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Introduction: The biosynthesis of secondary metabolites like anthocyanins is often

governed by metabolic gene clusters (MGCs) in the plant ancestral genome.

However, the existence of gene clusters specifically regulating anthocyanin

accumulation in certain organs is not well understood.

Methods and results: In this study, we identify MGCs linked to the coloration of

cotton reproductive organs, such as petals, spots, and fibers. Through genetic

analysis and map-based cloning, we pinpointed key genes on chromosome A07,

such as PCC/GhTT19, which is involved in anthocyanin transport, and GbBM and

GhTT2-3A, which are associated with the regulation of anthocyanin and

proanthocyanidin biosynthesis. Our results demonstrate the coordinated control

of anthocyanin and proanthocyanidin pathways, highlighting the evolutionary

significance of MGCs in plant adaptation. The conservation of these clusters in

cotton chromosome A07 across species underscores their importance in

reproductive development and color variation. Our study sheds light on the

complex biosynthesis and transport mechanisms for plant pigments, emphasizing

the role of transcription factors and transport proteins in pigment accumulation.

Discussion: This research offers insights into the genetic basis of color variation

in cotton reproductive organs and the potential of MGCs to enhance our

comprehension of plant secondary metabolism.
KEYWORDS
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Introduction

In plants, the genomic architecture for the biosynthesis of secondary metabolites is

characterized by the organization of relevant genes into metabolic gene clusters (MGCs).

These clusters facilitate the synthesis of critical compounds that enhance plant resilience

against diverse biotic stresses (Jonczyk et al., 2008; Chu et al., 2011; Sue et al., 2011; Takos

et al., 2011; Guo et al., 2017).
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Plant MGCs can be classified into two distinct configurations.

The first configuration dominantly is tightly packed gene clusters,

wherein genes responsible for both the initial and subsequent

enzymatic reactions are sequentially arranged. This arrangement is

exemplified by the thalianol gene cluster in Arabidopsis and the

diterpenoid gene cluster in rice, illustrating a streamlined genomic

strategy for secondary metabolite biosynthesis (Liu et al., 2020; Zhan

et al., 2020). The second configuration involves partially adjacent and

dispersed gene clusters, where a core group of genes is closely located,

albeit with several genes situated distantly. The steroidal alkaloid

biosynthesis in tomatoes follows the a-tomatine pathway, controlled

by a gene cluster on chromosome 7. This cluster includes two 2-

oxoglutaratedependent dioxygenase (GAME11 and GAME6)genes,

four genes encoding glycosyltransferase (GAME1,GAME17,GAME18

and GAME2), and the cytochrome P450 monooxygenase gene

(GAME7), separated by 8 Mb from the nearest gene cluster (Itkin

et al., 2013). Similarly, cucumber’s cucurbitacin biosynthesis is

managed by a gene cluster on chromosome 6, with additional

cytochrome P450 (CYP) genes on chromosomes 3 and 1,

indicating a spread but functionally unified genomic organization

(Shang et al., 2014). In potatoes, sterol biosynthesis genes are found

on chromosomes 7 and 12, highlighting the varied arrangement of

MGCs in different plant species (Cardenas et al., 2016).

The biosynthesis pathways of anthocyanins and proanthocyanidins

may also be regulated by the presence of MGCs, underscore the

evolutionary significance of such genomic configurations for plant

adaptation and survival. Anthocyanins, alongside carotenoids and

betalains, are pivotal for the vibrant pigmentation observed in plant

tissues, with anthocyanins occupying amajor role in coloration (Tanaka

et al., 2008). These pigments are predominantly accumulated in

essential reproductive structures—flowers, fruits, and seeds—creating

diverse, vivid color patterns that both attract pollinators and confer

resistance to biotic and abiotic stressors (Stintzing and Carle, 2004;

Duan et al., 2014). Anthocyanin biosynthesis is mediated by a sequence

of enzymatic reactions on the endoplasmic reticulum (ER), initiating

from phenylalanine (Winkel, 2004; Yang et al., 2018; Belwal et al.,

2020). Meanwhile, this pathway further promoted the synthesis of

proanthocyanidins (PAs), which affected the pigmentation across

various plant organs (Shi et al., 2021; Zhao et al., 2023).

Genes involved in the biosynthesis of anthocyanins and

proanthocyanidins have been identified across various plant species

(Winkel-Shirley, 2001;Ma et al., 2021; Luan et al., 2022; Yang et al., 2022;

He et al., 2023). The anthocyanin biosynthetic pathway encompasses

threemain steps: Initially, phenylalanine is converted into 4-Coumaroyl-

CoA via the phenylalanine ammonia-lyase (PAL), cinnamic acid

hydroxylase (C4H), and 4-coumarate-CoA ligase (4CL) enzymes.

Subsequently, 4-Coumaroyl-CoA is transformed into dihydroflavonol,

a shared precursor for both anthocyanins and proanthocyanidins,

through the action of chalcone synthase (CHS), chalcone isomerase

(CHI), and flavanone 3-hydroxylase (F3H). Dihydroflavonol is then

converted into the colorless leucoanthocyanidins (leucopelargonidin,

leucocyanidin, and leucodelphinidin) by dihydroflavonol reductase

(DFR). In the final synthesis phase, anthocyanins are produced from
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these colorless precursors via anthocyanin synthase (ANS) and

leucoanthocyanidin dioxygenase (LODX), with subsequent

glycosylation and acylation by UDP-3-O-glucosyltransferase (UFGT)

to yield stable anthocyanins. Alternatively, colored anthocyanins can be

reduced to epicatechins by anthocyanin reductase (ANR), or directly to

catechins by leucoanthocyanidin reductase (LAR), which then

polymerize to form proanthocyanidins in the vacuole (Zhao et al.,

2010; Yu et al., 2023). The activity of these enzymes is regulated by v-

myb avian myeloblastosis viral oncogene homolog (MYB), WD40, and

basic Helix-Loop-Helix (bHLH) transcription factors, highlighting a

complex control mechanism over the biosynthetic pathway (Petroni

and Tonelli, 2011; Yan et al., 2021; Shi et al., 2023).

The transport of anthocyanins, catechins, and proanthocyanidins

to vacuoles can occur through two pathways: vesicle transport

facilitated by vesicle wrapping and transport proteins, including

ATP-binding cassette transporters (ABC/MRP), multidrug and toxic

compound extrusion (MATE), multidrug resistance-associated

protein (MRP), and glutathione S-transferase (GST) (Grotewold and

Davies, 2008; Gomez et al., 2011). GST proteins play a crucial role in

the transport of anthocyanins and monomers of anthocyanins. Acting

as transport carriers, GST proteins directly bind to anthocyanins or

precursors of proanthocyanidins in the cytoplasm, facilitating their

transport to the vacuolar membrane. Subsequently, these compounds

are translocated across the membrane into the vacuole after

recognition by ABC/MRP or MATE transmembrane proteins

located on the vacuolar membrane (Loyall et al., 2000; Zhao, 2015).

The genus Gossypium, encompassing over fifty species, exhibits

significant diversity in flower and fiber coloration, primarily

attributed to differential gene expression within the anthocyanin/

proanthocyanidin biosynthetic pathways (Tan et al., 2013). Notably,

key genes implicated in the regulation of these pathways, such as G.

barbadense Beauty Mark (GbBM), G. hirsutum TRANSPARENT

TESTA 2–3A (GhTT2-3A) in reproductive tissues, are members of

the MYB transcription factor family (Yan et al., 2018; Abid et al.,

2022). Additionally, the glutathione S-transferase gene GhTT19

plays a pivotal role in the transport of anthocyanins/

proanthocyanidins, influencing flower petal pigmentation (Chai

et al., 2023). Intriguingly, these genes associated with the

synthesis and transports of anthocyanins/proanthocyanidins in

cotton reproductive organs are clustered in the distal region of

chromosome A07 in cotton. The enrichment of these genes in

specific chromosomal regions related to anthocyanin synthesis and

transport remains largely unexplored. Our study demonstrates a

significant correlation between the distal region of chromosome

A07 and the pigmentation of cotton reproductive organs,

suggesting the formation of a metabolic gene cluster that

regulates the anthocyanin pathway, thereby influencing

coloration. This chromosomal configuration remains conserved

across the transition from diploid to tetraploid species,

underscoring its importance in cotton reproductive development

and propagation. These insights offer a foundation for future

research aimed at enhancing cotton hybrid breeding, the

cultivation of naturally colored fibers, and improving cotton yield.
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Materials and methods

Plant materials

The G. barbadense line HaiR, G. hirsutum line Y18R, and red

color cotton line pcc, were used in this study. The red-petaled pcc

cotton was selected from over 1,000 varieties in the cotton

germplasm resource library. The Y18R line is characterized by

white flowers, whereas the pcc line exhibits red flowers. The HaiR

line is distinguished by its yellow flowers. For the generation of F2
mapping populations, HaiR and pcc were selected as the

parental lines.
Cotton planting conditions

Cotton plants were grown under field conditions at the High-

Tech Industry Park of the Chinese Academy of Agricultural

Sciences in Langfang, Hebei Province (N39°520, E116°700E).

Photographic documentation and petal collection were conducted

during and post-flowering for subsequent analyses. Quantitative

Reverse Transcription Polymerase Chain Reaction (qRT-PCR) and

anthocyanin content determination were performed, with each

assay conducted in triplicate.
Map-based cloning

Map-based cloning was conducted using an F2 population

consisting of a total of 870 cotton plants, which exhibited two

distinct phenotypes: yellow-flowered and red-flowered. For genetic

linkage analysis, 270 individuals displaying the yellow color flower

phenotype were selected at the flowering stage. A total of 720 pairs

of insertion/deletion (InDel) primers, designed based on genome-

wide InDel markers differentiating G.barbadense and G.hirsutum

genotypes, were used for preliminary gene mapping (He et al.,

2018). The PCR amplifications were electrophoresed on a 4%

agarose gel. Primers utilized for fine mapping are detailed in

Supplementary Table 3.
Draw the anthocyanin
metabolism pathway

Building on previous research into the metabolic pathways of

anthocyanins and proanthocyanidins (Liu et al., 2021; Pucker and

Selmar, 2022; Sunil and Shetty, 2022), and we made minor

adjustments and illustrated these pathways using Figdraw to

accurately depict the metabolic regulation model.
RNA extraction and qRT-PCR analysis

For expression analysis, samples were collected and

immediately flash-frozen in liquid nitrogen, then stored at -80°C

until RNA extraction. Total RNA was extracted using the RNAprep
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Pure Plant Kit (TIANGEN, DP441, Beijing, China) following the

manufacturer’s protocol. cDNA synthesis was performed using the

TransScript One-Step gDNA Removal and cDNA Synthesis

SuperMix (TRAN, AT311, Beijing, China) as per the

manufacturer’s guidelines. qRT-PCR analysis was conducted

using the Chromo 4 Real-Time PCR Detection System (Bio-Rad,

CFX96, Hercules, USA), adhering to the manufacturer’s

instructions. The cotton GhHistone gene served as the internal

reference. Experiments were independently replicated three times.

Primers for qRT-PCR are detailed in Supplementary Table 3. The

relative expression levels of genes were quantified using the 2-DDCT

method (Livak and Schmittgen, 2001).
Gene expression analysis

The raw RNA-seq datasets for red and white flowers of G.

hirsutum were obtained from PRJNA878950, while those for brown

and white cotton fibers were sourced from PRJNA766762.

Following the removal of low-quality reads, the remaining clean

reads were aligned to the TM-1 reference genome using Hisat2

software (Kim et al., 2019). Differential gene expression analysis was

conducted using featureCounts for the calculation of Transcripts

Per Million (TPM) values (Liao et al., 2014; Zhao et al., 2020). Gene

expression heatmaps were generated utilizing the Pheatmap

package (Hu, 2021).
Anthocyanin analysis

The determination of anthocyanin content followed the

methodology described by Xu et al. (2012). Petal samples (0.1 g)

were retrieved from a -80°C freezer, ground to a powder in liquid

nitrogen, and then mixed with 1 mL of methanol. The mixture was

vortexed thoroughly and sonicated for 15 minutes. After

centrifugation at 12,000 rpm for 10 minutes, the supernatant was

diluted tenfold with methanol and filtered through a 0.22 mm
organic membrane. LC-MS analysis was performed using a

Thermo U3000 HPLC System. The peak area of the mixture was

quantified by comparison with the peak areas of standard

substances, including cyanidin, delphinidin, and pelargonidin (all

from Sigma, USA). The formula for calculating anthocyanin

content is as follows: [A = (C2 - C1) * V * N where (A)

represents the content of various anthocyanins in the sample

(mg/kg), (C2) is the concentration of each anthocyanin in the test

solution (mg/L), (C1) is the concentration of each anthocyanin in

the blank solution (mg/L), (V) is the volume of the solution (mL),

and (N) is the dilution factor.
Population structure analysis

Total 96 accessions derived from four projects (PRJNA349094,

PRJNA680449, PRJNA412456, PRJNA720818) were analyzed (see

Supplementary Table 4). The sequencing reads were aligned to the

G. hirsutum TM-1 reference genome using BWA software (Li and
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Durbin, 2009). The resulting BAM files were processed for sorting

and filtering using SAMtools (version 1.15) with default parameters

(Danecek et al., 2021). SNP calling at the population level was

conducted using GATK software (version 4.0) (Van der Auwera

et al., 2013), generating a GVCF file for each sample. These GVCF

files were then merged, applying the following parameters for

filtering: –filter-expression “QD < 2.0 || MQ < 40.0 || FS > 60.0 ||

SOR > 3.0 || MQRankSum < -12.5 || ReadPosRankSum < -8.0” –

filter-name ‘SNP_filter’.

A total of 120,126 SNPs, with a minor allele frequency (MAF) >

0.01 and missing data < 10%, were identified using Plink (version

1.9). These SNPs were used to construct a phylogenetic tree using

the neighbor-joining method in PHYLIP software (version 3.698)

(Retief, 2000). The phylogenetic tree was visualized and refined

using iToL (https://itol.embl.de/). Population genetic structure was

assessed using Admixture (Version 1.3.0), with the number of

genetic clusters (K) ranging from 2 to 6 and each run consisting

of 10,000 iterations.
Analysis of the domestication selection

Using VCFtools (version 0.1.16) (Danecek et al., 2011), we

calculated fixation index (Fst) and nucleotide diversity (p)
employing a sliding window approach. Each window spanned

50kb, with successive windows overlapping by 10kb. This

methodology facilitates a detailed and nuanced analysis of genetic

differentiation and diversity across the genome.
Identification of MYB and GST
gene families

Genomic sequences, annotation files, and protein sequences for

Gossypium species including G. herbaceum (A1), G. arboretum

(A2), G. raimondii (D5), G. hirsutum (AD1), G. barbadense

(AD2), G. tomentosum (AD3), G. mustelinum (AD4), and G.

darwinii (AD5) were retrieved from Phytozome (Goodstein et al.,

2012) and CottonMD (Yang et al., 2023). Protein sequences for the

GST and MYB gene families were downloaded from the TAIR

database (https://www.arabidopsis.org/). Hidden Markov Model

(HMM) profiles for GST_C (PF00043), GST_N (PF02798), and

MYB (PF00249) were acquired from the Pfam database

(version 35.0).

To identify homologs of the MYB and GST gene families across

the Gossypium species, Arabidopsis thaliana GST and MYB protein

sequences served as query sequences in BLASTp searches (version

2.15), with stringent criteria set at e-values < 1e-10 and identity ≥

30%. Concurrently, HMMER (version 3.4) software, utilizing the

hmmersearch function and the aforementioned HMM profiles, was

employed to search for protein sequences within the cotton

varieties, applying an e-value threshold of ≤ 1e-5. Results from

both BLASTp and hmmersearch were integrated, allowing for the

exclusion of structurally incomplete sequences from the GST and

MYB gene families in the analyzed Gossypium species.
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Multiple sequence alignment and
phylogenetic tree construction

Protein sequences from various Gossypium species were

consolidated and subjected to multiple sequence alignment using

MUSCLE (version 5.0). Subsequently, a multi-species evolutionary

tree was constructed employing the Maximum Likelihood (ML)

method via FastTree (Price et al., 2009). The resulting evolutionary

tree was visualized and refined using the online tool iTOL (Letunic

and Bork, 2021). Within this phylogenetic framework, we

specifically identified protein sequences associated with

anthocyanin biosynthesis. These sequences were then realigned

using MUSCLE (version 5.0), and the alignment was further

refined for accuracy and clarity using GeneDoc.
Chromosomal localization, duplication,
and synteny analysis

Protein sequences from all varieties were compiled into a

database, with each serving as its own query sequence. For

sequence alignment, Diamond (version 2.1.8) (Buchfink et al.,

2021) was utilized, applying an e-value threshold of < 1e-10. The

gene annotation files were then converted into GFF format.

Duplication classification of genes was conducted using McscanX

(Wang et al., 2012), which produced source files detailing gene

family duplications. A Perl script, get_mapchart_tandem.pl, was

used to generate configuration files for MapChart (Voorrips, 2002),

which depicted the genomic locations and tandem duplications of

the GST and MYB gene families on chromosomes.

For inter-species collinearity analysis, MCScanX was used to

create collinearity files. These files were then modified using another

Perl script, highlight.pl, to emphasize blocks containing GST and

MYB genes. The visualization of these results was achieved through

the JCVI software (Tang et al., 2008), effectively mapping the

positions and tandem duplications of the GST and MYB gene

families, as well as highlighting significant collinearity blocks.
Construct protein regulatory network

To elucidate the relationship between MYB genes on

Chromosome A07 and structural genes involved in anthocyanin

and proanthocyanidin biosynthesis, we employed the String

database (https://string-db.org/) for protein-protein interaction

(PPI) prediction. The resultant PPI predictions were then

visualized through the construction of a network diagram using

Cytoscape software (version 3.10.1) (Otasek et al., 2019).
Data analysis

To compare two groups, the Student’s t-test was utilized. For

analyzing significance across multiple groups, one-way ANOVA

followed by Tukey’s multiple comparisons test was employed. Data
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are expressed as mean ± standard deviation (SD), based on three

independent biological replicates. Significant differences were

denoted as follows: *P < 0.05, **P < 0.01, and ***P < 0.001. All

graphs and statistical analyses were performed using GraphPad

Prism (version 10.1.2).
Results

The distal region of chromosome A07 in
cotton regulates genes for reproductive
organ coloration

The synthesis of plant anthocyanins is significantly influenced

by transcriptional regulatory factors, primarily MYB, bHLH, and

WD40, which together form a regulatory system that controls

anthocyanin biosynthesis by binding to structural gene

promoters. Once synthesized on the endoplasmic reticulum

surface, anthocyanins are transported into the vacuole for storage,

facilitated by Glutathione S-transferase (GST) and recognized by

multidrug resistance associated protein transporter and ABC

protein transporter on the vacuolar membrane (Figure 1A). We

previously reported a gene, GbBM, which encodes an R2R3

MYB113 transcription factor. This factor directly targets the

promoters of four flavonoid biosynthesis genes (GbCHS, GbDFR,

GbANS, and GbUFGT), thereby positively regulating the formation

of purple spots on cotton flower petals (Abid et al., 2022). In recent

years, leveraging map-based cloning techniques, we identified the

gene PCC from a red-flowered cotton resource, which governs petal

coloration in cotton (Supplementary Figure 1 and Supplementary

Table 1). PCC, previously known as GhTT19, encodes a typical

glutathione S-transferase. This enzyme is pivotal in petal

pigmentation, as it aids in the transport and accumulation of

anthocyanins. Significantly, GbBM and PCC/GhTT19 not only

share the function of regulating petal coloration but are also

positioned closely at the proximal end of the cotton A07

chromosome, separated by a minimal physical distance of merely

0.85MB (Supplementary Table 2). This proximity underscores a

potentially significant genetic linkage in the control of

floral pigmentation.

To investigate the potential association between the proximal

region of the cotton A07 chromosome and pigment development,

we examined genes responsible for the coloration of reproductive

tissues. Notably, our findings revealed that GhTT2-3A, a gene

implicated in the production of brown fibers through the

accumulation of anthocyanins/proanthocyanidins, is also situated

in this specific chromosomal region. GhTT2-3A, a homolog of the

Arabidopsis PA regulator TT2 within the R2R3 MYB TF family,

triggers the activation of downstream PA structural genes (Yan

et al., 2018). This activation facilitates the synthesis and

accumulation of proanthocyanidins (PAs) in cotton fibers, leading

to the emergence of brown-colored fibers. The physical separation

between GhTT2-3A and GbBM spans 9.2 MB, whereas the gap

between GhTT2-3A and PCC/GhTT19 measures 7.6 MB (Figure 1B

and Supplementary Table 2). The genes GbBM, GhTT2-3A, and
Frontiers in Plant Science 05
PCC/GhTT19 are closely located on chromosome A07 in cotton,

suggesting that the genes responsible for the coloration of cotton

reproductive organs likely constitute a metabolic gene cluster at the

distal end of chromosome A07.

Further examining the color-determining components, we

found that the anthocyanin levels in pcc cotton petals, including

pelargonidin, cyanidin, and delphinidin, were significantly higher

than in white-petaled cotton Y18R, both during and post-flowering.

Notably, the pronounced accumulation of cyanidin in pcc cotton

emerged as the key factor for its red flower phenotype (Figures 1C,

D). Similarly, the presence of cyanidin, delphinidin, and petunidin

was instrumental in forming basal spots on the petals of GbBM-

induced upland cotton. Additionally, the brown hue of the fibers in

brown cotton was predominantly due to the synthesis and buildup

of proanthocyanidins.
Genetic variation and population structure
of the distal region of chromosome A07
in cotton

To analyze the genetic variation of the distal region of

chromosome A07 in cotton, we utilized resequencing data from

98 cotton accessions, including 60 G. hirsutum (AD1), 19 G.

arboreum (A2), and 19 G. barbadense (AD2). These data were

mapped to the reference genome of G. hirsutum (TM-1). We

identified a total of 120,126 high-quality SNPs. Population

structure analysis and construction of a phylogenetic tree were

conducted to understand the genetic diversity within populations.

The 98 accessions were classified into four subgroups (G1, G2, G3,

and G4) when the value of k was set to 4 (Figure 2A and

Supplementary Table 4). G1 subgroup primarily consisted of G.

hirsutum with white fiber, G2 subgroup predominantly included G.

hirsutum with brown fiber, G3 subgroup mainly represented

individuals of G. barbadense, and G4 subgroup was mainly

composed of G. arboreum. The results from the phylogenetic tree

were consistent with results of population genetic structure analysis

(Figures 2A, B and Supplementary Table 4).

The nucleotide diversity (p) of G1 (0.00038) and G2 (0.00049)

subgroups was lower compared to G3 (0.0044) and G4 (0.00087)

(Figure 2C). Both G1 and G2 subgroup belonged to G. hirsutum,

while G3 and G4 subgroup were different species. By comparing

the Fst values between each group, we observed that the Fst

between G1 and G2 subgroup was the lowest, while the

differences in Fst between the other two groups were more

significant. These results suggest that upland cotton generally

has lower genetic diversity and a more stable population.

Furthermore, the data indicated that G2 subgroup had higher

genetic diversity than G1 subgroup, indicating that brown-fibered

upland cotton maintains greater genetic diversity compared to

white-fibered upland cotton. Additionally, the results revealed

that prolonged artificial selection for long-fibered upland cotton

varieties has gradually reduced fiber color diversity, resulting in

decreased genetic diversity in modern cultivated white-fibered

upland cotton.
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Although the Fst difference between G1 and G2 subgroup is

relatively low (Figure 2C), we still observed some distinct variations

in the genome-wide comparison. Notably, there is a significant peak

on chromosome A07 (Figure 2D). Subsequently, we conducted an

analysis specifically focusing on the chromosome A07 and found a

distinct difference in the distal region of chromosome A07

(Figure 2E). This observation suggests that distal region of

chromosome A07 may play a crucial role in determining the

brown fibers in cotton. These findings align with previous

research that has identified genes responsible for controlling

cotton fiber color on the chromosome A07 (Wen et al., 2018).
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Analysis of the GST gene family copy
number and expression in the distal region
of cotton chromosome A07: implications
for anthocyanin transport

Gene mapping was conducted on GST genes in 8 different

cotton varieties, namely, G. herbaceum (A1), G. arboretum (A2), G.

raimondii (D5), G. hirsutum (AD1), G. barbadense (AD2),

G.mustelinum (AD3), G. tomentosum (AD4), G. darwinii (AD5),

revealing their distribution across all chromosomes in different

cotton species. We identified 70, 59, 73, 110, 113, 134, 157, and 149
B

C

D

A

FIGURE 1

The identification of color genes and a model for anthocyanin biosynthesis and transport. (A) The model illustrates the synthesis and transport
pathway of anthocyanins and procyanidins in plants. PAL, phenylalanine ammonia-lyase. C4H, cinnamate-4-hydroxylase. 4CL, 4-coumarate-CoA
ligase. CHS, chalcone synthase. CHI, chalcone-flavonone isomerase. F3’5’H, flavonoid 3’-monooxygenase. F3’H, flavanone 3ß-hydroxylase. ANR,
anthocyanidin reductase. LAR, leucoanthocyanidin reductase. DFR, dihydroflavonol-4-reductase. ANS, anthocyanidin synthase. UFGT, UDP-glucose
flavonoid glycosyltransferase. (B) Localization of genes related to the color of cotton’s reproductive organs on the distal region of chromosome A07.
PCC/GhTT19 is identified as the gene controlling the red color of G. hirsutum flowers. GbBM is highlighted as a crucial gene influencing the
presence of purple spots on G. barbadense flowers. GhTT2-3A is recognized as the primary gene responsible for the brown color of cotton fibers.
(C) The flower color of Y18R and pcc during and after the flowering stage. HAF, hours after flowering. (D) Anthocyanin content during and after the
flowering period. Data are shown as mean ± SD from three replicates. Statistically significant differences (P<0.05) are indicated by different letters,
based on one-way ANOVA analysis. HAF, hours after flowering.
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GST genes in these cotton varieties, respectively. Interestingly, the

number of GST gene family members in tetraploid cotton is

approximately twice that in diploid cotton (Supplementary

Figure 2A), it reveals that genome duplication results in a twofold

increase in the number of genes. Notably, chromosome Chr03

exhibited the highest number of tandemly duplicated gene

clusters for GST genes, while chromosome 06 had the fewest in

all diploid cotton species (Supplementary Figures 3, 4). However, in

tetraploid cotton, a significant number of GST genes were found on

chromosome A02 and D02, with some forming tandemly

duplicated gene clusters (Supplementary Figures 5-9). In contrast,

chromosome A07 contained only four GST genes in both diploid

and tetraploid cotton species, and no gene clusters were observed

resulting from tandem duplication of GST genes (Figure 3A). The

number and location of GST genes on chromosome A07 are

consistent throughout the evolution of cotton from diploid to

tetraploid, indicating that the gene count remains unchanged

during the whole genome duplication (WGD) and tandem

duplication events. This result emphasizes the conservative nature

of GST genes on the chromosome A07.

Subsequent synteny analysis of the GST gene family revealed a

high collinearity of GST genes on chromosome A07 inG. herbaceum,

G. hirsutum, andG. barbadense, suggesting their likely origin from G.

herbaceum (Supplementary Figure 19). In G. hirsutum and G.

barbadense, homologous GST genes on chromosomes A02 and

A03 exhibited positional changes compared to G. herbaceum,
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indicating a replacement of chromosomes A02 and A03 in the A

subgenome during the diploid to tetraploid transition (Figure 3B).

Furthermore, synteny analysis between tetraploid cotton species and

G. arboreum with G. herbaceum revealed a higher homology of the A

subgenome of all tetraploid cotton species with G. herbaceum

(Supplementary Figure 19).

Observations from the constructed phylogenetic tree reveal that

Ghe07G08770 , Garb_07G021300 , Ghir_A07G008080 ,

Gbar_A07G007920, Godar.A07G086400, Gotom.A07G086000,

Gomus.A07G083400 cluster together in the Phi subfamily

(Supplementary Figure 21 and Supplementary Table 5). Previous

studies have indicated that plant GST genes in the Phi subfamily are

involved in the transport and accumulation offlavonoids (Kitamura

et al., 2012). Sequence alignments demonstrate a high degree of

conservation in their sequences, with only two mutation sites

identified in G. herbaceum (Supplementary Figure 22), further

supporting the notion of high conservation of GST genes related

to anthocyanin accumulation and transport across different cotton

species. Real-time PCR and RNA-seq analysis to investigate the

expression patterns of GST genes in the pcc and Y18R of

G. hirsutum during flowering time, reveal that the expression of

only the Ghir_A07G008080 (PCC) gene on the chromosome A07 is

detected in flowers. Its expression in pcc is significantly higher than

in the control cotton Y18R, reaching 90 times the expression level of

Y18R (Figures 3C, D and Supplementary Figure 17) The expression

of the other three genes is barely detectable (Supplementary
B C

D E

A

FIGURE 2

Phylogenetic relationships and genetic differentiation among cotton accessions through a comprehensive analysis. (A) The population structure of
cotton accessions is depicted, with the accessions categorized into four distinct groups at K = 4. Group G1 comprises G. hirsutum accessions
characterized by white fiber, while G2 includes G. hirsutum accessions with brown fiber. Group G3 is represented by G. arboreum, and G4 consists
of G. barbadense accessions. (B) A phylogenetic tree constructed using 120,126 high-quality single nucleotide polymorphisms (SNPs). (C) Genetic
diversity and population differentiation among the four groups. The nucleotide diversity (p) value for each group is indicated within the respective
circles. The values between each pair of groups denote the population divergence index (Fst). (D) Pairwise comparisons of Fst values between
groups G1 and G2. G1 is G. hirsutum with the white fiber. G2 is G. hirstum with the brown fiber. (E) Pairwise comparisons of Fst values between G1
and G2 on chromosome A07.
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Figure 17C). It further confirms the key gene of Ghir_A07G008080

influencing the formation of different flower colors in G. hirsutum.
Exploring the MYB TF family in the distal
region of cotton chromosome A07:
implications for the anthocyanin pathway

To gain insights into the regulation of reproductive organ color

by MYB transcription factors located on the distal end of

chromosome A07 in cotton, we conducted a comprehensive

analysis. Firstly, we identified the MYB genes present in various

cotton species. We respectively identified 216, 211, 218, 416, 426,

430, 438, and 429 MYB genes in the eight cotton varieties

(Supplementary Figure 2B). Subsequently, we plotted their

genomic locations on a chromosomal map, providing a visual

representation of their distribution. The distribution of MYB

genes across chromosomes in different cotton species was found

to be random and uneven. Specifically, in diploid cotton, the MYB

genes were predominantly located on chromosomes 05, 07, 08, 11,

12, and 13. Similarly, in tetraploid cotton, the majority of MYB

genes in the A subgenome were found on chromosomes A05, A07,

A08, A11, A12, and A13 (Supplementary Figures 10-16).

We made some interesting observations in our study. Firstly, we

found tandem repeat gene clusters on both chromosome 07 in

diploid cotton and A07 in tetraploid cotton (Figure 4A), except in

G. herbaceum, where only one tandem repeat gene cluster was

present on chromosome A07. Secondly, during synteny analysis of

the MYB gene family, we discovered a high degree of homology

between chromosome 07 in G. herbaceum and the A07

chromosome in G. hirsutum and G. barbadense (Figure 4B). Next,
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we observed the expression levels of MYB genes on the A07

chromosome in white and brown cotton at 0, 5, 10, 15, and 20

days post-anthesis (DPA). It was evident that only the

Ghir_A07G002090 gene showed significant differences between

white and brown cotton fibers. The differences were most

pronounced at 5, 10, and 15 DPA, reaching approximately 2-3

times higher expression levels in white cotton fibers

(Supplementary Figure 18). Lastly, the synteny analysis revealed

that the A07 chromosome remained evolutionarily conserved

during the transition from diploid to tetraploid, showing no

significant variation (Supplementary Figure 20). This

conservation is likely attributed to the importance of maintaining

stability in the anthocyanin metabolism process, thereby preventing

substantial changes.

Our protein-protein interaction analysis focused on the

interactions between MYB proteins on the chromosome A07 and

proteins involved in the anthocyanin and proanthocyanin

pathways. For example, we observed that GhTT2-3A showed

interactions with proteins related to anthocyanin synthesis, such

as GhDFR_A06, GhC4H_A10 and GhDFR_D05. (Figure 4C and

Supplementary Table 6). This finding further suggests that MYB TF

in the distal region of cotton chromosome A07 plays a crucial role

in the anthocyanin metabolism process and likely influences the

coloration of brown cotton fibers.
Discussion

In this study, we pinpointed two MYB transcription factor

genes, GbBM and GhTT2-3A, which are pivotal in anthocyanin

synthesis, influencing the purple spots at petal bases and the brown
B C D

A

FIGURE 3

The distribution, Synteny, and expression of the GST gene. (A) The distribution of GST gene family members across chromosome A07 or 07 in seven
cotton varieties. (B) The synteny analysis of GST genes among G. herbaceum, G. hirsutum, and G. barbadense. (C) The expression patterns of GST
genes located on chromosome A07 during the flowering stages. The analysis is based on data from three biological replicates for each group.
(D) Validation of Ghir_A07G008080 expression in Y18R and pcc. Data are presented as mean ± SD from three replicates. Statistical significance is
denoted by asterisks: * p<0.05; ** p<0.01; *** p<0.001, determined by t-test.
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hue of fibers, respectively. Alongside, we identified the PCC/

GhTT19 gene, crucial for anthocyanin transport to vacuoles,

thereby dictating petal redness, located in the distal region of

chromosome A07. These genes collectively form a cluster that

orchestrates the coloration in cotton’s reproductive structures.

Our population genetics analysis revealed that significant genetic

variability in chromosome A07’s distal region plays a crucial role in

determining fiber brown coloration. Moreover, the pronounced

conservation observed at this chromosome’s distal end underscores

its role in ensuring anthocyanin metabolic stability, potentially

boosting offspring’s reproductive success.

The finding that non-homologous genes with similar functions

can form metabolic gene clusters highlights a key evolutionary

process, distinct from bacteria’s horizontal gene transfer (Richard

et al., 2008; Sue et al., 2011; Takos et al., 2011). In eukaryotes, these

clusters likely result from gene duplication, neofunctionalization,

and dynamic genomic rearrangements, a departure from bacterial

operon structures where genes are co-transcribed. Eukaryotic

cluster genes are transcribed separately, indicating a sophisticated

regulatory system (Nutzmann et al., 2018). Whole-genome

duplication (WGD) is a critical evolutionary milestone, leading to
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rapid diploidization as redundant genes are eliminated to preserve

genomic stability, though some duplicates remain (Freeling, 2009;

Li et al., 2021). These duplications are fundamental to

evolutionary development.

Plant gene clusters can arise through tandem repeats, as seen in

the maize TPS gene cluster, or through dispersed repeats facilitated

by transposons, like in the poppy (Winzer et al., 2012; Ding et al.,

2020). These clusters typically locate in chromosomal hotspots such

as telomeres and centromeres, areas prone to recombination,

rearrangement, and translocation, promoting gene cluster

diversification and formation (Field et al., 2011; Field and

Osbourn, 2012; Zhou et al., 2022). Yet, the regulatory

mechanisms governing plant metabolic gene clusters remain

largely elusive, with scant examples at the transcriptional and

chromatin levels. For instance, in Oryza sativa, the OsTGAP1

transcription factor, triggered by chitin oligosaccharides, controls

a diterpenes gene cluster, influencing diterpene production (Okada

et al., 2009). Similarly, in Arabidopsis thaliana, a triterpene gene

cluster undergoes spatial conformational changes in its structural

domains upon activation or suppression, underscoring a

sophisticated regulatory framework (Nutzmann et al., 2020).
B C

A

FIGURE 4

Examination of the MYB gene family located on Chromosome A07. (A) The localization of the MYB gene family on chromosome 7 of seven cotton
varieties in A subgeome. Genes highlighted in red indicate those that have arisen through tandem duplication events. (B) The synteny analysis of
MYB genes among G. herbaceum, G. hirsutum, and G. barbadense. (C) The protein interaction analysis focuses on MYB genes located on
chromosome A07 and their interactions with proteins involved in pigment synthesis. MYB genes on chromosome A07 are represented by red
triangles, while the interacting proteins are shown as purple rectangles. The correspondence between gene name and gene ID can be viewed in
Supplementary Table 6.
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Reproductive organ coloration is vital for attracting

pollinators and enhancing plant resilience, driven by the

evolutionary interaction between plants and pollinators (Zhu

et al., 2017; Su et al., 2020). This interaction has led to the

development of flower colors and patterns that maximize

visibility and attractiveness according to pollinator preferences

(Chittka and Raine, 2006). For example, G. hirsutum’s yellow

petals with purple spots not only provide UV protection but also

enhance visibility for pollinators, and its yellow petals are

particularly attractive to bees (Abid et al., 2023). In contrast,

modern upland cotton has developed milky-white, unspotted

flowers, likely due to selective breeding aimed at minimizing

dependence on insect pollinators, leading to a gradual loss of

distinctive coloration and patterns (Zhang et al., 2016; Cai et al.,

2023). This coloration is closely associated with anthocyanin

metabolism, essential for the plant’s anti-aging, antioxidant,

and stress resistance capabilities (He and Giusti, 2010; Alappat

and Alappat, 2020). The coloring process is regulated by

transcription factors that control anthocyanin biosynthesis

genes and transport prote ins that faci l i tate pigment

accumulation (Marrs et al., 1995; Quattrocchio et al., 1999; Sun

et al., 2012; Ni et al., 2023). Our research indicates that the red

petals of G. hirsutum pcc and the purple spots on G. barbadense

petals result from anthocyanin accumulation, triggered by

specific gene activity. Additionally, the brown fiber coloration

in cotton is due to the upregulated expression of the GhTT2-3A

gene, which boosts proanthocyanidin biosynthesis and

accumulation, key to the plant’s pigment metabolism.

We have shown that GhTT2-3A, GbBM, and PCC/GhTT19

form a cluster at the distal end of chromosome A07. This

arrangement implies a synergistic effect on the metabolic

processes of anthocyanin and proanthocyanidin. The location of

these genes near the telomeric region suggests that gene

rearrangements and exchanges during population differentiation

might have played a role in bringing together genes that regulate

both anthocyanin and flavonoid biosynthesis and transport within

this specific genomic area. This clustering is believed to boost gene

functionality, facilitate regulatory interactions among the genes, and

enhance the efficiency of enzymatic reactions within the cluster

(Rocha, 2008; Shen et al., 2021). Moreover, this part of the genome

shows high stability in tetraploid cotton, indicating that the initial

grouping of these genes was vital for preserving the stability of

anthocyanin and pigment metabolism. These findings provide

valuable insights into the genetic mechanisms behind color

variation in cotton reproductive organs, deepening our

understanding of the complex regulatory networks that control

pigment biosynthesis.
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