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Enhancing grain yield is a primary goal in the cultivation of major staple crops,

including wheat. Recent research has focused on identifying the physiological and

molecular factors that influence grain weight, a critical determinant of crop yield.

However, a bottleneck has arisen due to the trade-off between grain weight and

grain number, whose underlying causes remain elusive. In a novel approach, a wheat

expansin gene, TaExpA6, known for its expression in root tissues, was engineered to

express in the grains of the spring wheat cultivar Fielder. This modification led to

increases in both grain weight and yield without adversely affecting grain number.

Conversely, a triple mutant line targeting the gene TaGW2, a known negative

regulator of grain weight, resulted in increased grain weight but decreased grain

number, potentially offsetting yield gains. This study aimed to evaluate the two

aforementioned modified wheat genotypes (TaExpA6 and TaGW2) alongside their

respective wild-type counterparts. Conducted in southern Chile, the study

employed a Complete Randomized Block Design with four replications, under

well-managed field conditions. The primary metrics assessed were grain yield,

grain number, and average grain weight per spike, along with detailed

measurements of grain weight and dimensions across the spike, ovary weight at

pollination (Waddington’s scale 10), and post-anthesis expression levels of TaExpA6

and TaGW2. Results indicated that both the TaExpA6 and the triple mutant lines

achieved significantly higher average grainweights compared to their respectivewild

types. Notably, the TaExpA6 line did not exhibit a reduction in grain number, thereby

enhancing grain yield per spike. By contrast, the triple mutant line showed a reduced

grain number per spike, with no significant change in overall yield. TaExpA6

expression peaked at 10 days after anthesis (DAA), and its effect on grain weight

over the WT became apparent after 15 DAA. In contrast, TaGW2 gene disruption in

the triple mutant line increased ovary size at anthesis, leading to improved grain

weight above the WT from the onset of grain filling. These findings suggest that the

trade-off between grain weight and number could be attributed to the overlapping

of the critical periods for the determination of these traits.
KEYWORDS
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1 Introduction

Advancements in the understanding of physiological and

molecular control of grain weight and size in wheat and other

staple food crops have been significant over the past decade

(Brinton and Uauy, 2019; Slafer et al., 2023). This progress has

been driven by rapid molecular developments, leading to the

identification of key genes, and Quantitative Trait Loci (QTL)

linked to grain weight and size in various crops (barley: Yang

et al., 2023; rapeseed: Canales et al., 2021; rice: Zuo and Li, 2014;

sorghum: Tao et al., 2021; sunflower: Castillo et al., 2018; wheat:

Simmonds et al., 2014; Kumar et al., 2016; Simmonds et al., 2016;

Adamski et al., 2021; Khan et al., 2022; Tillett et al., 2022; Mira et al.,

2023). These studies assume that grain weight, which is a key yield

component, could lead to the yield increase required to meet the

challenge of food security. However, the relationship between

increased grain weight and overall yield improvement is complex

due to the reported trade-off between grain weight and grain

number in wheat and other crops. In wheat, grain weight

improvement has been addressed through various strategies, from

classical breeding focusing on increasing grain weight through

recurrent selection (Wiersma et al., 2001), to molecular breeding

techniques such as mutating the wheat orthologue of rice Grain

Weight 2 gene (TaGW2), a known negative regulator of grain size

and weight (Song et al., 2007; Yang et al., 2012; Hong et al., 2014;

Wang et al., 2018; Zhang et al., 2018). Additional methods include

gene introgression, like TaGSNE (Khan et al., 2022), and

overexpression of genes such as TaBG1 and TaCYP78A5 (Milner

et al., 2021; Guo et al., 2022). Although most of these attempts

successfully increased grain weight of wheat, they failed to improve

grain yield due to the trade-off between grain weight and number

(Wiersma et al., 2001; Okamoto and Takumi, 2013; Brinton et al.,

2017; Milner et al., 2021; Mora-Ramirez et al., 2021).

The causes of the trade-off between grain weight and number

are not fully understood, despite extensive research (Wiersma et al.,

2001; Sadras, 2007; Dwivedi et al., 2021; Fischer, 2022; Slafer et al.,

2023). Initial hypotheses and few subsequent studies suggested that

growing grains of wheat are limited by the source of assimilates

during grain filling (Sinclair and Jamieson, 2006; Golan et al., 2019;

Rosati and Benincasa, 2023). However, most of the research has

demonstrated that wheat grains are not, or scarcely, limited by

assimilate supply during post-anthesis (Slafer and Savin, 1994;

Borrás et al., 2004; Fischer, 2008; Serrago et al., 2013; Slafer et al.,

2021; Murchie et al., 2023), except under extreme source restriction

in high-yielding environments (Beed et al., 2007; Sandaña et al.,

2009; Alonso et al., 2018). An alternative explanation involves the

increased proportion of smaller distal grains when grain number is

increased through breeding or crop management, since distal grains

are intrinsically smaller than proximal ones (Acreche and Slafer,

2006; Ferrante et al., 2015, 2017). However, this does not account

for situations where grain weight improvements lead to an actual

trade-off with grain number (e.g., Wiersma et al., 2001; Brinton

et al., 2017; Wang et al., 2018). Notably, interventions that

successfully increased grain weight in both proximal and distal

grain positions within the spike often resulted in a reduced grain

number per spike and area (Wiersma et al., 2001; Okamoto and
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Takumi, 2013; Brinton et al., 2017; Quintero et al., 2018; Wang

et al., 2018; Zhai et al., 2018; Adamski et al., 2021; Milner et al.,

2021), confirming a genuine trade-off between yield components.

Furthermore, recent genomic studies indicate that many regions

associated with grain number and grain weight coincide and have

inverse phenotypic effects, suggesting a strong genetic basis for this

trade-off (Xie and Sparkes, 2021).

Trade-offs between grain number subcomponents have been

documented in wheat. For instance, a higher plant number

correlates with a lower number of spikes per plant (Slafer et al.,

2021). It is generally accepted these trade-offs are due to the

feedback between grain number components, whose settings

overlap during the crop cycle (Slafer et al., 2021). For a long time,

this explanation left aside the trade-off between grain weight and

grain number, as these yield components were thought to have

minimal overlap. From this perspective, the critical period for grain

number determination accounts for 20 days before and 10 days after

anthesis (DAA) (Fischer, 1985; Savin and Slafer, 1991; Abbate et al.,

1997), whereas grain weight determination occurs during the grain

filling period. However, several evidence now suggest that potential

grain weight is established between booting and early grain filling in

wheat (Calderini et al., 1999; Calderini and Reynolds, 2000; Ugarte

et al., 2007; Hasan et al., 2011; Simmonds et al., 2016; Parent et al.,

2017). This process is strongly influenced by maternal tissues, which

impose a physical upper limit on grain weight in wheat (Millet and

Pinthus, 1980; Calderini and Reynolds, 2000; Xie et al., 2015; Yu

et al., 2015; Brinton et al., 2017; Reale et al., 2017; Brinton and Uauy,

2019; Calderini et al., 2021), a phenomenon also observed under

increased temperature conditions (Calderini et al., 1999; Ugarte

et al., 2007; Kino et al., 2020). The relevance of maternal tissues in

determining grain size is also evident in other grain crops, for

instance barley (Scott et al., 1983; Ugarte et al., 2007; Radchuk et al.,

2011), sorghum (Yang et al., 2009) and sunflower (Lindström et al.,

2006, 2007; Rondanini et al., 2009; Castillo et al., 2017).

Additionally, the relationship between fruit size and flower ovary

size has been reported in berries and fruit trees (Kiwifruit: Lai et al.,

1990; Cruz-Castillo, 1992; olive: Rosati et al., 2009; peach: Scorzal

et al., 1991; strawberry: Handley and Dill, 2003).

In wheat, various molecular strategies have been explored to

increase grain weight. However, only a few have been successful in

improving this trait (e.g. Hong et al., 2014; Simmonds et al., 2016;

Brinton et al., 2017; Wang et al., 2018; Adamski et al., 2021;

Jablonski et al., 2021; Milner et al., 2021; Mora-Ramirez et al.,

2021), and even fewer have managed to increase grain weight

without a trade-off with grain number (Calderini et al., 2021; Guo

et al., 2022). Remarkably, one such improvement was achieved

under field conditions at farmer’s plant density rate, where grain

weight increased by 12.3% and grain yield by 11.3%, without

affecting grain number (Calderini et al., 2021). Against this

background, the present study aims to deepen the understanding

of the trade-off between grain weight and grain number in wheat by

evaluating lines with and without this trade-off. For this assessment,

wheat lines previously tested under agronomic conditions were

selected. We included the triple mutant line for the TaGW2 gene

(Wang et al., 2018), which releases grain growth by breaking the

negative control of TaGW2 over grain weight but demonstrates a
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trade-off with grain number. This gene codes for a RING-type E3

ligase, which mediates proteolysis through the ubiquitin-

proteasome pathway (Song et al., 2007). In contrast, the selected

genotype without a trade-off is a line with ectopic expression of the

a-expansin gene TaExpA6, which is naturally expressed in wheat

roots but was cloned with a promoter for expression in growing

grains (Calderini et al., 2021). Expansins are small proteins crucial

for plant cell growth, facilitating cell wall stress relaxation induced

by turgor pressure (McQueen-Mason et al., 1992; Cosgrove, 2021;

2023). The expression of different expansins during wheat grain

growth has been documented in wheat (Lin et al., 2005; Lizana et al.,

2010; Kino et al., 2020; Xie and Sparkes, 2021; Mira et al., 2023).

Both the triple mutant and transgenic lines were evaluated

alongside their respective wild types (WT).

The ectopic expression of TaExpA6 and its protein in growing

grains of wheat was evident from 10 DAA on (Calderini et al.,

2021). This led the authors to propose that the trade-off between

grain weight and grain number is potentially associated with the

overlapping of the critical window for these two traits

determinations. Our study aims to elucidate this trade-off by

evaluating two genetically distinct wheat genotypes, known for

increased grain weight but differing in the trade-off between both

major yield components. These genotypes, along with their

respective wild types, were examined under field conditions. By

dissecting grain yield components, along with physiological and

molecular characteristics at the spike level, the study seeks to

minimize confounding variables and clarify the underlying

mechanisms of the observed trade-off.
2 Materials and methods

2.1 Field conditions and experimental setup

Two field experiments were conducted on a Typic Hapludand

soil at the Universidad Austral de Chile’s Experimental Station

(EEAA) in Valdivia (39°47’S, 73°14’W). The first experiment

spanned the 2021–2022 growing season (referred to as Exp. 1),

while the second was conducted in the 2022–2023 season (Exp. 2).

To fulfil the proposed objective, four spring wheat cultivars were

selected for both experiments: (i) TaExpA6, a transgenic line

expressing the expansin gene TaExpA6 ectopically in grains, as

described by Calderini et al. (2021); (ii) its segregant wild type cv.

Fielder; (iii) TaGW2, a triple knock-out mutant of TaGW2 gene

(referred to as “aabbdd” in Wang et al., 2018); and (iv) its segregant

wild type cv. Paragon. These genotypes were chosen due to their

contrasting effects on the trade-off between grain weight (GW) and

grain number (GN). Specifically, while line TaGW2 exhibits

reduced GN, line TaExpA6 improves GW without impacting GN.

The TaExpA6 line features overexpression of TaExpA6

(REFSEQ v.1.1: TraesCS4A02G034200) in the endosperm,

aleurone, and pericarp tissues of developing grains. This

overexpression is controlled by the wheat puroindoline-b (PinB)

gene promoter (REFSEQ v.1.1: TraesCS7B02G431200), as detailed

by Gautier et al. (1994) and Digeon et al. (1999). The TaExpA6 line

and its segregant WT were developed by Dr. Emma Wallington
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(Calderini et al., 2021). In contrast, the TaGW2 gene in line TaGW2

harbors mutations leading to a truncated, non-functional protein,

as reported by Simmonds et al. (2016) andWang et al. (2018). An in

depth description of the mutated alleles can be found in Wang et al.

(2018). These GW2 lines were generously provided by Prof.

Cristóbal Uauy from John Innes Center, UK.

Exp. 1 was sown on September 21, 2021. Due to phenological

differences observed between both groups of lines in Exp. 1, sowing

dates in Exp. 2 were modified. Thus, GW2 lines, with longer crop

cycles, were sown earlier on August 20, 2022, while the shorter-cycle

ExpA6 lines were sown later on September 2, 2022. Both

experiments followed a randomized complete block design with

four replications. Each plot measured 2 m in length and 1.2 m in

width, consisting of 9 rows with 0.15 m spacing, and was sown at a

density of 300 plants per square meter.

Optimal agronomic management was employed for all plots to

prevent biotic and abiotic stress. Fertilization at sowing included

150 kg N ha-1, 150 kg P2O5 ha
-1, and 100 kg K2O ha-1. An additional

150 kg N ha-1 was applied at tillering. To address potential

aluminum toxicity brought about by low soil pH, the

experimental site was treated with 4 Tn ha-1 of CaCO3 one

month prior to sowing. Pests and diseases were managed using

chemical treatments as per manufacturer recommendations. Drip

irrigation supplemented rainfall to avoid water stress throughout

the crop cycle.

Meteorological data, including air temperature and incident

photosynthetically active radiation (PAR), were recorded daily from

sowing until harvest at the Austral Meteorological Station of EEAA

(http://agromet.inia.cl/), located approximately 150 m from the

experimental plots. Photothermal quotient was calculated as the

ratio of mean daily incident radiation to mean temperature above

4.5°C, in line with Fischer (1985).
2.2 Crop sampling and measurements

Crop phenology was recorded twice weekly according to the

decimal code scale (Zadoks et al., 1974). At harvest, 45 spikes of

main stems were sampled along 1m from the central row of each

plot in both experiments. Grain yield per spike, grain number per

spike and average grain weight were measured or calculated as

previously (Bustos et al., 2013; Quintero et al., 2018). In addition, 10

more main shoot spikes of similar development and size were

sampled from each plot to quantify grain weight and dimensions

(length and width) at each grain position from every spikelet of the

spike. From each spike, half the spikelets (i.e. all the spikelets along

one longitudinal side of the spike) were measured, considering the

spike symmetry. Grains from positions G1 to G4 (G1 being the

closest grain to the rachis and G4 the most distal, if present) within

each spikelet were taken out, oven dried (48 h at 65°C) and weighted

separately using an electronic balance (Mettler Toledo, XP205DR,

Greifensee, Switzerland). The length and width of each grain was

recorded using a Marvin Seed Analyzer (Marvitech GmbH,

Wittenburg, Germany). Grain number per spike and per spikelet

were also recorded.
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In Exp. 2, the weight of ovaries from florets at positions G1 to

G4 was measured at pollination (stage 10 in Waddington et al.,

1983) by sampling 20 ovaries of each floret position from the four

central spikelets of five spikes per plot. In this experiment the time-

course of grain weight and dimensions were also measured. From

anthesis onwards, four main shoot spikes were sampled from each

experimental unit twice weekly until physiological maturity to

record grain fresh and dry weight and dimensions (i.e. length and

width) of six individual grains corresponding to a proximal (G2)

and a distal (G3) grain position of two central spikelets. The fresh

weight and the length and width of grains were recorded

immediately after sampling as described above. Dry weight of

grains was measured with the same electronic balance, after

drying the samples at 65°C in an oven for 48 h.

In both experiments, grain quality was assessed by measuring

grain protein concentration to determine the impact of GW

changes on this quality trait. Accordingly, grains from positions

G1 to G3 within the four central spikelets of the 10 main shoot

spikes samples were bulked at each experimental unit and then

milled using a Perten 120 laboratory mill (Huddinge, Sweden). The

quantification of total nitrogen was executed using the Kjeldahl

method. Protein content was then calculated by multiplying the

total nitrogen value by a factor of 5.7, in accordance with the

approach of Merrill and Watt (1973) as applied in Lizana and

Calderini (2013).
2.3 Time-course expression analyses by
reverse transcription quantitative PCR

To elucidate the relationship between grain growth dynamics

and gene expression, we conducted time-course expression analyses

of PinB::TaExpA6 in the ExpA6 lines and TaGW2 in the GW2 lines.

These analyses were performed using reverse transcription

quantitative PCR (RT-qPCR) on grains at positions G1 and G2.

Specifically, G1 and G2 grains from central spikelets on the main

stem spikes were collected from a minimum of eight spikes at 4, 7,

10, 14, and 21 days after anthesis (DAA) for each experimental plot.

Immediately following collection, samples were secured in

cryotubes, snap-frozen in liquid nitrogen, and subsequently

preserved at -80°C until further processing. Total RNA was

isolated using NucleoSpin™ columns (Macherey-Nagel),

employing a standardized protocol adapted from Sangha et al.

(2010). RNA samples were then subjected to DNaseI (Invitrogen)

treatment, and cDNA synthesis was performed using the ImProm-

II™ Reverse Transcription System with an input of 500 ng RNA

per reaction.

Quantitative PCR (qPCR) was carried out in a 25 mL reaction

volume using the Brilliant II SYBR Green PCR Master Mix

(Stratagene, Agilent technologies). Primer concentrations were set

at 0.2 mM. For TaExpA6, the primers TransgeneTaExpa6_F1 (5’-

ATCTCCACCACCACCAAAACA-3’) and TransgeneTaExpa6_R1

(5’-GAAGCAGAACGCGAGAACGG-3’) were used. In the case of

TaGW2, genome-specific primers for its homoeologues, as

described by Wang et al. (2018), were utilized. Controls without
Frontiers in Plant Science 04
template and transcriptase were included to check for genomic

DNA contamination.

The relative mRNA abundance of the target genes in grain

tissues was determined using the comparative CT (DDCT) method,

as proposed by Pfaffl (2001). The ubiquitin conjugating enzyme

(Traes_4AL_8CEA69D2E.1) served as the internal reference gene,

amp l ifi e d w i t h p r ime r s T r a e s _ 4AL_8CE_ e s F ( 5 ’ -

CGGGCCCGAAGAGAGTCT-3’) and Traes_4AL_8CE_esR (5’-

ATTAACGAAACCAATCGACGGA-3’). Data analysis for gene

expression quantification was conducted using LinRegPCR

software (Ruijter et al., 2009).
2.4 Statistical analysis

Analysis of variance (ANOVA) was applied to evaluate the

effect of genotype on main shoot grain yield and associated traits, by

using Statgraphics Centurion 18 software. Fisher’s least significant

difference test post hoc and/or Student´s t-test were employed to

identify each significant difference within the evaluated group of

lines. Additionally, a Two-way ANOVA analysis was performed to

assess significant differences in TaExpA6 gene expression between

line TaExpA6 and its respective WT, whereas one-way ANOVA

analysis was performed to assess significant differences in TaGW2

gene expression in the WT across sampling times using GraphPad

Prism 8 software. Linear regression analysis was performed to assess

the associations between measured grain traits. A tri-linear model

was fitted to estimate the rate and duration of the lag and linear

phases of grain filling, and final grain weight in the individual seed

weight dynamics.

Extra sum of squares F test was used for the comparison of the

slopes and timings between each modified line and its respective

WT. To model the dynamics of individual grain water content

during the grain filling period, a second order polynomial model

was employed. All model fittings were performed using GraphPad

Prism 8 software.
3 Results

3.1 Environmental conditions and crop
phenology across seasons

Environmental conditions from seedling emergence to

physiological maturity were consistent between experiments

(Table 1). Temperature variations between Exps. 1 and 2 were

minimal, with differences of less than 1°C observed during the

emergence-anthesis and grain filling periods. Incident PAR differed

between the experiments, being 2.3 MJ m-2 d-1 higher in Exp. 1 than

in Exp. 2 during the Emergence-Booting (Em-Bo) and grain filling

phases (10.4 vs. 8.1 MJ m-2 d-1 and 12.8 vs. 10.5 MJ m-2 d-1,

respectively). However, no significant difference in PAR was noted

during the Booting-Anthesis (Bo-An) period. Despite these

variations, the photothermal quotient (Q) remained constant at

2.5 MJ m-2 d-1°C-1 across the entire crop cycle in both seasons. A
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comparative analysis of the ExpA6 and GW2 genotype lines

revealed similar weather exposure in both experiments, except for

the Bo-An period in Exp. 1, where GW2 lines experienced a mean

temperature 2.2°C higher than ExpA6 lines, leading to a 17% lower

photothermal quotient for GW2 lines during this phase.

The length of the crop cycle averaged 123 days for ExpA6 lines

and 142 days for GW2 lines across experiments (Figure 1). In

experiments 1 and 2, GW2 lines reached physiological maturity 13

and 26 days later, respectively, than ExpA6 lines. This delay is

primarily attributed to the longer Emergence-Booting (Em-Bo)

period in GW2 lines, as they exhibited a slower development rate.

Post-booting, the differences in phenological stages, specifically

Booting-Anthesis (Bo-An) and Anthesis-Physiological Maturity

(An-PM), were negligible (i.e. less than 2 days) between the line

groups. Despite minor climatic differences, the crop cycle in Exp. 2

extended by 16 and 27 days for ExpA6 and GW2 lines, respectively,

compared to Exp. 1. This extension corresponds to an accumulated

difference of 84 and 180°Cd for each line group (Supplementary

Figure S1). The extended crop cycle in GW2 lines, particularly in

Exp. 2, is likely due to their heightened sensitivity to photoperiod

compared to ExpA6 lines (see photoperiods in Table 1).

3.2 Grain yield per spike, yield components
per spike and quality trait

Differences in grain yield per spike were observed between line

groups (P < 0.05), with GW2 lines exhibiting higher yields

compared to ExpA6 lines in both experimental seasons, averaging

2.39 g and 1.94 g, respectively (Table 2). Notably, the ectopic

expression of TaExpA6 gene resulted in a significant increase in

spike yield compared to the wild type (WT), showing increments of

14.0% and 8.2% in Exps. 1 and 2, respectively (P < 0.05). In contrast,

the triple mutant of TaGW2 and its WT displayed similar spike

yields in both experiments (P < 0.05) (Table 2).
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Regarding grain yield components, genotype significantly

influenced these traits, contingent on the line group (P < 0.05).

Average grain weight (TGW) was similar between both groups in

Exp. 1 (P > 0.05) but was marginally higher in the GW2 lines (6.6%

increase, P < 0.01) in Exp. 2, with weights of 51.2 g and 48.1 g for

GW2 and ExpA6 line groups, respectively (Table 2). Both TaExpA6

and TaGW2 lines surpassed the grain weight of their respective

WTs in both experiments (P < 0.001). Averaging across Exps. 1 and

2, TaExpA6 and TaGW2 lines exhibited increases in TGW of 8.6%

and 23.7% above their WTs, respectively (Table 2). Conversely,

contrasting results were found for the grain number per spike; the

TaExpA6 line maintained a similar number to its WT (P > 0.05),

whereas the TaGW2 line exhibited a reduction in grain number

compared to its WT in both experiments, with declines of 13.5%

and 9.1% in Exps. 1 and 2, respectively (Table 2; Supplementary

Figure S2). These findings align with previous reports indicating no

trade-off in the TaExpA6 overexpressed line and a detrimental effect

of the TaGW2 loss-of-function triple mutant on grain number.

In addition, we assessed a critical wheat quality trait, such as

grain protein concentration. For this analysis, grains from G1 to G3

positions of the four central spikelets were pooled from each

experimental unit. The results indicated no significant impact of

transgenesis or tilling on grain protein concentration (P > 0.05),

although an interaction (P < 0.05) between these factors was

observed (Table 2). Grains from plants with the TaExpA6 gene

exhibited similar protein concentrations to the WT, highlighting

the relevance of the TaExpA6 construct. Conversely, the TaGW2

triple mutant either increased (by 1.1 percentage points) or did not

affect grain protein concentration in Experiments 1 and 2,

respectively. Furthermore, no correlation (R2 = 0.05; P > 0.05)

was observed between grain protein concentration and grain yield

per spike across genotypes and experiments, suggesting that the

TaGW2 triple mutation improved this quality trait independently

from a dilution-concentration effect.
TABLE 1 Average mean temperature, incident photosynthetically active radiation (PAR), photothermal quotient (Q) and photoperiod during the
Emergence-Booting (Em-Bo), Booting-Anthesis (Bo-An) and Anthesis-Physiological Maturity (An-PM) periods in experiments 1 and 2.

Experiment Line*

Mean temperatures
(°C)

Incident PAR (MJ
m−2 d−1)

Q (MJ m−2 d−1°C-1)** Photoperiod
(h)

Em
- Bo

Bo
- An

An
- PM

Em
- Bo

Bo
- An

An
- PM

Em
- Bo

Bo
- An

An
- PM

Em - An

Exp.1
(2021–2022)

TaExpA6/
WTTaExpA6 12.3 14.2 17.2 10.3 12.3 12.8 2.9 2.6 2.1

14.6

TaGW2/
WTTaGW2

12.9 16.4 16.7 10.6 12.2 12.8 2.8 2.2 2.2 14.8

Exp. 2
(2022–2023)

TaExpA6/
WTTaExpA6 11.2 14.5 16.1 7.9 12.1 10.8 3.2 2.4 1.9

14.1

TaGW2/
WTTaGW2

11.3 15.4 16.3 8.2 13.2 10.3 3.1 2.5 1.8 14.1
*Since no phenological difference was recorded between modified lines and their respective WT, values were calculated for the mean duration of each phenological period for the ExpA6 and GW2
line groups. **Photothermal quotient was calculated as the ratio of mean daily incident radiation to mean temperature above 4.5°C.
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3.3 Individual grain weight and dimensions
along the spike

To have a deeper understanding of the impact of TaExpA6

overexpression and the TaGW2 triple mutation, we dissected the

spike evaluating grain weight, number and dimensions at each grain

position along the spike (usually referred to as spike map) in both

experiments. Our analysis revealed that across spikelets and grain

positions, TaExpA6 overexpression resulted in increases in grain

weight compared to its wild type (WT) in both experiments.

Specifically, grain weight enhancement in the TaExpA6 line was

observed as follows: in Exp.1, grains at positions G1, G2, G3, and G4

showed increases of 9%, 8%, 11%, and 25%, respectively, and in Exp.

2, increases of 9%, 6%, 10%, and 10% for G1, G2, G3, and G4,

respectively (see Figure 2). In comparison, the TaGW2 triple

mutant exhibited a more pronounced increase in grain weight

above the WT across all grain positions in both experiments: in

Exp. 1, increases of 19%, 21%, 30%, and 37% for G1, G2, G3, and

G4, respectively, and in Exp. 2, increases of 23%, 23%, 18%, and

19% for the same positions (Figure 2). On the other hand, when

averaging across experiments, the ExpA6 lines showed similar grain

number per spikelet across the spike (i.e. -1%), while the triple

mutation of TaGW2 gene caused a reduction of 11% in this trait in

regard to its WT (Supplementary Figure S2).

Subsequent analysis focused on the relationship between grain

dimensions and final grain weight. A strong association (P < 0.001)

was observed between grain weight and both grain length and

width, with determination coefficients ranging from 0.92 to 0.96

(Figure 3). This relationship was consistent within each genotype

group (Supplementary Figure S3).
FIGURE 1

Phenological phases of TaExpA6 and TaGW2 lines, and their
respective wild types (WT), from sowing to physiological maturity in
experiments 1 and 2. Bars show the duration of each phase in days:
from sowing to seedling emergence (So-Em), from seedling
emergence to booting (Em-Bo), from booting to anthesis (Bo-An)
and from anthesis to physiological maturity (An-PM).
TABLE 2 Grain yield per spike (GY Spike-1), grain number per spike (GN Spike-1), average grain weight (TGW) and protein concentration (%) of grains
recorded in TaExpA6 and TaGW2 lines and their WTs in the field experiments 1 and 2.

Experiment Genotype (G) Transgenesis or Tilling (T)

Main Stem Spike

GY Spike-1 (g) GN Spike-1 TGW (g) Protein (%)

Mean s.e.m Mean s.e.m Mean s.e.m Mean s.e.m

Exp. 1 ExpA6 lines TaExpA6 2.12 a 0.06 42.4 a 1.0 50.0 a 1.1 11.1 a 0.3

WTTaExpA6 1.86 b 0.03 40.4 a 0.3 46.0 b 1.0 10.9 a 0.5

GW2 lines TaGW2 2.33 a 0.10 43.6 b 1.6 53.4 a 1.0 11.5 a 0.3

WTTaGW2 2.18 a 0.10 50.4 a 1.5 43.3 b 0.8 10.4 b 0.2

ANOVA p-value (G) * ** ns ns

ANOVA p-value (T) * ns ** ns

ANOVA p-value (G*T) ns * ** ns

t-test p-value (TaExpA6) ** ns * ns

t-test p-value (TaGW2) ns * ** *

Exp. 2 ExpA6 lines TaExpA6 1.97 a 0.03 39.4 a 0.4 50.0 a 0.5 10.6 a 0.1

WTTaExpA6 1.82 b 0.04 39.6 a 0.7 46.1 b 0.4 11.2 a 0.3

GW2 lines TaGW2 2.68 a 0.09 47.1 b 1.0 56.7 a 0.9 11.4 a 0.2

(Continued)
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3.4 Ovary weight, grain weight dynamics
and gene expression

In Exp. 2, we assessed ovary weight at pollination (stage 10

according to Waddington et al., 1983) in florets at positions F1, F2,

F3 and F4 from the central spikelets of spikes in each evaluated line.

A linear association between final grain weight and ovary weight

was found across lines and grain positions (Figure 4). In agreement

with this association, GW2 lines exhibited increased ovary weight

compared to ExpA6 genotypes (Figures 4, 5). However, contrasting

results were found between both groups of lines, as the TaGW2

triple mutant showed a significant increase (P < 0.05) in ovary

weight compared to its WT in all but the G3 floret position, whereas

the TaExpA6 construct showed no significant (P > 0.05) alteration

in ovary weight at pollination, mirroring its WT (Figure 5). This

suggests that TaGW2 gene mutation impacts ovary size prior

to anthesis.

When the time-course of grain weight from positions G2 and

G3 was monitored through the grain filling period, both modified

lines (TaExpA6 and TaGW2) surpassed their respective WTs in

grain weight, though, the onset of these differences varied between

groups. The GW2 triple mutant showed higher grain weight than

the WT from the starting of measurements at 4 DAA (Figure 6D;

Supplementary Figure S4), while the TaExpA6 line exhibited higher

grain weights at these grain positions from 20 DAA on (Figure 6A;

Supplementary Figure S4). For both line groups, a tri-linear

function accurately depicted individual grain weight dynamics

(Supplementary Figure S5), with enhanced grain filling rates at

the linear phase accounting for the increased final grain weights in

both G2 and G3 grains (R2 = 0.99; P < 0.05). No significant

difference was observed in the duration of grain filling, which was

approximately 40 days (Supplementary Table S1). Higher grain

weights in modified lines were also coupled with an increased

maximum grain water content (Figures 6A, D; Supplementary

Figure S4).

Grain dimension dynamics also varied between the line groups.

The TaExpA6 line increased grain length by 3% and 4% in grain

positions G2 and G3, respectively, over the WT (P < 0.05) without

affecting grain width (Figure 6B; Supplementary Figure S4).
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Conversely, the GW2 triple mutant improved both grain length

and width along grain filling (P < 0.05) by 6.2 and 6.7%,

respectively, when both grain positions were averaged (Figure 6E;

Supplementary Figure S4). Notably, differences in grain width in the

ExpA6 lines became evident only at the ending of dimension

dynamics analysis, coinciding with reduced grain water content

(< 30%) (Figure 6B; Supplementary Figure S4).

The observed divergence in grain length between the transgenic

TaExpA6 line and its WT counterpart became apparent at 20 DAA.

This divergence appears to coincide with the expression profile of

the TaExpA6 gene. Remarkably, TaExpA6 expression remains

undetectable until 5 DAA, subsequently peaking between 10 and

15 DAA (see Figure 6C). Two-way ANOVA revealed highly

significant genotype effects for TaExpA6 (p < 0.0001), with

Bonferroni’s multiple comparisons test showing consistent and

significant changes in mRNA levels at 10, 14, and 21 DAA

(adjusted p-value < 0.05, Figure 6E). In contrast, the grain

dimensions in the GW2 triple mutant consistently exceeded those

of the WT throughout the observation period (Figure 6E),

suggesting a constitutive effect of the TaGW2 knockout on grain

size. Furthermore, TaGW2 expression was monitored from 4 to 21

DAA, as depicted in Figure 6F. One-way ANOVA revealed a

significant effect of developmental stage on TaGW2 expression in

the wild-type (p-value: 0.0005). Bonferroni’s test showed

significantly lower TaGW2 levels at 21 DAA compared to 4 DAA

(adjusted p-value < 0.05, Figure 6F), suggesting a potential role in

earlier stages of grain growth.
4 Discussion

This study aimed to elucidate the mechanisms underlying the

trade-off between grain weight and grain number in wheat, when

grain weight is improved by genetic manipulations. To realize this

objective, field evaluations of two genetically distinct wheat line

groups, ExpA6 and GW2, were conducted under optimal

conditions. The GW2 lines had 20 days longer crop cycle than

the ExpA6 lines, but the climatic conditions during critical

phenophases between both groups were similar across the two
TABLE 2 Continued

Experiment Genotype (G) Transgenesis or Tilling (T)

Main Stem Spike

GY Spike-1 (g) GN Spike-1 TGW (g) Protein (%)

Mean s.e.m Mean s.e.m Mean s.e.m Mean s.e.m

WTTaGW2 2.38 a 0.11 51.8 a 1.2 45.7 b 1.1 10.4 a 0.6

ANOVA p-value (G) ** ** ** ns

ANOVA p-value (T) * * ** ns

ANOVA p-value (G*T) ns * ** *

t-test p-value (TaExpA6) * ns ** ns

t-test p-value (TaGW2) ns * ** ns
front
ANOVA P-value is shown in the table. All data are shown as mean and SEM. The phenotype data of each transformed/mutant line was compared with the respective WT using Student´s t-test;
different letters indicate significant effects: *, P < 0.05; **, P < 0.01; ns, not significant.
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experimental years. As hypothesized, the transgenic and triple

mutant lines displayed analogous phenology with their respective

wild types, as well as plant height and architecture (data not shown).

Significant increments in grain weight were observed in the

manipulated lines over the WTs, although differing in magnitude,

i.e. by 8.6 and 23.7% in the TaExpA6 and TaGW2 lines,

respectively, without and with trade-off with grain number. These

results agree with previous evaluations of the TaExpA6 and TaGW2

lines (Wang et al., 2018; Zhai et al., 2018; Calderini et al., 2021),

however, a direct comparison between both groups was feasible in

our study as they were assessed in the same experiment sharing the

same growing conditions and management. Notably, our study

expands on previous work by demonstrating that both
Frontiers in Plant Science 08
manipulations improved individual grain weight and grain

dimensions across all grain positions of the spike, a feature not

fully addressed in earlier research.

Comparative analyses between genetic resources and elite wheat

varieties by Philipp et al. (2018) revealed that breeding process in

wheat uniformly increased grain number and yield across the spike

without altering individual spikelets relative contribution to overall

yield. The observed increase in individual grain weight in our study

aligns with these breeding trends, suggesting a similar pattern when

grain weight is genetically improved. However, manipulation of

TaExpA6 showed a higher impact on distal grains (G3 and G4) than

on proximal ones (G1 and G2), while the TaGW2 triple mutant line

showed similar increase across these grain positions.
A

B

C

D

FIGURE 2

Grain weight in grain positions G1, G2, G3 and G4 from each spikelet along the spike of ExpA6 lines (A, C) and GW2 lines (B, D) in experiments 1 and
2. The transgenic TaExpA6 line and the triple mutant of TaGW2 gene, and their WTs are depicted by red and black symbols, respectively.
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Both genetic manipulations in our study successfully increased

individual grain weight through an enhanced grain filling rate,

maintaining the same grain filling duration as their respective WTs.

Additionally, both modified lines reached higher maximum grain

water content than their respective WTs, which has been ascribed as

a driver of grain weight potential (Saini and Westgate, 1999; Pepler

et al., 2006; Hasan et al., 2011; Alvarez Prado et al., 2013), suggesting

increased sink strength which sequentially resulted in a higher grain
Frontiers in Plant Science 09
filling rate and final grain weight. However, the impact of TaExpA6

and TaGW2 manipulations on grain dimensions varied, since the
FIGURE 3

Relationship between grain weight and grain length (upper panel) or grain width (lower panel) of grain positions G1, G2, G3 and G4 from each
spikelet along the spike, across genotype groups in experiments 1 (left panel) and 2 (right panel). TaExpA6 line and its WT are denoted by closed and
open triangles respectively, while the TaGW2 triple mutant line and its WT are denoted by closed and open circles, respectively.
FIGURE 4

Relationship between final grain weight and ovary weight at
pollination (W10, Waddington et al., 1983) of grain positions G1, G2,
G3 and G4 from the central spikelets of the spike corresponding to
the TaExpA6 line (closed triangles), TaGW2 line (closed circles) and
their WTs (open triangles and open circles, respectively).
FIGURE 5

Ovary weight at pollination (W10, Waddington et al., 1983) of florets
set at floret positions F1, F2, F3 and F4 from the central spikelets of
the spike corresponding to the TaExpA6 line (solid black bars),
TaGW2 triple mutant line (solid grey bars) and their WTs (empty
black and grey bars, respectively). Different letters indicate
significant effects (P < 0.05).
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transgenic approach primarily augmented grain length, while the

triple mutation affected both length and width. This differential

impact suggests distinct underlying mechanisms between

manipulations. In the TaExpA6 line, the cloned expansin possibly

facilitates cell wall loosening along the grain longitudinal axis,

consistent with expansins extensively reported mode of action

(McQueen-Mason et al., 1992; Cosgrove, 2000; Wang et al., 2019;

Cosgrove, 2023). Additionally, the influence of the TaExpA6 gene

would seem more related to cell size than number, considering the

cessation of cell proliferation in grains outer layers and starchy

endosperm by 6 and 14 DAA, respectively (Olsen et al., 1992; Drea

et al., 2005; Radchuk et al., 2011), and the linear relationship found

between the length of grains and epidermal cells length during grain

filling across wheat ploidies (Muñoz and Calderini, 2015). However,

the mechanisms of the overexpression of the gene TaExpA6

remains to be assessed. Conversely, the higher GW obtained in

previous studies by manipulation of the TaGW2 gene has been

ascribed to increases in both the cell number and size of maternal

tissues around anthesis, leading to longer and wider grains
Frontiers in Plant Science 10
(Simmonds et al., 2016; Geng et al., 2017; Zhang et al., 2018).

Increases in both grain dimensions in our study are in alignment

with these findings. In either case, further histological analysis of

grains from ExpA6 and GW2 lines is required to confirm these

assumptions. The significance of cell number and size in the outer

tissues for potential grain weight previously exposed in bread wheat

and across wheat ploidies (Lizana et al., 2010; Muñoz and Calderini,

2015; Brinton et al., 2017; Brinton and Uauy, 2019; Liu et al., 2020;

Guo et al., 2022; Tillett et al., 2022), together with the findings from

this study, support the hypothesis that potential grain weight is

constrained by physical limitations imposed by maternal

outer layers.

The effect of the manipulated lines on grain number per spike

was contrasting as expected. The TaExpA6 gene did not affect this

yield component, whereas the TaGW2 triple mutation reduced it by

11.3% relative to the WT, across both seasons. This trade-off

between grain weight and grain number when grain weight is

increased has been widely reported (Wiersma et al., 2001; Brinton

et al., 2017; Quintero et al., 2018; Wang et al., 2018; Golan et al.,
A

B

C

D

E

F

FIGURE 6

Grain weight dynamics and gene expression. (A) Grain weight and water content dynamics at grain position G2 from the central spikelets of the
spike corresponding to the ExpA6 lines and (D) GW2 lines. (B) Grain length and grain width dynamics at the same grain position corresponding to
the ExpA6 lines and (E) GW2 lines. (C) Relative TaExpA6 gene expression level in developing grains in the ExpA6 lines; asterisks indicate significant
differences (adjusted p-value < 0.05) between line TaExpA6 and its WT according to two-way ANOVA Bonferroni´s test post hoc. (F) Relative TaGW2
gene expression level in developing grains of the GW2 WT line; different letters indicate significant effect (adjusted p-value < 0.05) between
developmental times according to Bonferroni´s test post-hoc. In all cases, bars show the standard error of the means. †Note that different scales
were used to plot grain water content of ExpA6 and GW2 lines. ††Data shows the average value of TaGW2-A, B and D homoeologue’s expression..
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2019; Milner et al., 2021). In previous studies, modified lines with

GW increases comparable to the one observed in line TaExpA6, (i.e.

between 5.5% and 8%) have also been associated with concomitant

reductions in GN (Brinton et al., 2017; Adamski et al., 2021; Mora-

Ramirez et al., 2021). Therefore, the contrasting trade-off observed

between both genotype groups in this study would not be attributed

to the quantitative difference in the GW increase induced by the

molecular manipulation in modified lines. Notably, the magnitude

of average grain weight increase did not directly correlate with grain

number reduction, refuting the notion of a strict negative

compensation between these spike yield components. These

results align with the consensus that wheat grain filling is not

source-limited (Slafer and Savin, 1994; Borrás et al., 2004; Reynolds

et al., 2009; Quintero et al., 2018; Murchie et al., 2023; Slafer et al.,

2023). However, an up-regulation of the source as a consequence of

improved sink strength displayed by manipulation of TaExpA6 and

TaGW2 genes should not be disregarded. In fact, previous studies

have demonstrated that a high sink to source ratio can lead to an

increased post-anthesis radiation use efficiency (RUE) (Bustos et al.,

2013) or extended green canopy duration during grain filling

(Lichthardt et al., 2020). Interestingly, the lack of effect on grain

number showed by the ectopic expression of the TaExpA6 gene is

consistent with two previous experiments at different plant rates

(Calderini et al., 2021). The TaExpA6 and TaGW2 genes expression

profile along with grain weight dynamics of the transgenic and

mutant lines, allowed us to highlight a distinctive pattern in the

effect of these manipulations on early grain development. The

disruption of TaGW2 gene in the triple mutant line improved

grain weight above the WT from the onset of the grain filling

period. In contrast, the higher grain weight reached by the TaExpA6

transgenic line became apparent at 21 DAA. Furthermore, the triple

mutant exhibited heavier ovaries at pollination than the WT across

different positions in the spikelet, indicating that the TaGW2 gene

functions in floret tissues before the gynoecium becomes a grain.

This finding is in agreement with field experiments carried out by

Simmonds et al. (2016), who identified increased carpel size and

weight around anthesis as drivers of grain weight increase in

TaGW2 knockout mutants. In contrast, ovary weight at

pollination did not differ significantly between TaExpA6 line and

its WT in the present study, reinforcing the post-anthesis timing of

the transgene effect as previously reported (Calderini et al., 2021).

It has been demonstrated that grain number and weight

determinations overlap between booting and a week after anthesis

(Calderini et al., 1999, 2001; Ugarte et al., 2007; Hasan et al., 2011;

Simmonds et al., 2014; Parent et al., 2017; Calderini et al., 2021).

This overlap was proposed as the cause of the trade-off between this

key yield components in wheat (Calderini et al., 2021). The

effectiveness of the TaExpA6 gene in increasing grain weight

without a trade-off with grain number supports this hypothesis,

given that TaExpA6 expression begins at post-anthesis, particularly

from 10 DAA onwards, and its effect on grain length and weight

over the WT becomes detectable after 15 DAA. Conversely, when

the enhancement commences at pre-anthesis as in TaGW2 triple

mutant, showed by both increased ovary size and grain weight, a

trade-off occurs. Thus, our results suggest that the trade-off between

grain weight and number is attributable to the temporal overlap of
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determinant periods for these grain components. Previous research

found that the likelihood of grain setting in distal florets of wheat

associates with ovary size (Calderini and Reynolds, 2000; Guo et al.,

2016). However, contrary to our assumption, the higher ovary

weight in floret position G4 observed in line TaGW2 was

accompanied by a reduction of the number of grains set at this

distal position across the spike, which led to the reduced number of

grains per spikelet reported in the triple mutant.

In addition to the effects of TaExpA6 and TaGW2 gene

manipulations on grain weight and number, recent elucidation of

the role of the GNI1 gene offers additional insights into the genetic

regulation of these yield components. Research by Sakuma et al.

(2019) highlighted that the GNI1 gene, coding for a homeodomain

leucine zipper class I transcription factor, plays a pivotal role in

floret fertility in wheat. Their findings revealed an evolutionary

adaptation in the expression of GNI1, leading to an increase in grain

number per spikelet in domesticated wheat, suggesting a genetic

basis for the observed trade-off between grain weight and grain

number. Complementing this, Golan et al. (2019) proposed the

GNI-A1 gene, a variant of GNI1, as a mediator of this trade-off.

Remarkably, GNI1 is predominantly expressed in immature spikes

before anthesis (Sakuma et al., 2019), further highlighting the

relevance of the overlap between grain number and weight

determinations as key to unravel the underlying causes for the

trade-off. Additionally, Xie and Sparkes (2021) found an

overlapping between major regions associated with grain number

and grain weight in a mapping population of 226 RILs.

The integration of these insights with the results of our study

suggests a multifaceted genetic network influencing wheat yield.

While our study focuses on the phenotypic outcomes of TaExpA6

and TaGW2 gene manipulations, the role of the GNI1 gene

underscores the importance of genetic control in floret fertility

and assimilate allocation. This understanding complements our

observations of the trade-off between grain weight and grain

number, indicating that both targeted genetic modifications and

natural genetic variations, such as those in GNI1, are crucial in

determining these key agronomic traits . Therefore, a

comprehensive strategy that considers both natural gene variants

like GNI1 and targeted modifications such as TaExpA6 and TaGW2

may be essential for the development of wheat varieties that

optimally balance grain weight and number.
5 Concluding remarks

In conclusion, the results of this study emphasize the complexity

of the genetic control of grain weight and number in wheat. The

findings reveal that modification of the TaExpA6 gene enhances

grain weight without reducing grain number, indicating a deviation

from the traditionally assumed trade-off between these yield

components. In contrast, alterations in the TaGW2 gene, while

highly increasing grain weight, also result in a reduction in grain

number, aligning with the conventional understanding of this trade-

off. These outcomes highlight distinct genetic pathways influencing

wheat yield traits. The differential impacts of TaExpA6 and TaGW2

on wheat grain development, and the overlapping of both yield
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components determination between booting and a week after

anthesis, offer valuable insights for future overcoming this

common bottleneck and to improve grain yield in wheat breeding

programs through targeted genetic modifications.
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