learning methods to build a cotton nitrogen monitoring model.

Because the same indices corresponding to 2-3, 2-4, and 2-5 had

substantial differences, the indices in the three classifications were

mixed at random to generate LNC models (Figure 13).

It was determined that the accuracy of the model could be

improved, particularly for the combination of VIs among the three

categories, indicating that classed image pixels have a better

performance in forecasting the LNC (Figure 14). This suggests

that the categorized picture pixels are more capable of predicting N.

It also demonstrates that the categorization presented in this
FIGURE 7

Classification results.
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research is an efficient method for N monitoring. Multiple linear

regression showed the best prediction accuracy, followed by SVM.
4 Discussion and conclusion

4.1 Discussion

Currently, remote sensing images are popular for target

detection in agriculture, but there are numerous challenges.
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Moharana and Dutta (2022) noted that one of the challenges of

crop nutrient monitoring is the complexity of the farm

environment, which interferes with spectral information due to

the soil, leaf angle, and leaf shadow, among others. Sophisticated

scenarios have been the focus of anti-interference research. The

spectrometer consists mainly of an optoelectronic conversion,

transmission, and processing system. Each module within the

system produces noise at different levels, and the spectrum

information of the true object is influenced by noises that are

inevitable; hence, it is extremely essential to pre-process the
FIGURE 8

Correlation analysis of the vegetation indices. SG, Savitzky–Golay smoothing.
B CA

FIGURE 9

Relationship between the vegetation index (VI) and the leaf nitrogen content (LNC). (A) 1-4. (B) 1-5. (C) 1-6.
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FIGURE 10

Reclassification results. For the classification outcomes for C4&5, the results are 2-3, 2-4, and 2-5. The correlation coefficients were calculated for
each category of vegetation indices.
FIGURE 11

Correlation analysis on the vegetation indices classified as secondary. SG, Savitzky–Golay smoothing.
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spectrum (Jin et al., 2016). Wang et al. (2018) showed that the

relationship between the UAV vegetation index and the soil water

content could be improved after spectral pretreatment. In this

study, after the spectra were pre-processed using Gaussian

filtering, SG smoothing, and GF&SG, the correlations between the

calculated spectral indices and the LNC increased gradually. Sun

et al. (2017) performed pretreatment of the spectra for wheat flour

gluten detection, and it was concluded that the model established

after SG better matches the requirements of production detection

than the OS. This is in agreement with the results of this study.

When collecting spectral data for the monitoring of farmland

information, spectral influence factors should be considered and

the spectrum pre-processed purposefully.
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Selected combinations of wavelength bands can be used to

distinguish the plants from the soil background (Franz et al.,

1991). In this study, GRVI, RVI, MACI, GMI, and MTCI were

more susceptible than others to the disturbances of the surrounding

environment, which may be due to the fact that these indices have

common features that are made up of red edges, which is one of the

distinctive characteristics of plants, whereas the four indices, VOG1,

SIPI, NPQI, and HNDVI, were relatively stable than the others.

Caturegli et al. (2015) pointed out that the size of the NDVI values

are easily influenced by the surrounding environment. In this study,

only 20 VIs proposed by previous authors were selected. The index

found to be easily influenced by the surrounding environment was

the ratio index. The normalized VIs had a more stable effect. There
TABLE 5 Significance test of the vegetation indices after the second classification.

Spectral index 2-3 2-4 2-5
Spectral
index

2-3 2-4 2-5

ZMI 2.99 b 3.07 a 2.99 b IPVI 0.88 a 0.88 a 0.84 b

VOG1 1.69 a 1.70 a 1.68 a MTCI 3.72 ab 3.85 a 3.65 b

GRVI 4.96 a 4.94 ab 4.82 b SIPI 0.75 a 0.75 a 0.75 a

RVI 4.99 b 5.13 a 5.04 ab mSR705 1.89 b 1.94 a 1.93 ab

R/G 0.69 a 0.68 a 0.66 b GNDVI 0.66 a 0.66 ab 0.65 b

MACI 4.89 a 4.83 ab 4.73 b RENDVI 0.56 b 0.58 a 0.56 b

RECI 3.44 a 3.40 ab 3.31 b mND705 0.77 a 0.77 a 0.76 b

GMI 0.89 ab 0.93 a 0.88 b NPQI 0.07 a 0.07 a 0.07 a

GNDVI 0.66 a 0.66 ab 0.65 b HNDVI 0.77 a 0.77 a 0.77 a

NDVI 0.66 a 0.66 ab 0.65 b SAVI 0.74 b 0.76 a 0.76 a
Different lowercase letters in the same column indicate significant differences in the vegetation index before and after pretreatment (p < 0.05). See Table 2 for the definitions of the
different indices.
FIGURE 12

Correlations between the vegetation indices (VIs) and the leaf nitrogen content (LNC).
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are various VIs that are prone to saturation, and their role in crop

responsiveness to disturbance is unclear. Therefore, the use of more

vegetation indices with clearer functions can be attempted at a later

time. An index that can significantly distinguish shading and

vegetation is important for agricultural information monitoring.

In addition to VIs, disturbance rejection has been studied by other

researchers. For instance, Woebbecke et al. (1995) used reflectance

and field-of-view analysis to create a straightforward optical plant

sensor that can distinguish plants from their surroundings,

including soil and plant garbage. It is suggested that an RGB

master system-based color scheme is used to distinguish plants

from their natural environment.

There are currently many studies related to shadow detection.

The shadow regions in a hyperspectral image have extremely low

values. Therefore, these regions are either directly deleted or

ignored in target detection or classification (Liu et al., 2020).
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Consequently, there are some studies focused on improving the

reflectivity of the shadow regions; however, it remains difficult to

determine the actual substances contained in these shadow regions.

M-Desa et al. (2022) proposed that shadow recognition in digital

images is an essential step in pre-processing for computer vision as

the shadows in images can hide the features of the target objects in

detail. However, there are only a few studies on crop shadow

detection. Therefore, it is necessary to focus on the impact of

shadows on the monitoring of farmland information in future

studies. For example, Imai et al. (2019) used a UAV to obtain

hyperspectral images of orange plantations in multiple wavelengths.

Wavelength information near blue light and long-wave NIR has

been proposed to be able to identify farmland and shadows well. Li

et al. (2022) divided the apple canopy into shade and canopy using

the threshold method. However, the canopy shading of orange and

apple is not as complex as that of agricultural field shading. Hence,
TABLE 6 Sensitivity indices.

ID no. Total Sensitive Vegetation Index

2-3 14 VOG1, GRVI, RVI, MACI, RECI, GNDVI, NDVI, IPVI, mSR705, GNDVI, RENDVI, mND705, HNDVI, SAVI

2-4 15
ZMI, GRVI, RVI, MACI, RECI, GNDVI, NDVI, IPVI, MTCI, SIPI, GNDVI, RENDVI, mND705,

HNDVI, SAVI

2-5 12 ZMI, GRVI, RVI, MACI, GNDVI, IPVI, MTCI, SIPI, mSR705, GNDVI, RENDVI, HNDVI
See Table 2 for the definitions of the different indices.
FIGURE 13

Results of cotton nitrogen monitoring.
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efficient distinction between the agricultural shadow and the plant

cover will be one of the issues that should be resolved in agricultural

research. In this study, the image pixels were classified into shadows

based on the greenness of plant growth, while the soil and a number

of useless shadows were removed. Cotton is a dynamic crop, which

makes shading more complex; therefore, the canopy spectra of

cotton are easily impacted by shadow. This study provides a method

for classifying image pixels based on the intensity of green light. On

the one hand, this is due to the fact that chlorophyll has a significant

association with nitrogen (Barker and Sawyer, 2010; Schmidt et al.,

2011). Traditional nitrogen monitoring involves assessment of the

quantity of nitrogen fertilizer based on the leaf color, mostly due to

the intensity of the leaf color being correlated with nitrogen (Bacsa

et al., 2019). Chlorophyll is directly proportional to the intensity of

the leaf color in plants. On the other hand, green light, the greatest

distinguishing element of green plants, can be used to clearly

differentiate vegetation from other backdrops. In this study, the

vegetation image pixels were classified using the green light, and the

image pixels were classified twice based on the level of vegetation

greenness. The correlations among the VIs were obviously

decreased after the second classification, while the correlations

between the indices and nitrogen were improved. This indicates

that the spectral reflectance and vegetation indices of the image

pixels each have great differences and that the classification can

effectively eliminate the interference of soil and shadow. In the
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1980s, Guyer et al. discovered that the intensity of the pixels in the

plant images was higher than that of the soil pixels by shining visible

light on the plants. This indicates that grading the intensity of green

light is significantly effective for soil and shadow rejection. The

classification should be further improved in the future, so that

shadows can be distinguished more clearly.

In this study, several monitoringmodels were developed based on

the classification results using common methods. It was found that

the results showed good performance. Among them, MLR and

random forest regression had the most positive results. Manfreda et

al. (2018) proposed that the random forest algorithm combined with

VIs has superior performance in predicting the canopy nitrogen in

citrus. Moreover, since the indices of each classification reached a

significant relationship with nitrogen after two classifications, in this

study, the indices of three classifications were combined for

modeling. The contributions of each classification to nitrogen

should be considered, and weights should be assigned to each of

the indices in a future study, which might reach better results.
4.2 Conclusion

In this study, we employed a UAV hyperspectrum to acquire

hyperspectral images, classified the image pixels twice to green light,

and then excluded the unrelated image pixels to capture the relevant
FIGURE 14

Monitoring of the leaf nitrogen content (LNC) of cotton after classification and combination.
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image pixels. Vegetation indicators were retrieved using multiple

pretreatment methods to construct an LNC monitoring model. The

results demonstrated that the classification proposed in this study

can successfully eliminate the mixing spectra from the shadows of

cotton leaves and soil, as well as improve the relationship between

LNC and VI. In addition, GF&SG served as a de-interference

mechanism for the UAV spectra. The LNC of cotton could be

well known when combined with various machine learning

techniques. Consequently, while monitoring nitrogen using UAV

hyperspectral images, it is crucial to consider extracting the

pertinent properties of the imaging spectra, such that the

spectrum captured is more indicative of the cotton leaf spectrum

reflection and nitrogen monitoring accuracy.
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