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dark-to-light transition of
Photosystem II core complex
of Thermostichus vulcanus
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Science and Technology, Okayama University, Okayama, Japan, 4Department of Physics, Faculty of
Science, University of Ostrava, Ostrava, Czechia
In our earlier works, we have shown that the rate-limiting steps, associated with

the dark-to-light transition of Photosystem II (PSII), reflecting the photochemical

activity and structural dynamics of the reaction center complex, depend largely

on the lipidic environment of the protein matrix. Using chlorophyll-a

fluorescence transients (ChlF) elicited by single-turnover saturating flashes, it

was shown that the half-waiting time (Dt1/2) between consecutive excitations, at

which 50% of the fluorescence increment was reached, was considerably larger

in isolated PSII complexes of Thermostichus (T.) vulcanus than in the native

thylakoid membrane (TM). Further, it was shown that the addition of a TM lipid

extract shortened Dt1/2 of isolated PSII, indicating that at least a fraction of the

‘missing’ lipid molecules, replaced by detergent molecules, caused the

elongation of Dt1/2. Here, we performed systematic experiments to obtain

information on the nature of TM lipids that are capable of decreasing Dt1/2.
Our data show that while all lipid species shorten Dt1/2, the negatively charged

lipid phosphatidylglycerol appears to be the most efficient species – suggesting

its prominent role in determining the structural dynamics of PSII reaction center.
KEYWORDS

chlorophyll-a fluorescence, core complex of photosystem II, rate-limiting step,
structural dynamics, thylakoid lipids, waiting time
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1 Introduction

Photosystem II (PSII) is a multi-subunit pigment-protein complex

embedded in the thylakoid membranes (TMs) of plants, algae, and

cyanobacteria. In nature, PSII core complexes (CCs) are present

primarily in a dimeric form in the native TMs (Boekema et al., 1995;

Kouril et al., 2012) but their monomeric forms can also be found

(Takahashi et al., 2009; Watanabe et al., 2009). The main protein

subunits of PSII CC are the reaction center (RC) proteins D1/D2, the

inner antenna proteins CP43 and CP47, the a and b subunits of

cytochrome b559, the oxygen-evolving complex (OEC), and a number

of low molecular weight proteins (Umena et al., 2011). In addition, X-

ray crystallography of PSII CC of Thermostichus (T.) vulcanus revealed

approximately 20 lipids [6 monogalactosyldiacylglycerol (MGDG), 5

digalactosyldiacylglycerol (DGDG), 4 sulfoquinovosyldiacylglycerol

(SQDG) and 5 phosphatidylglycerol (PG)] and at least 15 detergent

molecules per monomer (Umena et al., 2011; Suga et al., 2015). The

more recent cryo-EM structure of the same PSII CC solubilized with b-
DDM – which possibly represents conditions closer to the

physiological state – identified 18 of the lipids and 4 DDM

molecules per monomer (Kato et al., 2021). The detergent molecules

evidently replace different lipid molecules – and thus, might affect the

photochemistry and structural dynamics of PSII.

PSII catalyzes the light-driven oxidation of water via capturing

light energy by pigments situated in the antenna proteins, which is

then transformed into electrochemical free energy within the RC

complex (Cardona et al., 2012). When PSII is in dark-adapted open

state (PSIIO), upon illumination, an electron is transferred from the

excited primary donor P680* to the first electron acceptor

pheophytin (Pheo), forming the P680
+Pheo− radical pair in several

picoseconds [P680* refers to a singlet excited state shared among

several chlorins (Romero et al., 2017)]. Electron transfer steps then

occur from Pheo− to the first quinone electron acceptor, QA, and

from the tyrosine residue (YZ) on the D1 protein to P680
+. The final

step, leading to the stabilization of the charge-separated state, is the

oxidation of the Mn4CaO5 cluster. This state, with all QA reduced, is

a closed state of PSII (PSIIC), which is followed by somewhat slower,

at physiological temperatures several hundred microseconds,

electron-transfer steps between QA and the secondary quinone

acceptor QB. This step can be blocked by PSII inhibitor

molecules, such as 3-(3′,4′ dichlorophenyl)-1,1′ dimethylurea

(DCMU). In the presence of DCMU the lifetime of PSIIC
becomes considerably longer, limited only by the charge

recombination between QA
− and S2

(+) of the OEC (Tyystjarvi and

Vass, 2004).

In our earlier works, we recorded the Fv variable chlorophyll-a

(Chl-a) fluorescence transients of PSII on DCMU-treated isolated

plant TMs and PSII CC of T. vulcanus (Fv = Fm − Fo, where Fm and

Fo are the maximum and the minimum fluorescence levels,

respectively; Fo is associated with PSIIO). The technique of Chl-a

fluorescence transient, also called ChlF, is one of the most

commonly used tools to monitor the activity of oxygenic

photosynthesis (Govindjee and Papageorgiou, 2004; Papageorgiou

and Govindjee, 2011). We have shown, in accordance with Joliot

and Joliot, 1979, that the fluorescence level of PSIIC after the first
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single turnover saturating flash (STSF) (with all QA reduced)

display an F1 < Fm fluorescence yield, and that Fm can only be

produced gradually by several (or at cryogenic temperatures by a

large number of) STSFs; we have also discovered that the

fluorescence increments from F1 to Fm require waiting times (Dt)
between excitations, revealing rate limiting steps in the dark-to-light

transition of PSII (Magyar et al., 2018). Further, we have shown that

after the closure of PSII, by the first STSF, additional excitations

produce only rapidly recombining P680
+Pheo– radical pairs (Sipka

et al., 2019). The stepwise fluorescence rise of PSII, upon exposing

PSIIC to a train of STSFs, has been shown to reflect the gradual

formation of the light-adapted charge-separated state (PSIIL), most

probably driven by stationary and transient electric fields, generated

by S2
(+)QA

− and P680
+Pheo–, respectively, and dielectric relaxation

processes (Sipka et al., 2021). Variable ChlF of closed PSII reaction

centers, responsible for a substantial part of Fv, has also been

observed using long saturating light pulses and higher plant

leaves (Laisk and Oja, 2020).

Our recent investigations revealed that the Dt1/2 half-waiting

times, at which 50% of the Fk-to-Fk+1 (k = 1, 2, 3…) fluorescence

increments are reached, depended strongly on factors affecting the

rigidity of the samples. In particular, Dt1/2 was shown to sharply

increase by lowering the temperature from 5°C to −80°C: from

about 0.2 to 1 ms and from about 1 to 4 ms in DCMU-treated

spinach TMs and PSII CC of T. vulcanus, respectively (Magyar

et al., 2023). The difference between TMs and PSII CC was also

observed in T. vulcanus cells compared to detergent-solubilized

isolated PSII CC – pointing to the importance of the native RC

environment in the TMs. Indeed, externally added TM lipids largely

restored the short Dt1/2 observed in the cells, whereas non-TM

lipids, which induced minor changes in the organization of PSII CC,

exerted no effect on Dt1/2 (Magyar et al., 2022). These data strongly

suggest the specific role of lipids in the structural dynamics of PSII.

Thylakoid membranes, on the one hand, serve as a matrix for

photosynthetic complexes (Nelson and Ben-Shem, 2004). On the

other hand, they play important role in the functioning and

structure of membrane proteins through interactions between

lipids and proteins embedded in the membrane (Mcintosh and

Simon, 2006; Van Eerden et al., 2017). TMs contain two neutral

lipids, MGDG and DGDG, accounting for ~40-50 and ~20-30 mol

% of TM lipids and two negatively charged lipid species, SQDG

(~10-30 mol%) and PG (5-15 mol%) (Murata et al., 1981; Dorne

et al., 1990; Sakurai et al., 2006).

In a recent review of Yoshihara and Kobayashi (2022), the

different lipid content of different PSII preparations from

cyanobacteria, plants and algae were collected showing high

diversity mostly in the amount of PG molecules. MGDG, the only

non-bilayer lipid in the TM (Garab et al., 2022), has a special role,

among others, in maintaining the activity of the embedded protein

complexes (Jarvis et al., 2000; Jones, 2007; Kobayashi et al., 2013)

and in dimerization of the monomeric PSII (Guskov et al., 2009;

Kansy et al., 2014). Different treatments leading to the partial

degradation of MGDG (Aronsson et al., 2008; Leng et al., 2008;

Wu et al., 2013) showed only slight decrease in the oxygen-evolving

activity of PSII, suggesting that the non-degraded fraction of
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MGDG is deeply buried in PSII and is responsible for retaining its

structure and function (Yoshihara and Kobayashi, 2022). DGDG

might be involved in the stabilization of the OEC and the assembly

of extrinsic proteins (Sakurai et al., 2007). SQDG influences the

electron transfer from OEC to YZ (Minoda et al., 2003), most

probably due to its stabilizing effect on the binding of the

manganese cluster and extrinsic proteins to PSII (Yoshihara and

Kobayashi, 2022), and also impairs the QB exchange at the acceptor

site (Nakajima et al., 2018). It was also shown in SQDG-deficient

mutants in phosphate-starved conditions, where PG content is

decreased, that SQDG acts as a substitute for anionic

phospholipids (Güler et al., 1996; Yu et al., 2002). In the same

mutants under phosphate-rich conditions, PG is shown to be able to

replace SQDG and functions to support the PSII activity (Nakajima

et al., 2018). PG was shown to play an important role in

dimerization of PSII (Kruse et al., 2000; Sakurai et al., 2003) and

the electron transfer at the QB-binding site (Gombos et al., 2002;

Sakurai et al., 2006; Leng et al., 2008).

The crystal structure of PSII CC of T. vulcanus (Umena et al.,

2011; Suga et al., 2015) has revealed an asymmetric distribution of

the lipid molecules – with MGDG (except one) and DGDG on the

lumenal side of TM and with the headgroups of SQDG and PG

facing the cytoplasmic side. Three lipids (one MGDG and two

SQDGs) are situated at the monomer-monomer interface together

with at least 6 detergent molecules, 13 lipids (3 MGDGs, 4 DGDGs,

1 SQDG, and 5 PGs) surround the D1/D2 heterodimer and 4 lipids

(2 MGDGs, 1 DGDG, and 1 SQDG) are located in the periphery of

PSII CC. Seven lipids (1 MGDG, 3 DGDGs, 1-1 SQDG and PG) are

found between D1 and CP43 and 3 PGs are close to QA and one to

QB. It should be emphasized that the high flexibility and mobility of

the lipid molecules makes their correct identification difficult in

protein complexes, not to mention the perturbation caused by the

detergents used for the sample preparation.

In this work, we investigated the role of different lipid molecules

in determining the rate-limiting steps in the dark-to-light transition

of DCMU-treated PSII CC of T. vulcanus. In particular, we

determined Dt1/2 of ChlF in the absence and presence of different

externally added TM lipid classes and their mixtures. Circular

dichroism (CD) and 77 K fluorescence emission spectroscopy

measurements were applied to test possible effects on the

molecular organization of the complexes. We found that (i) while

upon the addition of the externally added lipids, only minor

differences were observed in the molecular architecture of PSII

CC; (ii) the Dt1/2 values were about 45-50% shorter in the presence

of the non-ionic lipids MGDG and DGDG; (iii) the negatively

charged lipids, SQDG and PG, were more efficient, leading to ~55-

60% shortening of Dt1/2, with PG being the most efficient lipid

acting already at low concentrations. Our findings suggest that

lipids near the RC chromophores act as mechanical transducers and

play key roles in warranting the structural dynamics related to the

dielectric relaxation processes associated with the PSIIC-to-

PSIIL transition.
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2 Materials and methods

2.1 Source material

A thermophilic cyanobacterial strain, T. vulcanus was isolated

from a hot spring in Yunomine, Japan (Koike and Inoue, 1983).

Cells were grown photoautotrophically as batch culture in a BG11

medium (pH 7.0) at 50°C, and were continuously illuminated with a

white fluorescent lamp at 50–100 mmol photons m−2 s−1 photon

flux density (Shen et al., 2011). Cultures were aerated on a gyratory

shaker operating at 100 rpm.
2.2 Sample preparation

PSII CCs of T. vulcanus were isolated as described earlier (Shen

and Inoue, 1993; Shen and Kamiya, 2000; Shen et al., 2011; Kawakami

and Shen, 2018). During the final steps of the purification, dimers and

monomers were separated from crude PSII by an anion exchange

column, with a column buffer (30 mM MES-NaOH (pH 6.0), 3 mM

CaCl2, and 0.03% b-DDM) with a linear gradient of 170–300 mM

NaCl. After collection of the monomer and dimer fractions PEG 1,450

was added at a final concentration of 13% to the samples which were

then centrifuged to precipitate and concentrate them. Finally, they were

suspended in a buffer containing 30 mM MES–NaOH (pH 6.0), 20

mM NaCl, and 3 mM CaCl2 and stored in liquid nitrogen or at -80°C

until use. For spectroscopic measurements, isolated PSII CCs were

diluted in a reaction buffer (5% glycerol, 20 mMMES (pH 6.0), 20 mM

NaCl and 3 mM CaCl2).

For CD spectroscopy and fluorescence yield measurements PSII

CCs were diluted to ~10 µg Chl mL−1 in the reaction buffer, and for

fluorescence emission spectroscopy it was diluted to ~1 µg Chl

mL−1. All experiments, except in section 3.1, were carried out on

dimeric PSII CC. Stock solution of thylakoid lipids (MGDG,

DGDG, SQDG and PG, Avanti Polar Lipids, Sigma) were

prepared in methanol to a final concentration of 10 mg mL−1.

These lipids, according to Sigma, contain predominantly

unsaturated (18:3) fatty acids – as typical for higher plant TMs

(Siegenthaler and Murata, 1998). The PSII CC suspension was

mixed in the dark with lipids at different concentrations (with

methanol not exceeding 0.8% final concentration) along with 40 µM

DCMU, which was dissolved in dimethyl sulfoxide (with a final

solvent concentrations of 1%).
2.3 Circular dichroism spectroscopy

CD spectra in the range of 350–750 nm were recorded at room

temperature with a Jasco J-815 spectropolarimeter (Jasco, Japan).

The measurements were performed in a semi-micro quartz cell of

1 cm optical path length with 2 nm spectral bandwidth.
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2.4 Fluorescence yield measurements

Chl-a fluorescence yields were measured using a Multi-Color

(MC) PAM (Walz, Effeltrich, Germany). Fluorescence increments

were induced by STSFs (Xe flashes, Excelitas LS-1130-3 Flashpac

with FX-1163 Flashtube with reflector, Wiesbaden, Germany) of

1.5-µs duration at half-peak intensity. The frequency of the low

intensity and non-actinic modulated measuring light was 1 kHz.

This restricted the time resolution of our ChlF transition

measurements to several milliseconds. Earlier, using DCMU-

treated PSII CC of T. vulcanus exposed to repetitive STSFs, we

have identified the formation and rapid recombination of the

P680
+Pheo- radical pair (Sipka et al., 2019). These recombination

events evidently bring about, with a certain probability, the

formation of triplet states, which under aerobic conditions relax

in the time range of several microseconds (Lambrev et al., 2012;

Laisk and Oja, 2020). These events do not destabilize the samples –

as evidenced by double-STSF ChlF experiments presented in this

paper, showing that doubling the flash intensity does not affect the

fluorescence level at the millisecond time range [see also (Magyar

et al., 2018; Sipka et al., 2021)].

The sample was placed on the sample holder of a

thermoluminescence apparatus in order to control the temperature

(Magyar et al., 2018). The timing of the flashes was controlled using a

digital pulse generator (525 Six Channel Digital Pulse/Delay

Generator, Berkeley Nucleonics, California, USA). The kinetic

traces were recorded using MC-PAM’s own software.

The fluorescence transients were recorded after 10 min dark

adaptation of the sample at room temperature, followed by an

additional 5 min dark adaptation at 5°C, on which temperature all

measurements were performed. At this temperature the

recombination rate of the charge-separated state is very low, as

reflected by thermoluminescence glow curves exhibiting the Q band

above 20°C (Sipka et al., 2019); hence, allowing an easier

determination of the magnitude of the Dt-dependent increments

between the fluorescence levels elicited by the first and second

STSFs (see the schematic representation of the measuring protocol

in Supplementary Animation S1).

The F1-to-F2 Chl-a fluorescence increments were determined by

measuring the fluorescence level after the second STSF, delivered by

different waiting times (Dt) after the first flash, and were normalized

to the Fm values, i.e., the maximal fluorescence levels, which were

determined using saturating multiple-turnover long laser flashes. The

(F2-Fo)/(Fm-Fo) values are plotted as a function of Dt. For simplicity,

the first data points obtained after simultaneously firing the two

STSFs are given at Dt = 10-1 µs. The Dt1/2 half-rise time values, i.e.,

the Dt values at 50% of the maximum of the F1-to-F2 increments,

were determined using a logistic fit function.
2.5 Steady-state
fluorescence spectroscopy

Fluorescence emission spectra were measured at 77 K using an

FP-8500 (Jasco, Japan) spectrofluorometer. Emission spectra in the
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range of 620–780 nm were recorded with excitation wavelength of

440 nm and excitation/emission bandwidth of 2.5 nm. The

measurements were performed with 1 nm increments and 2 s

integration time. Samples were cooled in a home-built accessory

used with the FP-8500 spectrofluorometer. The spectra were

corrected for the spectral sensitivity of the instrument using a

calibrated light source (ESC-842, Jasco) as a reference.
2.6 Gel electrophoresis

The purity of PSII dimers and monomers was checked by blue

native polyacrylamide gel electrophoresis on a 5–13% (w/v) gradient gel

at 6°C according to (Schagger et al., 1994). The native gel was stained

with Coomassie Blue G-250 to show all protein content of the samples.

The amount of the samples loaded on each lane was 0.5 mg of Chl.
3 Results and Discussion

In order to elucidate which lipid(s) played a role in our earlier

observed experiments affecting the Dt1/2 values (Magyar et al.,

2022), we performed double-STSF induced Chl-a fluorescence

measurements on PSII CC dimers mixed with various TM lipids

in different Chl:lipid ratios. With these experiments we aimed to

shed light on the nature of the ‘missing’ lipids (replaced by

detergent) that might be responsible for the shorter half-waiting

time in the native or TM-lipid reconstituted samples compared to

the isolated PSII CC (cf. also Introduction).
3.1 Determination of Dt1/2 in monomers
and dimers of PSII CC

As revealed by X-ray crystallography of PSII CC of T. vulcanus,

detergent molecules tend to accumulate in domains interconnecting

the two monomers in the dimer (5 detergent molecules per monomer)

(Umena et al., 2011; Yu et al., 2021). Thus, we tested if isolated

monomers exhibit larger Dt1/2 values than dimers – given their

potentially greater exposure to detergents than in dimers. However,

as shown in Figure 1, monomers and dimers display essentially the

same half-waiting time values – rendering our hypothesis unlikely.

These data are also consistent with our earlier finding that the stepwise

Chl-a fluorescence rise, and the kinetics of the fast-fluorescence rise of

monomeric and dimeric complexes are virtually indistinguishable

(Sipka et al., 2021). Hence, the lipids ‘missing’ from the monomer-

monomer interface are unlikely to be responsible for the increased Dt1/
2 in PSII CC compared to the native systems (Supplementary Material,

Figure S1 confirms the oligomerization state of samples).
3.2 Effects of different lipid species on Dt1/2
of PSII CC

To test the effect of TM lipids separately on the rate-limiting

step in the F1-to-F2 increment, we performed double-STSF induced
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fluorescence measurements on PSII CC of T. vulcanus, mixed with

different TM lipids at different Chl:lipid ratios, and compared them

with that of PSII CC dimers of the same batch. In a separate

experiment, we checked that methanol – in which lipids were

dissolved – exerted no effect at the given concentration (0.8% in

the final volume) on Dt1/2. It displayed about the same half-waiting

time, 1.5 ± 0.3 ms as the control, 1.6 ± 0.3 ms; methanol at 1.6%

increased Dt1/2 to 3.51 ± 0.77 ms (Supplementary Material, Figure

S2, Supplementary Table S1).

In earlier experiments (Magyar et al., 2022), PSII CCs were

reconstituted into liposomes composed of TM lipids in proportions

as in plants: 45% (w/v) MGDG, 30% DGDG, 15% PG, and 10%

SQDG; at a final Chl:lipid ratio of 1:8. Here, we performed

experiments to test the effects of individual lipid head group

species on Dt1/2, using the same batch of PSII CC dimers. In this

batch, the minimum Dt1/2 value of PSII CC embedded in liposomes

was 0.5 ± 0.1 ms (Supplementary Material, Table S1); this value is

somewhat larger than in the native TMs and in the batch of PSII CC

used earlier (Magyar et al., 2022). This suggests batch-to-batch

variation in the lipid content of the isolated PSII CCs and/or in their

capability of replenishing the missing lipid molecules.

In the following series of experiments, we added different

isolated lipids and used different Chl:lipid ratios to test their effect

on Dt1/2. The two non-ionic lipids, MGDG and DGDG exerted

similar effects on the half-waiting time, which displayed slightly

decreasing patterns towards higher lipid concentrations (Figure 2).

Upon gradually increasing the concentration of the externally

added MGDG, from 1:0 to 1:8 Chl:lipid ratio, Dt1/2 of 1.6 ± 0.3

ms in the control gradually decreased to 0.8 ± 0.2ms (Figure 2A),

indicating that more MGDG might be needed to occupy places in

PSII CC responsible for the decrease of Dt1/2 in TMs. DGDG

showed almost identical parameters with the exception of the

measurement with the Chl:lipid ratio of 1:1, where Dt1/2
increased to 2.1 ± 0.3 ms (Figure 2B); these data suggest that

DGDG has low ability to replace the detergent molecules around
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the site regulating the rate-limiting steps of PSII. Nonetheless, when

applied at higher concentrations, it was capable of decreasing Dt1/2.
It is to be noted that the slope (P) of the fitted curves became slightly

steeper after the addition of these lipids (Supplementary Table S1), a

phenomenon which requires further investigation.

When the negatively charged lipids SQDG and PG were added,

a larger decrease of the half-waiting times was observed (Figure 3).

With SQDG, this occurred only after applying 1:4 Chl:lipid ratio,

reaching a value of 0.7 ± 0.2 ms (Figure 3A). In contrast, PG

shortened Dt1/2 immediately after the addition of only one PG

molecule per Chl, reaching about the same Dt1/2 value of 0.7 ± 0.2

ms, and no further decrease was attained by additional PG

molecules (Figure 3B). It is also to be noted that in this case, the

P values remained almost the same as in PSII CC (Supplementary

Table S1).
3.3 Effects of different lipid mixtures on
Dt1/2 of PSII CC

In these experiments, TM lipid molecules were added to PSII

CC in different mixtures and proportions, keeping the same Chl:

lipid ratio of 1:8 (Figure 4). It was interesting to observe that PG and

SQDG when combined with MGDG were less efficient than when

they were applied alone (displaying Dt1/2 values of 0.93 ± 0.07 ms

and 1.08 ± 0.27 ms vs. about 0.7 ms). It seems that in each case, the

most abundant TM lipid species, MGDG, hindered rather than

facilitated the PG-induced shortening of Dt1/2 – most probably

because of competing with PG and/or SQDG to replace the

detergent and occupy the space of the missing lipids. The same

appeared to be true for DGDG. With lipid mixtures of MGDG :

DGDG : SQDG : PG of 4:2:1:1, which is close to the lipid-species

ratio of plant TMs, Dt1/2 remained about the same as in the case of

MGDG : PG. Further decrease was achieved when all lipids were

present in equal concentrations (MGDG : DGDG : SQDG : PG of
FIGURE 1

Dependence of the F1-to-F2 Chl-a fluorescence increments of DCMU-treated PSII CC of T. vulcanus dimer (black) and monomer (red) on the
waiting time (Dt) between the first and the second STSF. Continuous lines represent logistic-function fits of the data points, mean values ± SD (n =
3–5). The vertical lines mark the Dt1/2 half-rise time values, i.e., the Dt values at 50% of the maximum of the F1-to-F2 increments. For better visibility,
the curve for the monomeric PSII CC was shifted upward by ~5% with respect to the starting points. Data points obtained with simultaneously fired
STSFs are plotted at Dt = 10-1 µs.
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2:2:2:2). In this case, the half-waiting time value (0.8 ± 0.1 ms)

assumed almost the same value as with PG alone.

The observation that PG seemed to be more effective than

SQDG, suggests that PG is the most important ‘missing’ lipid from

isolated PSII CC. There are indications in the literature that lipids

can exchange each other (Güler et al., 1996; Yu et al., 2002; Kansy

et al., 2014), thus, as both of these lipids are negatively charged, it is

highly likely that in the absence of additional PG, SQDG might

occupy its place. It must also be taken into account that non-ionic

lipid molecules might have been replaced by anionic ones or vice

versa; however, because of the different head groups of the lipids,

this scenario is highly unlikely, unless these lipids are bound to PSII

through hydrophobic interactions and not by ligation. It can be

envisioned that excess amounts of the negatively charged lipids

SQDG and PG replace neutral lipids at the binding sites both in the

core-antenna complexes CP43 and CP47 and the D1/D2

heterodimer – which thus may influence the configuration of the

local electric fields. Kansy et al. (2014) suggested similar changes

owing to the negatively charged lipids with the possible explanation

of the dissociation of CP43.
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3.4 Spectral changes induced by the
addition of lipids

CD spectra of PSII in the visible wavelength region specifically

probe excitonic couplings between pigments in the CC. No specific

changes in the CD spectra of the PSII CC were observed upon the

addition of either of the four thylakoid lipids, except for minor

deviations that could be attributed to baseline and differential light

scattering effects due to the sample turbidity in the presence of lipids

(Figure 5). These data are in good agreement with the absence of

detectable changes in the CD spectra of PSII CC in solution and in

reconstituted lipid membranes (Magyar et al., 2022).

Previously we have shown that reconstitution of PSII CC in

liposomes prepared with a thylakoid lipid mixture brought about

significant changes in the fluorescence emission spectra recorded at

77 K (Magyar et al., 2022). Particularly, the emission peak at 687 nm

gained intensity relative to the 694 nm peak upon insertion of PSII

in the lipid membranes. These bands originating from CP43 and

CP47, respectively are denoted F685 and F695 (Andrizhiyevskaya

et al., 2005). We observed the same qualitative change upon adding
A B

FIGURE 2

Dependence of the F1-to-F2 Chl-a fluorescence increments of DCMU-treated PSII CC of T. vulcanus on the waiting time (Dt) between the first and
the second STSF in the absence (PSII CC) and presence of externally added MGDG (A) and DGDG (B) at Chl:lipid ratios as indicated. Continuous lines
represent logistic-function fits of the data points, which represent mean values ± SD (n = 3–5). Dotted vertical lines mark the Dt1/2 half-rise time
values. For better visibility, each curve was shifted upward by ~5% with respect to the previous one.
A B

FIGURE 3

Dependence of the F1-to-F2 Chl-a fluorescence increments of DCMU-treated PSII CC of T. vulcanus on the waiting time (Dt) between the first and
the second STSF in the absence (PSII CC) and presence of externally added SQDG (A) and PG (B) at Chl:lipid ratios as indicated. Continuous lines
represent logistic-function fits of the data points, which represent mean values ± SD (n = 3–5). Dotted vertical lines mark the Dt1/2 half-rise time
values. For better visibility, each curve was shifted upward by ~5% with respect to the previous one.
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different thylakoid lipids to PSII CC (Figure 6), which might

originate from replacement of some of the detergent molecules in

the periphery of CC (Umena et al., 2011; Suga et al., 2015). It is

interesting to note that the changes were markedly different

depending on the class of lipids used. SQDG exerted no

significant effect on the fluorescence spectrum, whereas MGDG

and DGDG decreased the relative intensity of the 694 nm peak. The

negatively charged phospholipid PG had the strongest effect

suppressing the emission at 694 nm relative to the short-

wavelength band. Qualitatively, the spectral changes induced by

the addition of lipids, especially PG, could be related to the

difference in the fluorescence emission spectra of monomeric PSII

CC compared to dimeric CC (Supplementary Figure S3). The

similarity might suggest that the lipids destabilize the PSII dimers.

The changes in both cases are consistent with the hypothesis that
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structural destabilization of the CC exposing the red-shifted Chls in

CP47 to a more polar environment alters their excited-state energy

distribution, in effect decreasing the fraction of CC complexes

possessing F695 states.
3.5 The possible sites of ‘missing’ lipids
participating in governing the rate-
limiting steps

In our earlier study we showed that externally added lipids

accelerated the rate of the PSIIC-to-PSIIL transition (Magyar et al.,

2022), and they were proposed to reoccupy the sites taken by

detergent molecules.
FIGURE 4

Dependence of the F1-to-F2 Chl-a fluorescence increments of DCMU-treated PSII CC of T. vulcanus on the waiting time (Dt) between the first and the
second STSF in the presence of different concentrations of externally added lipid mixtures of two or four different lipids, MGDG : PG and MGDG : SQDG
or MGDG : DGDG : SQDG : PG, respectively, in proportions as indicated, at Chl:lipid ratio of 1:8. Continuous lines represent logistic-function fits of the
data points, mean values ± SD (n = 3–5). The vertical lines mark the Dt1/2 half-rise time values. For better visibility each curve was shifted upward by ~5%
with respect to the previous curve.
FIGURE 5

Room-temperature CD spectra of T. vulcanus PSII CCs in the absence and presence of different TM lipids added externally at Chl:lipid ratio of 1:8.
The spectra are normalized to unity absorbance of each sample at 675 nm.
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By using the cryo-EM structure of PSII CC in b-DDM obtained

by Kato et al. (2021), we can try to identify possible lipid-binding

sites occupied by detergent molecules that may be influencing the

PSIIC-to-PSIIL transition dynamics (Figure 7). As pointed out above

(Section 3.1), the ‘missing’ lipids, replaced by detergents, in the

monomer-monomer interface are highly unlikely to affect the rate-

limiting steps in the PSIIC-to-PSIIL transition, as characterized by

Dt1/2. Also, as proposed in Section 3.4, detergent molecules at the

periphery of the CC, in the vicinity of CP43 and CP47 might

contribute to the observed lipid addition-dependent changes in the

77 K emission spectra; however, these effects were not correlated

with the lipid-induced shortening of Dt1/2.
A possible explanation of our observations is that reoccupying

possible sites by lipids facilitates the light-induced reorganizations
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and shorten Dt1/2. Based on the scheme explaining the de-excitation

pathways in PSII CC (Shibata et al., 2013) and the proposed

mechanism involving the effects of prominently strong stationary

and transient electric fields around the RC complex (Sipka et al.,

2021), it is assumed that the site of the ‘missing’ and replenishable

lipids are to be found near the cofactors of the RCs. For example,

there is a DDM molecule interacting at about 27 Å distance from

the primary donors that could be a possible candidate (Figure 7). It

is in close contact with native lipids filling a gap between the D1

protein and the peripheral low-molecular-mass (LMM) subunits, in

close contact with PsbJ. If this binding site influences the structural

reorganizations of PSII, it will raise the question of the role of the

LMM subunits, particularly PsbJ, in the light adaptation process.

However, it cannot be ruled out that other sites not identified in the
FIGURE 6

77 K fluorescence emission spectra of T. vulcanus PSII CC in the absence and presence of different TM lipids added externally at Chl:lipid ratio of 1:8
and excited at 440 nm. The spectra are normalized at 687 nm and are corrected for the detector spectral sensitivity. The spectra are average of six
independent measurements, and the shaded area represents the standard deviation.
FIGURE 7

Overall cryo-EM structure of cofactors, detergents and lipids in PSII monomer from T. vulcanus (PDB: 7D1U). View of the PSII monomer
perpendicular to the membrane normal. Chls of the RC and the core-antenna complexes (CP43 and CP47) are displayed in green. Color codes for
lipids: MGDG, yellow; DGDG, gold; SQDG, orange; PG, dark magenta. Detergents are dark red.
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structure are responsible for the lipid/detergent exchange effects on

the light-induced reorganizations.

According to an alternative, non-conflicting explanation, the

externally added lipids surrounding PSII CC can prevent or reduce

the probability of dissociation of structural lipids in the vicinity

of the RC. It is very likely that association and dissociation of lipids

in the protein complexes depend on the lipidic environment of PSII

CC. In the absence of externally added lipids, some of the lipid

molecules of PSII CC may gradually dissociate from the protein

complex and might be released into the detergent solution. Such a

mechanism might affect the binding of the two PG molecules

LHG410 and LHG627 which have their fatty acyl chains located

close to the primary donor Chl molecules, at a distance of 12 and 16

Å, respectively (Kato et al., 2021). Restoring the molecular

environment around the primary donor can thus also be

responsible for the observed exogenous-lipid dependent decrease

of Dt1/2.
In general, lipids, because of their high structural flexibility, may

act as mechanical transducer molecules facilitating reorganizations

in the matrix of RC. The fact that the negatively charged lipid, PG,

appears to be the most efficient in accelerating Dt1/2 might indicate

that electrostatic interactions play important roles in the assembly

and structural dynamics of the RC complex of PSII.
4 Conclusions

The aim of this work was to gain additional information on the

roles of different TM lipids in the structural dynamics of PSII CC of

T. vulcanus, as reflected by the Dt1/2 half-waiting times in the STSF-

induced Chl-a fluorescence transients. Data obtained here –

showing that each externally added TM lipid and their mixtures

shorten Dt1/2 – are in good agreement with our earlier findings,

which revealed that the half-waiting times were shorter in T.

vulcanus cells and liposome-embedded PSII CCs than in isolated

PSII CC (Magyar et al., 2022).

The shortening of Dt1/2 upon the addition of all TM lipid

molecules show that replenishing the ‘missing’ lipids facilitates the

PSIIC-to-PSIIL transition – indicating that incorporation of lipids in

PSII CC, most probably leads to replacing some of the detergent-

occupied sites by lipid molecules. ‘Missing’ lipids, replaced by

detergents, are found at the interface between the two monomers

and in the core-antenna complexes (5 and 8 detergent molecules per

monomer); the remaining molecules are located near the cofactors

of the RC complex. As an alternative explanation, externally added

lipids can be proposed to affect the association and dissociation of

two PG molecules in the close vicinity of the Chl molecules in the

RC (Suga et al., 2015; Kato et al., 2021; Yu et al., 2021). In this

context it is also worth noting that in T. vulcanus the fatty acid

composition of the different lipids is quite similar to each other, in

PSII CC dominated by 16:0 (>50%) and 18:1 (15-27%) (Sakurai

et al., 2006). In contrast, the fatty acids of the externally added plant

TMs are highly unsaturated – the influence of which on the

restoration of Dt1/2 remains to be clarified.

Spectroscopic data and analyses of the specificity of effects of

different lipid species as well as considerations of the structure
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of PSII CC of T. vulcanus strongly suggest that lipid-replacements

of detergents in the monomer-monomer interface of the dimer and/

or in the core antenna complexes affect the excitation distribution at

77 K but are unlikely to shorten the Dt1/2 values. Decreasing the

half-waiting time is most likely caused by reoccupation and/or

closer association of the lipid binding sites near the RC complex,

which thus partially restores the structural dynamics of PSII RCs. It

appears that each lipid is capable, albeit with different affinities, to

decrease the rate limiting steps in the PSIIC-to-PSIIL transition –

suggesting their role as mechanical transducers sensitive to the

generation of the intense transient electric field due to the

P680
+Pheo− radical pair and/or its rapid recombination generating

fast local heat jumps [cf. Sipka et al. (2021)]. Further experiments,

on reconstituted systems and/or on different wild-type or mutant

PSII CCs are required to better understand the role of lipids in the

structural dynamics of PSII RC.
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