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Real-time citrus variety detection
in orchards based on complex
scenarios of improved YOLOv7
Fuqin Deng1†, Jianle Chen1†, Lanhui Fu1*, Jiaming Zhong1,
Weilai Qiaoi1, Jialong Luo1, Junwei Li1 and Nannan Li2

1School of Electronic and Information Engineering, The Wuyi University, Jiangmen, China, 2School of
Computer Science and Engineering, Faculty of Innovation Engineering, Macau University of Science
and Technology, Macau, China
Variety detection provides technical support for selecting XinHui citrus for use in

the production of XinHui dried tangerine peel. Simultaneously, the mutual

occlusion between tree leaves and fruits is one of the challenges in object

detection. In order to improve screening efficiency, this paper introduces a YOLO

(You Only Look Once)v7-BiGS(BiFormer&GSConv) citrus variety detection

method capable of identifying different citrus varieties efficiently. In the

YOLOv7-BiGS network model, initially, the BiFormer attention mechanism in

the backbone of the YOLOv7-based network strengthens the model’s ability to

extract citrus’ features. In addition, the introduction of the lightweight GSConv

convolution in place of the original convolution within the ELAN of the head

component effectively streamlines model complexity while maintaining

performance integrity. To environment challenge validate the effectiveness of

the method, the proposed YOLOv7-BiGS was compared with YOLOv5, YOLOv7,

and YOLOv8. In the comparison of YOLOv7-BiGS with YOLOv5, YOLOv7, and

YOLOv8, the experimental results show that the precision, mAP and recell of

YOLOv7-BiGS are 91%, 93.7% and 87.3% respectively. Notably, compared to

baseline methods, the proposed approach exhibited significant enhancements in

precision, mAP, and recall by 5.8%, 4.8%, and 5.2%, respectively. To evaluate the

efficacy of the YOLOv7-BiGS in addressing challenges posed by complex

environmental conditions, we collected occluded images of Xinhui citrus fruits

from the Xinhui orchard base for model detection. This research aims to fulfill

performance criteria for citrus variety identification, offering vital technical

backing for variety detection endeavors.
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1 Introduction

Agriculture is the primary means of subsistence and revenue

generation (Naga et al., 2024). In 2022, the output value of XinHui

tangerine peels industry exceeds 19 billion yuan, which is 31%

higher than that of 2021. XinHui citrus grown in XinHui area is the

only raw material for making XinHui tangerine peels (Pan, 2023). A

variety of citrus including XinHui citrus, Emperor citrus and so on

are grown in large citrus orchards. Low-quality or counterfeit

tangerine peel may be produced when other citrus varieties are

used. Not only are consumer interests compromised, but the

reputation of the growers is also damaged as a result. Different

citrus varieties possess entirely different economic values. Hence,

during citrus harvesting, a large number of experienced fruit pickers

are required to be employed by variety. This practice not only

diminishes harvesting efficiency (Wang et al., 2023) but also

escalates labor costs (Tang et al., 2024), ultimately reducing the

growers’ profits. However, the fertilizer requirements vary

significantly among different citrus varieties. Therefore, to ensure

both yield and quality, a scientific fertilization process tailored to

the citrus variety is essential during automated fertilization.

Therefore, the trend towards intelligent orchard management is

gaining momentum (Wu et al., 2023).

In agricultural production, the adoption of robot-assisted

harvesting (Ye et al., 2023) and fruit variety classification is key

for achieving intelligent orchard management (Koirala et al., 2019).

Agricultural robots excel at performing highly repetitive tasks,

which makes them well-suited for the monotonous and lengthy

labor involved in orchard management (Fu et al., 2022). The

foundation for agricultural robots to achieve variety identification

and automated harvesting is formed by visual detection systems,

serving as the core of intelligent orchard management (Chen et al.,

2024). However, fruit detection faces some challenges. Firstly,

misjudgments can easily occur due to the subtle visual differences

between different citrus varieties. Secondly, randomly distributed

growth of citrus fruits results in overlapping fruits and obstruction

by tree branches and leaves. Therefore, to identify the fruit types,

researchers have conducted numerous explorations. In recent years,

with the development of deep learning technology, detection

methods based on deep learning have been gradually applied in

the agricultural domain. Among them, these methods are primarily

divided into two-stage algorithms and single-stage algorithms.

Two-stage algorithms involve neural network models that are

relatively large, such as Fast R-CNN (Girshick, 2015), R-FCN

(Dai et al., 2016), Mask r-cnn (He et al., 2017), SPP-Net (Purkait

et al., 2017), FEANet (Deng et al., 2021). These algorithms have

slower computational speeds and cannot meet the real-time

detection requirements. Single-stage algorithms mainly include

YOLO (You Only Look Once) (Redmon et al., 2016) and Single

Shot Multibox Detector (SSD) (Liu et al., 2016). Chen et al. (2022)

proposed a method that combines YOLOv5 with visual saliency

maps, which uses a visual saliency detection algorithm to identify

the ripeness category of citrus by YOLOv5 detection. Continuously

refining deep learning methods allows for better detection of

obscured objects. Hou et al. (2022) utilized the YOLOv5s method

improved by binocular vision to detect and locate mature citrus
Frontiers in Plant Science 02
fruits under uniform lighting, achieving a recall rate of 98%.

However, this method did not perform variety detection on the

target fruit. Sozzi et al. (2022) validated the YOLOv4 algorithm as

the optimal method for balancing speed and accuracy by detecting

red and white grapes. Riaz et al. (2020) used neural networks to

classify four varieties of oranges, with an accuracy rate of only 80%.

Rodrıǵuez et al. (2018) used convolutional neural networks to

classify plum varieties with an accuracy of 91%, but did not

consider the complex environment in orchards. But the detection

accuracy is not high enough. Zhao et al. (2023) introduced the

IMVTS model for classifying tea buds of different varieties with an

accuracy of 99.87%. Despite notable advancements in object

detection through deep learning, challenges persist in citrus

variety classification attributed to the intricate orchard

backgrounds and subtle variations in appearance size among

different citrus varieties. Therefore, to enhance the model’s

feature extraction capability, this paper chose the YOLOv7 (Wang

et al., 2023) network as the base model and constructed the

YOLOv7-BiGS network. In this network, the BiFormer attention

mechanism (Zhu et al., 2023) has been incorporated to enhance the

ability to extract citrus texture features, aiming to improve the

capability of the backbone network in citrus feature extraction. To

reduce the complexity of the network model while maintaining

accuracy, the GSConv module (Li et al., 2022) has been integrated

into the YOLOv7 network. The detection results of YOLOv7-BiGS

are analyzed using multiple metrics, and the performance of

YOLOv7-BiGS is experimentally compared with the performance

of other major object detection models. The effectiveness of the

GSConv module and BiFormer attention mechanism was verified

through ablation experiments.

The main contributions of this study are as follows: (1) Model

Innovation: Our innovation lies in the development of the YOLOv7

BiGS model, specifically designed to excel in citrus variety detection

amidst complex backgrounds. Through meticulous optimization of

the network architecture and the integration of an advanced

attention mechanism, our model achieves remarkable accuracy

even in challenging scenarios. (2) Datasets Development: We

constructed a comprehensive dataset comprising real-world citrus

fruit images captured in orchard environments. This dataset will

serve as a valuable resource for training and evaluating the model,

providing diverse and realistic data for optimal performance

assessment. (3) Performance Enhancement: Leveraging the

combined power of GSConv and the BiFormer attention

mechanism, we have successfully elevated the detection accuracy

and computational efficiency of our model. This strategic

integration enhances the model’s capability to accurately

identify citrus varieties while optimizing resource utilization. (4)

Real-Time Application Potential: Our method boasts a compact

model size and superior computational efficiency, positioning it as a

viable solution for real-time citrus fruit detection applications. With

its streamlined architecture and rapid processing capabilities, our

model holds significant promise for seamless integration into

practical deployment scenarios. This technological support

contributes significantly to intelligent management in citrus

orchards and ensures the supply of raw materials for citrus

peel production.
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2 Image data pre-processing

2.1 Image data acquisition

In this study, images were captured using Canon EOS 760D

cameras from 1 pm to 4 pm on sunny days at the MeiQie Orchard

in XinHui District, Jiangmen City, Guangdong Province, China, for

two citrus species: XinHui citrus and Emperor citrus. As shown in

Figure 1, Figure 1A shows XinHui citrus, and Figure 1B shows

Emperor citrus. From the appearance, it can be seen that the texture

features of Emperor’s citrus are relatively delicate, while the texture

features of Xinhui citrus are relatively rough. A total of 400 images

of XinHui citrus and Emperor citrus were obtained, with uneven

conditions such as leaf occlusion, overlap occlusion, branch

occlusion, similar visual appearance to the background image,

dense targets, branch occlusion, back light, front light, side light,

and other fruit natural scenes, and saved in JPG format.
2.2 Data labeling

The annotated dataset is manually annotated with citrus fruits

using LabelImg and saved in YOLO format. The annotated

rectangular frame conforms to the outline of the fruit. When

drawing a rectangular box, if the object is obstructed by branches,

leaves, or citrus fruits, the contour is drawn based on experience to

depict the actual size of the object. When labeling citrus fruits, only

the citrus fruits with clear textures in the images are labeled, and

situations such as blurred textures, severe occlusion, and dim

backlight are not labeled, totaling 400 images.
2.3 Data augmentation

Data augmentation is a commonly used technique that

increases the diversity and richness of training data through a

series of transformations and expansions, helping to enhance the

model’s generalization ability. The data augmentation methods

include image rotation, flipping, cropping, scaling, changing

image brightness, changing contrast, adding Gaussian noise,
Frontiers in Plant Science 03
adding salt noise, and other operations. The images with

augmented data for the collected images and annotations are

depicted in Figure 2.

The amount of data in the training set has increased from 400 to

3060, with a total of 297 sheets in the test set and 19 sheets in the

validation set, respectively. The operation of data augmentation can

simulate various changes and noise in actual scenarios, thereby

making the model better adapt to different situations.
3 Methods

3.1 YOLOv7-BiGS

The YOLO algorithm’s classification ability and relatively high

accuracy have great advantage in object detection networks, so the

YOLO series has been widely applied in the field of agriculture.

YOLOv7 can be trained and can be used to detect when the image

quality is unsatisfactory due to image blurring caused by shooting,

foliage occlusion, and fruit overlap (Yuan, 2023). Compared with

the two-stage algorithms, YOLOv7 is able to achieve high accuracy

and high efficiency, and possesses strong comprehensive

performance for fast and accurate object identification and variety

detection. Therefore, in order to achieve the high accuracy in

XinHui citrus variety detection, YOLOv7 is optimized and

improved in this paper, which is capable of recognizing citrus

with incompletely exposed fruits due to leaf occlusion or fruit

overlap. The size of input images in the YOLO model is 640 �
640. The YOLO model uses 3 � 3 or 1 � 1 convolution kernels.

These convolution kernel sizes are selected based on empirical

evidence and computational considerations. The 3 � 3

convolution kernel captures spatial information of local regions in

the input image, while the 1 � 1 convolution kernel performs

channel level operations to adjust the depth of feature mapping. In

the experiments, it is shown that the YOLOv7-BiGS model achieved

better results in citrus variety detection.

The network structure of YOLOv7-BiGS primarily consists of

two parts: Backbone and Head. The function of extracting image

features is mainly implemented within the Backbone. The improved

BRA module replaces the ELAN module in the Backbone. In the
FIGURE 1

Comparison of citrus texture collected from orchards. (A) Xinhui citrus. (B) Emperor citrus.
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BRA module, a BiFormer attention module is added to enhance the

neural network model’s feature extraction capability through an

attention mechanism. Considering the characteristics of feature

fusion, there still exist a significant number of model parameters

during the feature fusion process, impacting the speed of fusion.

The ELAN module in the Head is replaced by ELAN-GS. Within

ELAN-GS, the standard Conv module of ELAN is substituted with

the GSConv module, reducing the computational load of the model.
Frontiers in Plant Science 04
The enhanced network structure of YOLOv7-BiGS is illustrated

in Figure 3.

The Backbone network is the feature extraction part of the

YOLOv7-BiGS model and this part extracts high-level features from

the original image. The Backbone network here consists of a series

of convolutional layers, pooling layers, and a BiFormer layer. These

layers are stacked in sequence. The Conv module consists of

convolution, batch normalization, and SiLU activation functions
FIGURE 3

YOLOv7-BiGS network structure.
FIGURE 2

Citrus image after data augmentation.
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to extract features. The Backbone network starts with a

convolutional layer with a 3x3 convolutional kernel and a stride

of 1, which is used to process the input image. On the next layers,

the Backbone network gradually increases the characteristic depth

through the convolutional layers. These convolutional layers

include layers with different numbers of filters and various sizes

of convolutional kernels to gradually extract more complex features.

After some of the convolutional layers, the backbone network

includes a Max Pooling layer to reduce the size of the feature

map and enable the network to capture information at different

scales. The BiFormer layer integrates BiFormer attention

mechanisms, convolution operations, and routing operations to

sharpen the model’s attention on specific features and amalgamate

information from diverse feature layers. As the backbone network

progresses, multiple feature layers undergo concatenation,

fostering the accumulation of comprehensive multi-scale

information. This amalgamation is pivotal in extracting intricate

feature representations essential for subsequent processing by

the head network, ultimately culminating in precise object

detection results.

The Head network is the output generation part of the

YOLOv7-BiGS model, transforming the feature mappings

extracted from the backbone network into the output for object

detection. The Head network consists of a series of convolutional

layers, an upsampling layer, a concatenation and a customized

ELAN-GS layer, as well as an object detection layer. The Head

network consists of multiple convolutional layers with different

numbers of filters and various convolutional kernel sizes, and these

layers are used to process the feature mapping from the neck

network. The Head network zooms in on the feature maps on the

upsampling layer to merge them with different scales of feature

maps from the neck network. The feature maps from different layers

of the neck and the head network are merged by concatenation to

combine the multi-scale information. ELAN-GS is an improved

part by replacing the ELAN normal convolution in YOLOv7 with

GSConv. Detect is the last layer of the head network, which is used

to generate the output of object detection. It accepts feature maps

from different scales and uses anchors for object detection,
Frontiers in Plant Science 05
generating detection boxes along with the corresponding category

confidence and position information for each box.
3.2 BiFormer attention mechanism in
the Backbone

In orchards, the texture features of citrus are characterized by

low resolution, limited pixel area, tiny objects and so on. In

addition, the texture features of XinHui citrus show a dense

distribution. In this paper, the feature fusion part is enhanced by

adding the BiFormer attention mechanism, which adaptively

adjusts attention weights based on the features of the input

image, allocating different levels of attention to different positions

or features. In the prediction stage of the YOLOv7 model, the

anchor boxes frames generated by prediction rely on NMS (non-

maximum suppression) to filter out a large number of low

confidence boundaries, which often results in misjudgment of

citrus varieties due to low-resolution images with poor pixel area.

The design of the BiFormer attention aims to decrease the model’s

reliance on external information and utilize the original feature

information to encode as much correlated information as possible

for different locations, achieving attention focus.

BiFormer is a variant of the Transformer model BiFormer

introduces a dynamic attention mechanism into the original

Transformer Model to enable more flexible content-aware

computational allocation through bi-layered routing, and to allow

the model to possess a sparsity of dynamical query-awareness. To

this end, we proposed to add the BiFormer attention mechanism to

YOLOv7 to strengthen the model’s ability to focus on textural

features, as shown in Figure 4. It adds information of trivial objects

by associating their perceptual features with the scene, and uses

broader contextual information in the scene to assist in inferring the

location or class of the trivial objects. Specifically, the core of the

BiFormer attention module is BRA (Bi-level Routing Attention),

which consists of region partition and input projection, region-to-

region Routing with Directed Graph, and region-to-regional

Routing with Directed Graph and Token-to-token Attention.
FIGURE 4

Computational schematic of BiFormer.
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The concrete representation of attention: Queries Q∈ RNq�C,

Key K∈ RNm�C, value vector Value V∈ RNm�C as input, R denotes

the domain of real numbers as in Equation (1)

Attention(Q,K ,V) = softmax QKTffiffiffi
N

p
� �

V (1)

H (height), W (width) and C (channel) denote the height, width

and number of channels of the input image, respectively. Q, K, and

V are numeric vectors, and the Softmax function maps the input to

(0, 1) space, and
ffiffiffiffi
N

p
is a scalar.

We will introduce three parts of BRA, the first part is the

“Region partition and input projection”. The input feature mapping

is first divided into S × S disjoint regions, and then the query, key,

and value vectors are obtained by dividing the linear projection of

X, as in Equation (2):

Q = XrWq,K = XrWk,V = XrWv (2)

Q, K, V, Xr ∈ RS2�HW
S2

 �C; Wq,Wk and Wv ∈ RC�C are the

weights of each linear projection.

The second part of BRA, “Region-to-region routing with

directed graph”, is presented next. This part computes the regions

that should be focused on by constructing a weighted directed graph

from the depicted regions of the input feature graph X. First, the

mean values of Q and K in each partition are computed separately

to obtain  Qrand kr ∈ RS2�C . Then, the adjacency matrix Ar for the

semantic correlations between the regions is computed using

Equation (3):

Ar = Qr(kr)T (3)

In order to reduce the number of interactions each region has

with other regions, BRA keeps for each region by indexing matrix ∈o
retain the K most relevant query regions as shown in Equation (4):

Ir = topkIndex(Ar) (4)

In the third part of the BRA, “Token-to-token attention”, key

and query are integrated for GPU (Graphics Processing Unit)

operations as shown in Equation (5):

Kg = g(K , Ir),Vg = g(V , Ir) (5)

where g(·) is the operation of collecting the tensor.
Frontiers in Plant Science 06
Therefore, we can represent the BRA according to the

Transformer self-attention defined by Equation (6):

BRA = Attention(Q,Kg ,Vg) + LCE(V) (6)

Among them, LCE is a local enhancement operation of multi-

scale token aggregation by deep convolutional networks. By adding

the BiFormer dynamic attention mechanism, the background

interference is reduced. Under the premise of maintaining

efficient detection, more features are captured and the detection

accuracy is improved. As a core building block of Vision

Transformers, the attention mechanism is a powerful tool for

capturing long-distance dependencies. BiFormer attention is a

major attention module that combines both global and local

attention mechanisms, which it utilizes simultaneously. Global

attention allows the model to interact with information over the

entire input feature map, while local attention allows the model to

focus on specific local regions. This combination helps the model to

capture both global and local feature information, thus improving

the model’s performance.
3.3 GSConv in the neck

During object detection, more and more lightweight networks

are being proposed in order to enable the deployment of algorithms

into mobile scenarios. In the case of automatic picking devices in

citrus orchards, lightweight neural network models are needed.

Therefore, the neck of the YOLOv7 network model is improved to

be lightweight by replacing the original convolution with GSConv

in the ELAN of the neck. The GSConv module is a mixture of three

convolutions: the standard convolution, the depth-separable

convolution, and the Channel Shuffle as shown in Figure 5. The

feature information generated by the standard convolution is

infiltrated into each module of the feature information generated

by the depth-separable convolution through the channel shuffle

mixing strategy, so that the convolution calculation of the method is

close to the output of the standard convolution. The non-linear

representation of the feature information is enhanced by the

addition of a depth-separable convolutional layer and a Shuffle

layer, making the GSConv convolution more suitable for

lightweight model detectors.
FIGURE 5

Structure of the GSConv module.
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As the spatial information of the image is gradually converted

into channel information when performing feature extraction on

the image using convolutional neural network. Each spatial

compression and channel expansion results in the loss of

semantic information. Within channels, dense convolutional

computation maximally preserves the hidden connections among

each channel, but the sparse convolution between channels

completely disrupts these connections. However, GSConv enables

the output of convolution to be close to that of the original network,

thus improving inference speed and accuracy with fewer

parameters. GSConv is a special kind of convolutional operation

in Convolutional Neural Networks (CNNs), which introduces the

Channel Shuffle operation, aiming at fully mixing the information

from the SC (Standard Convolution) into the DSC (Depth

Separable Convolution) output to maximize the preservation of

inter-channel connectivity information. Channel Shuffle is a

homogeneous mixing strategy that propagates the information

generated by SC (standard convolution) to the output of DSC

(deep separable convolution) by exchanging local feature

information on different channels.

The input feature maps are first subjected to a SC (Standard

Convolution) operation, in which the connection information

between channels is preserved. Then, the information generated by

SC is evenly mixed into the output of DSC (Deep Separable

Convolution) by Channel Shuffle operation. This process helps to

overcome the drawbacks of DSC by introducing more SC information

into DSC. The final output feature map contains a mixture of

information from SC and DSC, which improves the accuracy.

The GSConv module mainly consists of Conv module,

DWConv module, Concat module and Shuffle module, and its

mathematical expression is (Equation 7), fshuffle denotes the shuffle

operation, fconv consists of a standard convolution, a batch

normalization operation and an activation function consists of a

standard convolution, a batch normalization operation and an

activation function, and fdsc denotes a depth-separable

convolution (DSC), a batch normalization operation and an

activation function.

Xout = fshuffle cat(fconv(Xin), fdsc fconv(Xin)))ð Þð (7)

We embedded the GSConv module into the feature fusion stage,

allowing us to reduce the number of parameters while maintaining

high accuracy in our model. We did not use GSConv in the neck

network because it would lead to deeper layers of the neck network,

and a deeper network would exacerbate the resistance to spatial

information flow (Hou et al., 2022).
4 Experimental results and discussion

The training and testing of this research work were

experimented using a computer having an Ubuntu22.04LTS

operating system, Core i9–9900 CPU @ 64-bit 4.90 GHz, 24 GB

RAM (NVIDIA GeForce RTX 3090 GPU), python 3.8.18 and torch-

1.11.0+cu113. The YOLOv7-BiGS including other compared

models used in this paper received an input image of 640 × 640

pixels, 1 batch size, 0.937 momentum, 0.0005 weight decay, 0.2 IoU,
Frontiers in Plant Science 07
0.015 hue, 0.7 saturation, 0.4 lightness, 1.0 mosaic, 0.9 scale, 0.2

translate, 0.15 mix-up, and 150 epochs for training. Random

initialization technique was utilized to initialize the weights for

training all the models from scratch.
4.1 Evaluation of neural network
model metrics

The relevant indicators for evaluating the effectiveness of neural

network models are as follows (Sirisha et al., 2023): Precision,

Recall, and AP. For binary classification problems, samples can be

divided into four types: true positive (TP), false positive (FP), true

negative (TN), and false negative (FN). The Equations (8) and (9)

for Precision (P) and Recall (R) are as follows:

P = TP
TP+FP (8)

R ¼ TP=ðTP + FNÞ (9)

Average Precision (AP) is the average precision of the model,

and AP is the area under the precision recall curve. Mean Average

Precision (mAP) is the average value of AP. K is the number of

categories. The Equations (10) and (11) for AP and mAP are as

follows:

AP =
Z 1

0
r(g)dg    (10)

mAP = 1
ko

k

i=1
APi (11)

The evaluation metric used in the validation is mAP (0.50:0.95)

to select the optimal model. We present the results of mAP

(0.50:0.95) and mAP (0.50) on the test set. MAP (0.50:0.95)

represents the average mAP on different IoU thresholds (from 0.5

to 0.95, in steps of 0.05), and mAP (0.50) represents the average

mAP on 0.5.

Params is used to measure the model complexity. Layer is a

network topology of the model. GFLOPs is the speed of the model

based on computation costs. Size measures the model weight. K is

the convolution is kernel size, o is the output size, and H × W is the

size of the outputted feature map. The Equations (12) and (13) for

Params and GFLOPs are as follows:

Params = ½i� (k� k)� o� + o (12)

GFLOPs = H �W � Params (13)
4.2 Experimental results

Deep learning models are often referred to as black boxes due to

their intricate architecture and multitude of parameters, rendering

their internal mechanisms obscure. This lack of transparency

presents significant hurdles in both training and assessing these

models. To tackle this challenge and ensure the credibility of
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training and evaluation procedures, this paper undertook a

comprehensive analysis of the loss function. Figure 6A depicts

this paper meticulous monitoring of the loss function values

throughout the training phase, with dedicated plots for both the

training and validation datasets. Remarkably, the trends delineated

in Figure 6 signify a consistent convergence of the model as the

training iterations progress. As the model undergoes learning, its

performance steadily improves. The declining validation loss

depicted in Figure 6 correlates with an increasing mAP, as

illustrated in Figure 6B. This convergence serves as compelling

evidence bolstering the validity of our model and affirming the

efficacy of our training and evaluation methodologies.

Based on the experimental results, this paper calculated the

precision and recall at different thresholds and connected the points

to form a PR curve, as shown in Figure 7A. The closer the curve is to

the top-right corner, the less noticeable the decrease in precision as

recall increases, indicating better overall performance of the model.

Figure 7B presents the confusion matrix summarizing the

prediction results for the classification. It can be observed that the

true positive rates for Xinhui Citrus and Emperor Citrus are 86%

and 88%, respectively. The proportion of false positives is very

small, being 8% and 7%, respectively. Occasional instances of false

negatives may be attributed to a high proportion of occlusions and

the influence of complex environmental factors, which can impact
Frontiers in Plant Science 08
the performance of the model. Overall, the classification of citrus

varieties is accurate and comprehensive.

4.2.1 Comparison experiments
Comparison experiments were conducted to evaluate the

performance of classical object detection algorithms from the

YOLO family, including Citrus-YOLOv7 (JChen et al., 2022) and

the YOLOv7-BiGS algorithm. Citrus-YOLOv7 is enhanced with the

CBAM attention mechanism and GhostConv model. YOLOv7-

BiGS is improved by GSConv and BiFormer, and the results are

obtained from the augmented test dataset, which are shown in

Table 1. In the test set, after data augmentation, the number of

images increased from 40 to 297. In this dataset, two varieties of

citrus, Emperor Citrus and XinHui citrus, are included, and the

ability of varietal classification is also tested. Table 1 shows the

experimental results of the improved model and different YOLO

models on the self-constructed citrus dataset.

Analysis of the experimental results pertaining to the five object

detection models - YOLOv5, YOLOv7, YOLOv8, Citrus-YOLOv7

and YOLOv7-BiGS - as presented in Table 1, delineates the following

observations: YOLOv7-BiGS exhibits superior performance across

precision, recall, and mAP@0.5 metrics, values of 0.91, 0.873, 0.937,

and 0.619, respectively. Citrus-YOLOv7 demonstrates precision,

recall, and mAP@0.5 metrics, with values of 0.87, 0.855, 0.911, and
A B

FIGURE 7

The Precision–Recall curve and confusion matrix of models. (A) Precision–Recal curve (B) Confusion matrix.
A B

FIGURE 6

The Loss map and training outcome of models. (A) Loss map for model training and validation. (B) The training outcome of models.
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0.564, respectively. Comparative analysis reveals the exceptional

accuracy and detection capabilities in YOLOv7-BiGS when

contrasted with other models. Integration of the BiFormer

attention mechanism and GSConv into the YOLOv7 network

structure yields marked enhancements in YOLOv7-BiGS: a 5.8%

elevation in Precision, a 4.8% increase in mAP, and a 5.2%

improvement in Recall, indicative of reduced misclassification of

background elements as citrus. Empirical evidence affirms that the

refined YOLOv7-BiGS exhibits heightened resistance to interference,

enabling more robust detection of citrus-specific features. Thus, the

integration of the BiFormer attention mechanism and GSConv into

the YOLOv7 network structure stands validated as an effective

improvement strategy.
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Some of the detection results are shown in Figures 8A–D.

Figure 8A shows the detection results of YOLOv7-BiGS,

Figure 8B shows the detection results of YOLOv7, Figure 8C

shows the detection results of YOLOv5, and Figure 8D shows the

detection results of YOLOv8. In the same picture, there are small

objects with inconspicuous features at the same time, as shown in

Figure 8, due to the poor quality of the pictures taken, the

differences between the two kinds of citrus are small and difficult

to be recognized easily, and clearer features are needed to be

recognized, which leads to the misjudgment of the results of

YOLOv7 variety detection. However, the confidence level of the

improved YOLOv7-BiGS detection results is also very impressive,

and is capable of extracting features with a high confidence level,

moreover, it can also recognize the citrus that is obscured due to

overlapping fruits. YOLOv7-BiGS was able to accurately recognize

the variety category while overcoming poor image quality.

However, in practice, the unpredictable light conditions are

difficult to standardize, which these conditions affect variety

detection. Therefore, the poor quality of the pictures meets the

practical application scenarios and better highlights the

generalization ability of the YOLOv7-BiGS method.

The dataset used in the results of Table 1 already includes

the XinHui citrus and Emperor citrus. Accuracy indicates the

identification rates of various models for citrus varieties. The results

of YOLOv7-BiGS, as shown in Figures 9 and 10, demonstrate its

classification results for XinHui citrus and Emperor citrus in real

natural environments. The study indicates that YOLOv7-BiGS can

detect citrus varieties with high confidence and successfully complete
FIGURE 8

Comparison of object detection for the same image under occlusion. (A) shows the detection results of YOLOv7-BiGS; (B) shows the detection
results of YOLOv7; (C) shows the detection results of YOLOv5; (D) shows the detection results of YOLOv8.
TABLE 1 Detection results of YOLOv7-BiGS, YOLOv5, YOLOv7, Citrus-
YOLOv7 and YOLOv8 in the test set after data enhancement.

Model Precision
(%)

Recall
(%)

mAP@.5
(%)

mAP@.5:.95
(%)

YOLOv5 0.896 0.821 0.921 0.582

YOLOv7 0.852 0.821 0.889 0.591

YOLOv8 0.887 0.838 0.924 0.609

Citrus-
YOLOv7

0.87 0.855 0.911 0.564

YOLOv7-
BiGS

(this paper)

0.91 0.873 0.937 0.619
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the classification task. Therefore, considering the slight differences in

features and details among different citrus varieties, the YOLOv7-BiGS

citrus variety recognition model can extract richer citrus features,

thereby accomplishing the task of variety detection.

4.2.2 Ablation experiment
The initial experimentation on the citrus dataset utilized

YOLOv7 as the baseline model. The findings indicated that

YOLOv7 performed well in detecting clear, medium-sized, and

large targets. However, there remained room for improvement in

detecting partially obscured and unclear targets. Consequently, an

attention mechanism was introduced into YOLOv7 to enhance the

model’s feature extraction capabilities.

This paper adopts an approach combining ablation experiments

and comparative experiments to validate the effectiveness of the
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proposed algorithm. Ablation experiments, as depicted in Table 2,

are conducted to dissect and verify the efficacy of the improvements

made. Through the ablation experiment, components were added

sequentially and the improved network performance after adding

components was compared to verify the necessity of the

corresponding improvements. By training the data set after data

enhancement, the weights generated after training are utilized to

test the test set. First of all, the standard convolution in ELAN is

replaced with GSConv based on YOLOv7. Meanwhile, the original

standard convolution is replaced with Partial Conv (Chen et al.,

2023) in the YOLOv7 network module ELAN, and the

performances of the networks after the replacement of

convolution are compared respectively. Finally, the BiFormer

attention mechanism is added to the high-performance

convolutional model to compare the performance. The results of
FIGURE 10

Results of YOLOv7-BiGS for the detection of Emperor citrus.
FIGURE 9

Results of YOLOv7-BiGS for the detection of XinHui citrus.
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the comparison with the original algorithm YOLOv7 are shown

in Table 2.

Based on the experimental results in Table 2, when Partial Conv

and GSConv were separately integrated into YOLOv7, the precision
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achieved was 0.878 and 0.885, respectively, accompanied by a

reduction in parameters for both adaptations. Upon comparison,

the addition of GSConv exhibited higher precision than the

inclusion of Partial Conv, surpassing the original model’s metrics.

Therefore, the performance of the network model improved notably

after the incorporation of GSConv. Post the GSConv integration, to

enhance the neural network’s ability to extract citrus features, the

BiFormer attention mechanism was embedded into the ELAN layer

of the Backbone, resulting in the creation of the YOLOv7-BiGS

neural network model. Experimental results indicate that despite a

slight increase in computational load, YOLOv7-BiGS achieved the

highest precision.

4.2.3 Object detection capability of YOLOv7-BiGS
under partial occlusion

In order to verify the real object detection ability of the

improved model YOLOv7-BiGS in natural environments, the test

results of YOLO series models are compared under occlusion

respectively. A total of 26 occluded images are used as the test
FIGURE 11

The partially occluded citrus test set.
TABLE 2 Results of ablation experiments of YOLOv7-BiGS on the test
set after data enhancement.

Model Precision
Recall
(%)

mAP@.5
(%)

Parameters

YOLOv7 0.852 0.821 0.889 36487166

YOLOv7
+Partial Conv

0.878 0.859 0.854 31978494

YOLOv7
+GSConv

0.885 0.881 0.934 34211966

YOLOv7
+BiFormer
+GSConv

0.91 0.873 0.937 36679038
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set. The partially occluded citrus test set is shown in Figure 11 and

the test results are shown in Table 3.

From Table 3, it can be observed that YOLOv7-BiGS has the

highest accuracy in detecting partially occluded citrus fruits,

reaching 0.991. Two of the citrus images is selected from the test

set, as shown in Figure 12. The comparison of object detection for

the same image under occlusion is shown in Figure 12A for

YOLOv7-BiGS, Figure 12B for YOLOv7, Figure 12C for YOLOv5,

and Figure 12D for YOLOv8. From the detection results in
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Figure 12, it can be seen that the improved YOLOv7-BiGS

algorithm can effectively detect the citrus object detection.

Meanwhile, it can also recognize the citrus that is not fully

exposed due to the leaf cover. In Figures 12B–D, these algorithms

fail to detect the citrus that is more than 50% obscured by the leaves.

As in Figure 12A, YOLOv7-BiGS was able to recognize citrus with

overlapping fruits. In Figures 12B–D, these algorithms failed to

detect the overlapped citrus or produced false positives. From the

comparative detection results, it can be seen that YOLOv7-BiGS has

the highest precision of 0.991 under occluded environments.

Therefore, the improved algorithm effectively increases the

detection rate of citrus objects in branch and leaf occlusion and

object overlapping citrus images.
5 Conclusions

The paper proposes a non-destructive identification method for

citrus varieties, which can automatically classify citrus fruits with

similar appearances to improve the accuracy of variety detection.

Initially, the authors collected images of various citrus varieties and

constructed a dataset consisting of 3060 images by altering

brightness, contrast, and adding noise. Secondly, they utilized

YOLOv7 as the base network, integrating the BiFormer attention

mechanism into the ELAN in the Backbone, and replacing the

original convolution with GSConv in the Head. The main

conclusions are as follows:
(1) YOLOv7-BiGS successfully accomplishes the variety

detection task, and outperforms YOLOv7 in citrus variety

detection performance. YOLOv7-BiGS achieves a mean

Average Precision (mAP) of 93.7%, which is a 4.8%

improvement over the original YOLOv7 model.

(2) Through ablation experiments, it is demonstrated that the

combination of GSConv and BiFormer with YOLOv7

achieves the best performance.

(3) Compared with YOLOv5, YOLOv7, and YOLOv8,

YOLOv7-BiGS exhibits better detection capability in

complex environments.
The research findings indicate that the YOLOv7-BiGS model

performs well in citrus variety detection tasks, providing technical

support for smart agriculture, particularly in the breeding of citrus

varieties like Chenpi. Additionally, variety identification technology

can offer more efficient methods for automated management

techniques such as automated fertilization in orchard management,

promoting intelligent management of orchards.
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