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Improved tomato leaf disease
classification through adaptive
ensemble models with
exponential moving average
fusion and enhanced weighted
gradient optimization
Pandiyaraju V.1, A. M. Senthil Kumar1, Joe I. R. Praveen1*,
Shravan Venkatraman1, S. Pavan Kumar1, S. A. Aravintakshan1,
A. Abeshek1 and A. Kannan2

1School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India,
2School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India
Tomato is one of the most popular and most important food crops consumed

globally. The quality and quantity of yield by tomato plants are affected by the impact

made by various kinds of diseases. Therefore, it is essential to identify these diseases

early so that it is possible to reduce the occurrences and effect of the diseases on

tomato plants to improve the overall crop yield and to support the farmers. In the

past, many research works have been carried out by applying the machine learning

techniques to segment and classify the tomato leaf images. However, the existing

machine learning-based classifiers are not able to detect the new types of diseases

more accurately. On the other hand, deep learning-based classifierswith the support

of swarm intelligence-based optimization techniques are able to enhance the

classification accuracy, leading to the more effective and accurate detection of

leaf diseases. This research paper proposes a new method for the accurate

classification of tomato leaf diseases by harnessing the power of an ensemble

model in a sample dataset of tomato plants, containing images pertaining to nine

different types of leaf diseases. This research introduces an ensemble model with an

exponential moving average function with temporal constraints and an enhanced

weighted gradient optimizer that is integrated into fine-tuned Visual Geometry

Group-16 (VGG-16) and Neural Architecture Search Network (NASNet) mobile

training methods for providing improved learning and classification accuracy. The

dataset used for the research consists of 10,000 tomato leaf images categorized into

nine classes for training and validating the model and an additional 1,000 images

reserved for testing the model. The results have been analyzed thoroughly and

benchmarked with existing performance metrics, thus proving that the proposed

approach gives better performance in terms of accuracy, loss, precision, recall,

receiver operating characteristic curve, and F1-scorewith values of 98.7%, 4%, 97.9%,

98.6%, 99.97%, and 98.7%, respectively.
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1 Introduction

In the dynamic landscape of modern agriculture, where crop

health plays a pivotal role in global food production, the precise and

timely management of plant diseases is an ongoing challenge.

Among these agricultural adversaries, leaf diseases emerge as

intricate and multifaceted adversaries with distinct morphological

manifestations. The science of leaf disease classification, a

subdomain of plant pathology, is at the forefront of efforts to

combat these detrimental afflictions. This research aspires to

contribute to the field of leaf disease classification through the

incorporation of pioneering technologies, namely, artificial

intelligence (AI) and machine learning. The criticality of early

detection and accurate classification in disease management

cannot be overstated. Therefore, this study seeks to harness the

potential of advanced algorithms, including convolutional neural

networks (CNNs) and optimization into deep learning

methodologies, to revolutionize the existing approaches to leaf

disease diagnosis. At its core, this research addresses the

challenges posed by leaf diseases by developing a novel

classification system. By utilizing image recognition and deep

learning techniques, this system aims to empower agriculture

practitioners and plant pathologists with a sophisticated tool for

disease identification. The impact of this system extends to many

applications including crop health, reaching into the realms of

global food security, sustainable agricultural practices, and

environmental conservation.

Deep learning is an extension to the machine learning methods

such as neural networks in AI that trains the computer system to

recognize the patterns similar to the human brain. Deep learning

models are trained to recognize even complex patterns found in

images, text, videos, and voice data to perform accurate

classifications and predictions. Deep learning algorithms perform

both feature extraction and feature selection automatically without

needing human effort as required in machine learning algorithms

for training the software based on the algorithms. A CNN is one of

the most important and fundamental deep learning neural network-

based algorithms used for image recognition as it provides

promising and accurate results in computer vision tasks. It has

many architectural implementations including LeNet, AlexNet,

Visual Geometry Group (VGG), GoogLeNet, and ResNet.

Time and space are important parameters to be considered for

prediction-oriented decision-making systems. The temporal and

spatial data on the disease growth in tomato leaves need time series

analysis on image data with temporal reasoning. Moreover,

prediction using time series analysis must focus on the direction

of sequence that can be performed more effectively using machine

learning-based classifiers. Moving average methods support to

smoothen the time series analysis by identifying the temporal

data patterns more effectively. Moreover, smoothing or filtering

helps to eliminate the random variations that occur in the plotted

time series data. An exponential (weighted) moving average method

that applies a simple recursive procedure under the hood provides

flexibility to the algorithm.

Despite the presence of many works on tomato plant leaf

disease detection that are found in the literature, most of the
Frontiers in Plant Science 02
existing systems use a machine learning approach for

classification without any optimizer and temporal analysis.

Therefore, it is necessary to employ manual preprocessing or to

apply additional machine learning-based classification algorithms

or clustering algorithms when performing effective feature

extraction and feature selection. Moreover, the existing systems

that use time series data are not designed to give higher importance

to the most recent data and also do not focus on temporal reasoning

by applying temporal constraints. Moreover, the convergence of the

existing deep learning algorithm employed in the detection of

tomato leaf diseases is not supported by an optimization

algorithm. Finally, ensemble-based classification algorithms are

not employed in the classification process to enhance the

detection accuracy. Therefore, it is necessary to propose a new

ensemble classifier with an optimization component and a temporal

data analysis component.

In this paper, an ensemble model is proposed with an

exponential moving average (EMA) function with temporal

constraints based on interval analysis and an enhanced weighted

gradient optimizer (EWGO) in which the gradient optimizer is

enhanced with temporal rules and that is integrated into VGG-16

and Neural Architecture Search Network (NASNet) CNN

architectures. VGG-16 is a fine-tuned model with a 16-layer

depth developed by the VGG that consists of 13 convolution and

max pooling layers with three fully connected layers, and it applies

stride 2. The learning rate is fixed here as 0.1. The regression-based

and binary classification-based loss functions are used in this work

to reduce the errors. Moreover, the NASNet mobile training

methods are integrated in this ensemble model for identifying the

diseases in tomato leaves by providing improved learning and

classification accuracy.

NASNet is also a CNN model that consists of two types of cells,

namely, the normal and the reduction cells. The EMA method is

used in this ensemble model since it gives more weightage to the

current data in the temporally oriented time series data. Moreover,

the Plant Village dataset is used in this work to carry out the

experiments for testing the ensemble model proposed in this paper.

Moreover, the Plant Village dataset is a publicly available dataset

consisting of 54,305 images from which 1,000 images related to

tomato leaves have been extracted and used in this work for training

and testing the system. The main advantages of the proposed

ensemble model are the increase in classification accuracy and the

reduction in error rate in the detection of tomato leaf diseases.

The main motivation for this research work is that the

profession of agriculture is one of the most vital in every world

economy. It is the main source of resources in our country.

Nowadays, leaf disease has a great impact on the productivity of

vegetables. If we cannot control the disease, then it can greatly affect

the harvest. These problems provide great motivation in finding out

the origin of the disease at an earlier stage to help the tomato plants

grow healthily and increase their yield. Another motivation for this

research is that it addresses the challenges posed by leaf diseases by

developing a novel classification system. By utilizing image

recognition and deep learning techniques, this system aims to

empower agriculture practitioners and plant pathologists with a

sophisticated tool for disease identification. The impact of this
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system extends beyond crop health, reaching into the realms of

global food security, sustainable agricultural practices, and

environmental conservation.

In this work, the Plant Village dataset is used to carry out the

experiments for testing the model proposed in this paper.

Moreover, the Plant Village dataset is a publicly available dataset

consisting of 54,305 images from which 1,000 images related to

tomato leaves have been extracted and used in this work for training

and testing the system. The Plant Village dataset provides data to

detect 39 different plant diseases. Moreover, the dataset contains

61,486 images of plant leaves with backgrounds. The dataset was

designed using six different augmentation techniques in order to

create more diverse datasets with different background conditions.

The augmentations that have been used in this process include

scaling, rotation, injection of noise, gamma correction, image

flipping, and principal component analysis to perform

color augmentation.

The main contributions of this paper are as follows:
Fron
• Proposal of an ensemble model using VGG-16 and NASNet

mobile training deep learning models with an

EMA function.

• Effective time series analysis using the CNN-based deep

learning classifier along with an EWGO.

• Use of the Plant Village dataset for validation.

• Evaluation using suitable metrics.
The research unfolds in the following sequence: Section 2

provides a comprehensive exploration of the taxonomy and

intricacies of leaf diseases. Section 3 is a detailed methodology

section highlighting the technical aspects of image processing and

machine learning, and the revelation of a state-of-the-art deep

learning classification system designed to improve the accuracy

and efficiency of leaf disease identification. In section 4,

performance assessment of the proposed approach and results are

compared with existing techniques. We conclude the research paper

in section 5.

The VGG-16 architecture is a deep CNN designed for image

classification tasks. It was introduced by the VGG at the University

of Oxford. VGG-16 is characterized by its simplicity and uniform

architecture, making it easy to understand and implement.
2 Literature survey

There are many works on tomato leaf detection, machine

learning (Uma et al., 2016; Anusha and Geetha, 2022;

Harakannanavara et al., 2022), deep learning (Haridasan et al.,

2023; Sankareshwaran et al., 2023; Yakkundimath and Saunshi,

2023), optimization techniques, data mining (Das and Sengupta,

2020; Demilie, 2024), regression analysis, image analysis (Ganatra

and Patel, 2020; Ngugi et al., 2021), and prediction techniques that

are found in the literature. Mustafa et al. (2023) proposed a five-

layer CNN model for detecting plant diseases using leaf images. A

total of 20,000 images were used to train the model. This model

detects the pepper bell plant leaf disease with better accuracy. The
tiers in Plant Science 03
results are evaluated in terms of accuracy, precision, and recall, and

F1-scores are computed. The model performs better than state-of-

the-art models. Seetharaman et al. (Seetharaman and Mahendran,

2022) presented a region-based CNN model to detect a banana leaf

disease using Gabor extraction. Images are preprocessed by

histogram pixel localization with media filter. The segmentation

part is done with region-based edge normalization. Feature

extraction is performed using the novel method Gabor-based

binary patterns with CNN. A region-based CNN helps in

detecting the disease area. The results are evaluated and they

perform better than CNN, DCNN, ICNN, and SVM models in

terms of precision, recall, accuracy, and sensitivity.

Nerkar et al. (Nerkar and Talbar, 2021) proposed a method to

detect leaf disease using a two-level nonintrusive method. This

model combines generative adversarial network and reinforcement

learning. Cross dataset learning is used. CNN is combined with

GAN for better results. Re-enforcement learning retrains the GAN

using confidence scores. Classification results are evaluated and

results are higher than other models. Mukhopadhyay et al. (2021)

proposed a non-dominated sorting genetic algorithm for tea leaf

disease detection. Image clustering is the main idea of this model.

PCA is used for feature reduction and multi-class SVM is used for

disease detection. Five various datasets of tea leaf are used in the

work. The proposed model provides better accuracy than

traditional models.

Vallabhajosyula et al. (2022) proposed a transfer learning-based

neural network for plant leaf disease detection. In this work, pre-

trained models were used. The deep ensemble neural network is

used along with pre-trained models. Transfer learning and data

augmentation are used for parameter tuning. The results are

evaluated and provide higher accuracy with lesser number of

computations. Huang et al. (2023) discussed a tomato leaf disease

detection model using the full convolutional neural network (FCN)

with suitable normalization dual path networks. The FCN used to

segment the target crop images and improve the dual path network

model is used for feature extraction. The results are evaluated on the

augmentation dataset and accuracy is better than other models.

Chouhan et al. (2021) proposed a model for leaf disease

detection using the fuzzy-based function network. Initially,

preprocessing is done and the scale-invariant feature transform

method is used for feature extraction. The fuzzy-based function

network is used for detecting the leaf disease. Training is done with

the help of the firefly algorithm. The model results are evaluated in

terms of accuracy and are higher than traditional models. He et al.

(2023) presented a maize leaf disease detection model using

machine vision. The batch normalization layer is appended with

the convolution layer to fasten the convergence speed of the

network. Cost function is developed to increase the detection

accuracy. Four types of pre-trained CNN models are used for

feature extraction network for training. The gradient descent

algorithm is applied to optimize the model performance. The

results are evaluated in terms of F1-score, recall rate, and accuracy.

Ruth et al. (2022) proposed a deep learning model for disease

detection using the meta-heuristic algorithm. CNN is used for

feature extraction. The optimal deep neural network is used for

disease detection. A two-level weight optimization is used to
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increase the performance of the detection model. Two-level weight

optimization is achieved using an improved butterfly optimization

algorithm, where the genetic algorithm is used to improve the

butterfly optimization algorithm. The results are evaluated in terms

of sensitivity, accuracy, and specificity. The overall accuracy is

higher than other traditional models. Andrushia et al. (Andrushia

and Patricia, 2020) presented a leaf disease detection model using

the artificial bee colony optimization algorithm. Initially,

preprocessing is done by removing noises and background

images. Shape, color, and texture are extracted as features and are

sent to the support vector machine model for disease detection. The

model results are better in terms of recall, precision, and accuracy.

Abed et al. (2021) presented a novel deep learning model for bean

leaf disease detection. This model contains two phases: detection and

diagnosing. For detection, the U-Net architecture using the ResNet34

encoder is used. In the classification part, results are evaluated for five

different deep learning models. The dataset contains 1,295 images of

three classes such as healthy, bean rust, and angular leaf spot. The

results are evaluated in terms of sensitivity, specificity, precision, F1-

score, and area under the curve (AUC). Pandey et al. (Pandey and Jain,

2022) proposed a deep attention residual network using an opposition-

based symbiotic organisms search algorithm. In this model, residual

learning blocks are used with the attention learning mechanism for

feature extraction. A new CNN model, AResNet-50, is designed for

disease detection. The opposition-based symbiotic organisms search

algorithm is used to tune the parameters of themodel. Plants like citrus,

guava, eggplant, and mango leaves are considered for the experimental

analysis. The results of the model are evaluated in terms of accuracy,

and they are better than those of the existing models such as AlexNet,

ResNet-50, VGG-16, and VGG-19. Zhao et al. (2020) proposed a

multi-context fusion network model for crop disease detection. In this

model, standard CNN is used to extract visual features from 50,000

crop disease samples. Contextual features are collected from image

acquisition sensors. A deep, fully connected network is proposed by

combining contextual features and visual features to detect the leaf

disease. The model performance is evaluated in terms of accuracy,

which is higher than state-of-the-art methods.

Wang et al. (2017) proposed a new technique for automatic

estimation of plant disease severity using image analysis through the

effective application of deep learning algorithms. Bracino et al.

(2020) explained the development of a new hybrid model based on

machine learning techniques for the accurate detection of health

using disease classification. Ashwinkumar et al. (2022) proposed an

automated plant leaf disease detection model using deep learning

classification named optimal MobileNet, which is designed based

on CNNs. Khan et al. (2019) developed one optimized method for

disease detection using image segmentation and classification for

identifying the apple diseases. The authors made the decisions by

analyzing whether there is a strong correlation among the features

and also using genetic algorithm for feature selection. Most of the

works found in the literature on tomato leaf disease detection used

the benchmark dataset, namely, the Plant Village dataset

(Kaustubh, 2020).

Sanida et al. (2023) proposed a new methodology for the

effective detection of tomato leaf diseases by identifying them

using a two-stage transfer learning model. Pandiyaraju et al.
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(2023) proposed an optimal energy utilization technique for

reducing the energy consumption via the agricultural sensors

used in precision agriculture. These sensors have been connected

to a WSN that performs energy optimization by using a multi-

objective clustering and deep learning algorithm to reduce the

energy consumption. In another related work, Pandiyaraju et al.

(2020) developed an energy-efficient routing algorithm for WSNs

using clustering of nodes. Moreover, the routing decision has been

made in their work using intelligent fuzzy rules that were applied in

precision agriculture. In the area of agriculture and gardening,

Pandiaraju et al. (Pandiyaraju et al., 2017) proposed a rule-based

intelligent roof control algorithm for effective water conservation

without affecting the agricultural yield with respect to smart terrace

gardening. Such a model can be enhanced to detect the leaf diseases

for providing better yield with minimum water.

Shoaib et al. (2023) presented a review of deep learning

classification algorithms that have been used in the detection of

plant leaf diseases. Santhosh et al. (2014) proposed a farmer

advisory system using intelligent rules based on machine learning

classifier. Jabez Christopher et al. (Jabez et al., 2015) proposed an

optimized classification model that uses rules based on knowledge

mining with swarm optimization for providing effective disease

diagnosis. Gadade et al. (Gadade and Kirange, 2022) proposed an

intelligent approach based on deep learning for the effective

detection of tomato leaf diseases from leaf images that have

captured with varying capturing conditions. Saeed et al. (2023)

proposed one new smart detection methodology for the accurate

detection of tomato leaf diseases by using transfer learning-based

CNNs. Shoaib Muhammad et al. (Shoaib et al., 2022) proposed a

new model for tomato leaf disease detection by using deep learning

algorithms for performing both segmentation and classification of

leaf images.

Sreedevi and Manike (2024) presented a new solution for

identifying the tomato leaf disease based on classification using a

modified recurrent neural network through severity computation.

Prabhjot Kaur et al. (2024) carried out a performance analysis on

the image segmentation models that are used to detect leaf diseases

present in the tomato plants. Thai-Nghe et al. (Nguyen et al., 2023)

presented a deep learning-based approach for the effective detection

of tomato leaf diseases. Chang et al. (2024) developed one general-

purpose edge-feature-guided model for the identification of plant

diseases by enhancing the power of vision transformers. Li et al.

(2023) presented a new lightweight vision transformer model based

on shuffle CNNs for the effective diagnosis of leaf diseases in

sugarcane plants. Thai et al. (2023) proposed a new vision

transformer model designed for the accurate detection of cassava

leaf diseases.

Yu et al. (2023) explained the use of inception convolutional

vision transformers for the effective identification of plant diseases.

Arshad et al. (2023) developed an end-to-end and hybrid model

based on the deep learning framework for the accurate prediction of

potato leaf diseases. Shiloah et al. (Elizabeth et al., 2012) proposed

one new segmentation approach based on machine learning model

for improving the diagnostic accuracy of detecting lung cancers

from chest computed tomography images. Dhalia Sweetlin et al.

(2016) proposed a patient-specific model for the effective
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segmentation of lung computed tomographic images. Singh and

Misra (2017) proposed a machine learning-based model for the

effective detection of plant leaf diseases by performing suitable

image segmentation. Agarwal et al. (2020) developed a new system

for tomato leaf disease detection by applying the CNN classifier.

Chen et al. (2022) proposed the use of the AlexNet CNN model

for the effective detection of tomato leaf diseases by performing

accurate classification of tomato leaf images. Ganapathy et al.

(2014) proposed an intelligent temporal pattern classification

model by using fuzzy temporal rules with particle swarm

optimization algorithm. Jaison et al. (Bennet et al., 2014)

proposed a discrete wavelet transform-based feature extraction

model along with one hybrid machine learning classification

algorithm for performing effective microarray data analysis. Elgin

Christo et al. (2019) proposed a new correlation-based ensemble

feature selection algorithm that has been developed using

bioinspired optimization algorithms integrated with a

backpropagation neural network-based classifier.

Thangaraj et al. (2021) proposed an automated tomato leaf

disease classification algorithm by using a transfer learning-based

deep CNN classifier. Al‐Gaashani et al. (Al-gaashani et al., 2022)

proposed a new model for tomato leaf disease classification by the

application of transfer learning with feature concatenation. Han

et al. (2017) proposed a new weighted gradient-enhanced

classification model not only to provide high-dimensional

surrogate modeling but also to perform design optimization. Wu

et al. (2021) proposed a new distributed optimization method that

uses weighted gradients for solving the economic dispatch problem

pertaining to the multi-microgrid systems. Abouelmagd et al.

(2024) developed an optimized capsule neural network for the

effective classification of tomato leaf diseases. Other approaches

that are used in the detection of leaf diseases include those with deep

learning and also with explainable AI (Rakesh and Indiramma,

2022; Bhandari et al., 2023; Debnath et al., 2023; Nahiduzzaman

et al., 2023).

Despite the presence of all these related work in the literature,

most of the segmentation and classification algorithms use a

machine learning approach for classification. Therefore, it is

necessary to employ either manual work or additional

classification algorithms for performing feature extraction and

feature selection. Moreover, the time series data are not analyzed

by giving higher importance to the most recent data by the

application of temporal constraints. The convergence of the

existing deep learning algorithm employed in the detection of

tomato leaf diseases is not supported by an optimization

algorithm. Finally, ensemble-based classification algorithms are

not employed in the classification process to enhance the

detection accuracy. In order to handle all these limitations that

are present in the existing systems developed for accurate tomato

leaf disease detection, a new ensemble classification model is

proposed in this paper that uses an EMA function with temporal

constraints, and it is supported by an EWGO along with fine-tuned

VGG-16 and NASNet mobile training methods for enhancing the

classification accuracy that can increase the detection accuracy with

respect to the detection of tomato leaf diseases.
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3 Proposed work

3.1 Method

The data that show the features are initially analyzed using

histogram plots and pie charts for better visualization of the data

statistics to check for data imbalance among different classes. It has

been concluded via complete exploration that there is no data

imbalance and that the features of the images have been

completely studied.

Next, the images are preprocessed in order to enhance the

learning ability of our deep learning models. A median filter is

applied on the image to remove noise to improve image quality.

Redundant parts of the image that do not contribute to the model’s

learning process are also removed. Furthermore, the a and b factors

in our images are adjusted in order to modify the brightness and

contrast, thereby making the region of interest more prominent.

The images are finally normalized to have pixel values ranging from

0 to 1, and the data are augmented to ensure a wider scale of

learning by the model.

For the initial part of feature extraction, the VGG-16 transfer

learning model undergoes fine-tuning by unfreezing its last five

layers, enabling to adapt the model that originally contained

ImageNet’s weights to the specified dataset. By employing the use

of Global Average Pooling to pool the CNN layers’ features, the data

are then passed into two fully connected layers ultimately leading to

the output layer. The optimization of the model is achieved using

the Adam optimizer with a learning rate of 0.0001, and evaluation

metrics such as the F1-score, AUC score, precision, and recall

are applied.

The NASNet mobile transfer learning model is employed with

ImageNet weights for the next part. A flattened layer is then used to

transform the outputs from the CNN layers into a one-dimensional

tensor that facilitates the passage through three fully connected

layers that ultimately reach the output layer. The optimization of

the model is once again achieved using the Adam optimizer with a

learning rate of 0.0001, and evaluation metrics such as the F1-score,

AUC score, precision, and recall are applied.

The extracted features obtained from the two transfer learning

models are now taken and passed on as parameters to a custom

ensemble layer that incorporates EMA function that emphasizes the

recent data points with greater weights. The resulting ensemble

model shows an optimized learning curve by adopting the adaptive

rate of learning, which is achieved by using a custom EWGO that

modifies the learning rate based on custom ensemble weight

suitable for our custom ensemble model.
3.2 Dataset

This research utilizes the dataset (Kaustubh, 2020) that consists of

a collection of tomato leaf images, each belonging to one of nine

distinct categories, representing various leaf diseases or a healthy state

(no disease). The dataset encompasses a total of 10,000 images

designated for training and an additional 1,000 images reserved for
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testing. To facilitate model development and evaluation, we

partitioned the training dataset into a 75%–25% split, resulting in

7,500 images allocated for training and 2,500 images for validation,

and the entire additional 1,000 images were reserved for the test set.

This dataset serves as the foundation for the development of the

proposed model, which aims to enhance the classification of tomato

leaf diseases.
3.3 Preprocessing

The following are the steps involved in preprocessing:
Fron
• Median filter

• Image cropping

• Brightness and contrast adjustments

• Normalization
3.3.1 Median filter
The first step of data preprocessing utilizes a median filter,

which is a non-linear digital image filtering technique that runs

through the signal as one entry after another by replacing the entry

value by the median of the neighboring entry values, which depends

on the window size, resulting in the removal of the salt-and-pepper

noise in an image. In this case, a window size of 3 has been chosen

for preprocessing the image.

This median filter is represented mathematically as shown in

Equation (1):

g(x, y) = Med(f (x, y)) (1)

where f(x,y) is the window array and g(x,y) is the median value

of the window array. The steps for the median filter are shown in

Algorithm 1.
f unction  median _ filter() :

input :  raw  tomato _ leaf _image;

output :  median _ filtered _ image;

image = input;

l = length  of  image;

b = breadth  of  image;

c = channels  of  image;

w =  window _size;

filtered _ image = create _ empt;y _ image(l,b)

b _ image = img½l�½b�½1�;
g _ image = img½l�½b�½2�;
r _ image = img½l�½b�½3�;
for  i =   0  to  l − 1   do:

for  j = 0  to  b − 1   do :

b _ img = image½i�½j�½1�
g _ img =  image½i�½j�½2�;
r _ img =    image½i�½j�½3�;

end   for

end   for

apply _ median _ filter(b _ img,w);
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apply _median _filter(g _ img,w);

apply _median _filter(r _ img,w);

for  i = 0  to  l − 1   do :

for  j =   0  to  b − 1   do :

filtered _ image = ½bimg½i�½j� ,gimg½i�½j� ,rimg½i�½j��;
end   for

end   for

end   function

End

Function  apply _ median _ filter() :

input :  single _ channel _ tomato _ leaf _image;

output :  median _filtered _single _channel _ image;

len = length  of  img;

bt = length  of  img;

applied _ img = create _ array(len,bt);

wh = w=2  ;

for  x = 0  to  len − 1   do :

for  b = 0  to  bt − 1   do :

window = ½�;
for  i = −wh  to  wh − 1   do :

for  j = −wh  to  wh − 1   do :

winx = x + i;

winy = y + j;

if    winx >= 0  and  winy >= 0    and  winx <

len  and  winy < bt   then :

append  value  to  window

(img½winx�½winy�)
;

end   if

end   for

end   for

end   for

end   function

End
Algorithm 1. Median filter.

3.3.2 Image cropping
Since the outer areas of the image are not helpful with the

tomato disease detection, the size of the image is reduced by 10

pixels on each side, thus reducing the image size from 256 × 256 to

236 × 236 by removing the areas where there are no significant

features for disease detection. The steps for image cropping are

shown in Algorithm 2.
Function  crop _image   () :

input :  median _ filtered _ image

output :  cropped _median _ filtered _image

img =  median  filtered  image

length = length  of  img

breadth =  breadth  of  img

crop _ value = 10

max _ crop _ length = length − crop _value

max _ crop _ breadth = breadth − crop _ value

crop _ image = create  empty  image  of  dimensions(max _

crop _length,max _ crop _ breadth)
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crop _image = img½crop _value :max _crop _ length�½crop _

value :max _crop _ breadth�
end  Function

end
Algorithm 2. Image cropping.

3.3.3 Brightness and contrast enhancements
of images

For better-quality images and improved ability of the CNN to

identify the region of interest, its brightness is reduced and the

contrast of the image is increased. This mitigates overexposure of

the images, allowing the CNN to extract the features in the region of

interest easily due to better visibility.

Brightness and contrast enhancement can be represented

mathematically as shown in Equation (2):

g(i, j) = af (i, j) + b (2)

where a is the contrast factor and b is the brightness factor. f(i,j)

represents the pixel of the input image, which is the cropped image,

while g(i,j) is the output image where the image’s brightness and

contrast are adjusted using a and b. The procedure for brightness
and contrast enhancements is shown in Algorithm 3.
Function  adjust _ image() :

input :cropped _ median _filtered _image,brightness _

factor,contrast _factor

output :cropped _ filtered _image _ with _ adjustments

image = cropped _ median _ filtered _ image

l←length  of  image

b←breadth  of  image

c  ←  channels  of  image

adjusted _ img←create  empty  image  of  dimensions

 l  and  b

a←contrast _ factor

b←brightness _ factor

for  i = 0  to  l − 1   do :

for  j = 0  to  b − 1   do :

for  k = 0  to  c − 1   do :

adjusted _ img½i�½j�½k�←a*image½i�½j�½k� + b

end   for

end   for

end   for

  end   Function

end
Algorithm 3. Brightness and contrast enhancement.

3.3.4 Image normalization
For better weight initialization and to maintain consistency in

the pixel range of the input, the image is normalized so that all pixel

values are confined to the interval [0, 1]. Due to this, the deep
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learning model’s convergence is enhanced with the range reduction

from 255 to 1 by dividing each pixel value by 255. This process also

improves the learning rate of our proposed model and the stability

of the model during training. The procedure for image

normalization is shown in Algorithm 4.
Function  normalize _ image() :

input :brightness _ and _ contrast _ adjusted _ image

output :normalised _ image

image = input

l←length  of  image

b←breadth  of  image

c  ←  channels  of  image

normalisation _value← 255

normalised _ image←create _ empty _ image(l,b)

for  i = 0  to  l − 1   do :

for  j = 0  to  b − 1   do :

for  k = 0  to  c − 1   do :

normalised _ image½i�½j�½k�←image½i�½j�½k�=255
end   for

end   for

end   for

end   Function

end
Algorithm 4. Image normalization.
3.4 Feature extraction and classification

Upon successful completion of preprocessing, the tomato

leaf images are subjected to appropriate feature extraction

and thereby will be classified using the deep learning model.

This, in turn, will support not only the identification of

diseases in the leaves but also the severity. The deep

learning model used is the VGG-16 fine-tuned model. In

addition, a CNN model, namely, NASNet, is also employed

for the leaf’s disease identification.

Later, an ensemble model consisting offive ensemble blocks and

a final output block is used with the input layer being received from

the output of the VGG-16 fine-tuned model and the NASNet model

as a list. Furthermore, the results are improved for an enhanced

performance with the aid of an EMA-based approach and

optimized with an EWGO.
3.4.1 VGG-16 fine-tuned model
The last five layers of the VGG-16 model are unfrozen and the

weighs of these layers are updated with the data to fine-tune

the model. The optimizers do not modify the parameters of the

remaining layers, which remain frozen, thereby preserving

the weights.
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This model, which is made up of five different blocks, is

composed of convolution layers with rectified linear unit (ReLU)

activation and a max pooling layer, a global average pooling layer,

dense layers, batch normalization layers, and an output dense layer

with softmax activation. The preprocessed image of size 236 × 236 ×

3 is taken as an input into the model, first entering block 1.

Block 1 consists of two convolution layers and a max pooling

layer. Each convolution layer consists of 64 filters, each of size 3 × 3.

Each layer also has a ReLU activation layer that brings in non-

linearity once the feature extraction is done by that layer. The first

convolution layer receives the input as 236 × 236 × 3, and the first

convolution layer produces the output of shape 236 × 236 × 64 after

the activation function. The second convolution layer takes the

input as the output of the first convolution layer and performs

feature extraction and ReLU activation without making any changes

in the shape of the data. Once the output data are produced by the

second convolution layer, the max pooling layer that has a filter size

of 2 × 2 reduces the size from 236 × 236 × 64 to 118 × 118 × 64,

which sends the output to block 2.

Block 2, just like block 1, consists of two convolution layers

where each layer has a ReLU activation function and a max pooling

layer. The only difference is that the input received by the first

convolution layer of this block will be of size 118 × 118 × 64. At the

end of the second convolution, the output will be of size 118 × 118 ×

128 since the number of filters in the convolution layers of the

second block is 128. The max pooling layer reduces the size of the

data from 118 × 118 × 128 to 59 × 59 × 128.

Block 3, unlike the previous two blocks, has three convolution

layers where each layer has a ReLU activation function and a max

pooling layer. The functionality of the block remains the same with

the difference here being the presence of a third convolutional layer

and the presence of 256 filters in each convolution layer. The first

convolution layer receives the input of size 59 × 59 × 128 from the

max pooling layer of block 2 and produces an output of size 59 × 59

× 256, which is preserved in the second and third convolution layer.

The max pooling layer reduces the size of the data to 29 × 29 × 256.

Blocks 4 and 5 are similar to block 3 with the only difference being

all the convolution layers present in blocks 4 and 5 have 512 filters. The

input received by the first layer of block 4 will be of dimension 29 × 29

× 256 and the output after the third convolution layer will be of size 29

× 29 × 512, which, in turn, is reduced to 14 × 14 × 512 by the max

pooling layer. In case of block 5, the input received by the first

convolution layer will be of size 14 × 14 × 512 and the output is

preserved even after the third convolution layer. The max pooling layer

in block 5 reduces its size from 14 × 14 × 512 to 7 × 7 × 512.

The global average pooling layer takes the output of block 5 as input,

which down-samples the multi-dimensional data into single-dimensional

data by finding the average of each feature map where the filter is of size 2

× 2, resulting in the reduction of data size from 7 × 7 × 512 to 1 × 1 × 512.

After this down-sampling, two dense layers with ReLU activation

composed of 128 and 32 neurons, respectively, transform the output

obtained by extracting the features of the preceding layers into data, which

are suitable for classification. Finally, the output layer, i.e., dense layer with

softmax activation, is used to perform multiclass classification. The steps

for VGG-16 fine-tuned model is shown in Algorithm 5.
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input :  preprocessed  tomato  leaf  image

output :trained  finetuned _ VGG16  classifier  for  

tomato  leaf  disease classification

Function  TrainClassifier(preprocessed _ tomato _leaf _

image) :

model←VGG16    multiclass  Classifier  

k←finetuneable  layers

for  layer  in  last  k  model  layers   do

layer←trainable

end   for

b ←batch  size

N ←total  classes  of  tomato  leaf  diseases

h←height  of  preprocessed _ tomato _leaf _ image

w←width  of  preprocessed _ tomato _leaf _ image

c←color  channels  of  preprocessed _ tomato _leaf

_ image

for  epoch = 1  to   100   do

m←learning  rate

while  performance  does  not  plateau   do

batch←obtain  a  batch  of  size   b

feed   batch  into  model  through  layers   L

prob←predicted  tomato  leaf  disease  class  prob

abilities

labels←ground  truth  probabilities

loss,   d ←categorical  cross  entropy  loss

  d ←− log exp

oN
j=1e

xj

 !

xi ←logit  for  class  i ∈ 1, 2,…,Nf g
update  model  parameters   q  through  backpropagat

ion  using  loss d

q← q − m∇d

where  ∇d ←gradient  of  loss   d  with  respect  to  

model  parameters   q

compute   accuracy,

accuracy = oN
k=1(TPk + TNk)

oN
k=1(TPk + TNk + FPk + FNk)

compute   precision,

precision = on
k=1TPk

on
k=1(TPk + FPk)

compute   recall,

recall = on
k=1TPk

on
k=1(TPk + FNk)

compute   F1 − score,

F1 − Score =
2on

k=1TPk

on
k=1(2TPk + TNk + FPk)

use  Adam  optimizer  to  monitor  loss   d  and  tune  

model  learning;

end  while

if  performance  plateaus   then
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update  learning  rate  m  to  promote  further  

learning

end   if

end   for

outputtVGG16 ←output  probabilities  from  model

return  outputVGG16

end   Function

end
Algorithm 5. Tomato leaf classification—fine-tuned VGG-16 training.
input :  preprocessed  tomato  leaf  image

output :trained  NASNet  classifier  for  tomato  leaf  di

sease classification

Function  TrainClassifier(preprocessed _tomato _ leaf _

image) :

model←NASNet    multiclass  Classifier  

b ←batch  size

N←total  classes  of  tomato  leaf  diseases

h←height  of  preprocessed _ tomato _ leaf _image

w←width  of  preprocessed _ tomato _ leaf _image

c←color  channels  of  preprocessed _tomato _leaf _

image

for  epoch = 1  to   100   do

m←learning  rate

while  performance  does  not  plateau   do

batch←obtain  a  batch  of  size   b

feed   batch  into  model  through  layers  L

prob←predicted  tomato  leaf  disease  

class  probabilities

labels←ground  truth  probabilities

loss,   d ←categorical  cross  entropy  loss

  d ← − log exp

oN
j=1e

xj

 !

xi ←logit  for  class  i ∈ 1, 2,…,Nf g
update  model  parameters   q  through  back

propagation  using  loss   d

q← q − m∇d

where  ∇d ←gradient  of  loss   d  with  respect  

to  model  parameters   q

compute   accuracy,

accuracy = oN
k=1(TPk + TNk)

oN
k=1(TPk + TNk + FPk + FNk)

compute   precision,

precision = on
k=1TPk

on
k=1(TPk + FPk)

compute   recall,

recall = on
k=1TPk

on
k=1(TPk + FNk)

compute   F1 − score,
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F1 − Score =
2on

k=1TPk

on
k=1(2TPk + TNk + FPk)

use  Adam  optimizer  to  monitor  loss   d  and  

tune  model  learning;

end  while

if  performance  plateaus   then

update  learning  rate  m  to  promote  further  

learning

end   if

end   for

outputNASNet ←output  probabilities  from  model

return  outputNASNet

end   Function

end
Algorithm 6. Tomato leaf classification—NASNet training.

3.4.2 NASNet
NASNet is a deep learning architecture where an optimal neural

architecture is searched automatically by using the Neural

Architecture Search (NAS) method. For the best performance on

a specific task, the design of the neural network’s topology is

automated using the NAS process.

The NAS algorithm can be generalized as an algorithm that

searches for the best algorithm to perform a certain task. It involves

three different components, namely, the search space, performance

estimation strategy, and search strategy. The search space encompasses

all the potential architectures that can be looked for within the neural

network’s subspace. It can be categorized into two primary types: the

global search space and the cell-based search space. The global search

space offers a high degree offlexibility, accommodating a wide range of

architecture due to its ample operation arrangement options. In

contrast, the cell-based search space is characterized by recurring

fixed structures in effective, manually designed architectures, leading

to the assembly of smaller cells into larger architectural structures.

Without construction or training of a possible neural network,

the performance is evaluated using the performance estimation

strategy, which returns a number or an accuracy value of the

possible model architecture, which the NASNet predicts as a

possible solution. Different search strategies such as grid search,

random search, gradient-based search, evolutionary algorithm, and

reinforcement learning can be used to identify the best architectures

and avoid bad ones before estimating performance. The steps for

NASNet training is shown in Algorithm 6.
3.4.3 Ensemble model
The ensemble consists offive ensemble blocks and a final output

block. The input layer receives the output of the VGG-16 fine-tuned

model and the NASNet model as a list. This input is then passed

through the five ensemble blocks, finally reaching the output layer.

Each ensemble block is composed of a fully connected layer, a

reshape layer, two convolutional layers, a batch normalization layer,

ReLU activation, an ensemble layer, and a max pooling layer.

The ensemble process in the ensemble layer is carried out based

on effective moving average. This layer has two parameters, namely,
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the decay rate, which is responsible for reducing the effective

moving average, and the update rate, which ensures that for every

update rate iteration, the weights in the ensemble layer will be

modified with the help of the effective moving average.

The output layer is responsible for classification.

The effective moving average is represented mathematically as

shown in Equation (3):

EMAupdated = EMA + (PredNASnet − PredVGG16FT ) * d (3)

where EMAupdated is the updated effective moving average;

EMA denotes the effective moving average before the update

operation; PredNASNet and PredVGG16FT are the predictions of

NASNet and the VGG-16 fine-tuned model, respectively; and d is

the decay rate, which is taken as 0.8 in this case.

The predictions of both models are taken as input. Initially, the

prediction of the VGG-16 fine-tuned model was taken as the

effective moving average, which is then updated with the help of

the above mathematical expression. The update rate ensures that

the weights are modified only after a certain number of iterations,

which is two in this case. Therefore, for every second iteration, the

weights are modified by reshaping the effective moving average

tensor for every weight tensor. The reshaped tensor is updated into

the weight tensor as the new weight tensor for the next two

iterations. The procedure for Ensemble classifier training using

EMA is shown in Algorithm 7 and procedure for exponential

moving average-based ensemble weight update in a custom

ensemble layer is shown in Algorithm 8.
Fron
input :  preprocessed  tomato  leaf  image

output :trained  ensemble  with  EMA  classifier  for  tom

ato  leaf  disease classification

Function  TrainClassifier(preprocessed _tomato _ leaf _

image) :

VGG←train  VGG16  classifier;  

NASNet←train  NASNet  classifier;  

b ←batch  size

N←total  classes  of  tomato  leaf  diseases

h←height  of  preprocessed _ tomato _ leaf _image

w←width  of  preprocessed _ tomato _ leaf _image

c←color  channels  of  preprocessed _ tomato _ leaf _ i

mage

for  epoch = 1  to   100   do

m←learning  rate

while  performance  does  not  plateau   do

batch←obtain  a  batch  of  size   b

feed   batch  into  model  through  ensemble  layer

outputensemble ←EMA _ ensemble(VGG,NASNet)

feed   batch  into  model  through  fully  connected  

and  reshape  layers

outputreshape · shape  ← (h,w,c)

perform  convolution  on  outputreshape

O(x,y)←o
m1

i
o
m2

j
o
mc

k

I(x − i,y − j,k) * K(i,j,k)

flatten  convolution  output
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outputflatten : shape← (b ,  h*w*d)

feed  outputflatten  to  output  layer  

prob←predicted  tomato  leaf  disease  class  

probabilities

labels←ground  truth  probabilities

loss,   d ←categorical  cross  entropy  loss

d ←− log exp

oN
j=1e

xj

 !

xi ←logit  for  class  i ∈ 1, 2,…,Nf g
update  model  weights   q  using  Effective  Moving  

Average,   ema

compute   accuracy,

accuracy = oN
k=1(TPk + TNk)

oN
k=1(TPk + TNk + FPk + FNk)

compute   precision,

precision = on
k=1TPk

on
k=1(TPk + FPk)

compute   recall,

recall = on
k=1TPk

on
k=1(TPk + FNk)

compute   F1 − score,

F1 − Score =
2on

k=1TPk

on
k=1(2TPk + TNk + FPk)

use  EWG  optimizer  to  monitor  loss   d  and  tune  

model  learning;

end  while

if  performance  plateaus   then

update  learning  rate  m  to  promote  further  

learning

end   if

end   for

outputNASNet ←output  probabilities  from  model

return  outputNASNet

end   Function

end
Algorithm 7. Ensemble classifier training using EMA for tomato leaf
disease classification.
Initialize  model  ←  EnsembleClassifier(tensor);

Set   decay   rate,  a    ←   0:8;

Set   update   rate,   b  ←   2;  

Set   counter  ←   0;

NasNetOutputs  ←  TrainNasNet(tensor);

VGG16Outputs  ←  TrainVGG16(tensor);

Function  Custom _ EMA _ Ensemble() :

Initialize   ema0  ←  VGG16Outputs

while  EnsembleModel  is  running  do

emai  ←   (1  −  a)   *  emai  −   1   +  a   *  NasNetOutputs

counter  ←   counter   +   1
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if  counter   %     b  ←   0   then  

weights

←½reshape(emai ,  weight :shape)for  weight  

in  current  model  weights�
Update  Ensemble   Layer  weights  

end   if

end  while

end   Function

end
Algorithm 8. Exponential moving average-based ensemble weight
update in a custom ensemble layer.

3.4.4 Layer information during feature extraction
There are a total of 12 layers used during feature extraction as

enumerated below.

3.4.4.1 (i) Convolutional layer

The convolutional layer is the most important layer used in

CNNs, which is responsible for extracting features from the input

with the use of filters or kernels. The kernel is a matrix consisting of a

set of learnable parameters. The convolution process can be defined

as the conversion of pixels in its receptive field into a single pixel. This

operation is performed as the dot product between the kernel matrix

and another matrix, which is the receptive field restricted to a certain

portion. Hence, in the input image that is composed of three color

channels, the kernel carries out the convolution operation in all the

three channels, although the height and width will be spatially small.

The kernel slides across the height and width of the receptive region

of the image. This sliding size is called a stride. The result is a

production of a two-dimensional representation of the kernel at each

spatial position of the image. The convolution operation results in a

feature map as output, which can be represented mathematically as

shown in Equation (4):

O(x, y) =o∞
i=−∞o∞

j=−∞I(x − i, y − j) * K(i, j) (4)

where O(x,y) represents the value in the output feature map in

the position (x, y) and I(x−I,y−j) represents the pixel value in the

input at position (x−i,y−i). K(i,j) represents the value of the kernel

at position (i,j).

3.4.4.2 (ii) Depthwise separable convolutional layer

Depthwise separable convolution handles both the spatial and

depth dimensions. Here, the kernels cannot be factored into smaller

units. This process is split into two steps:
• Depthwise convolution: a single convolution filter is applied

on each input channel.

• Pointwise convolution: it involves the usage of a 1 × 1 filter

that iterates through every single point of the input.
This kernel has a depth equal to the number of channels that the

input has. The usage of a depthwise separable convolution layer

reduces the number of parameters compared to the standard

convolution layer.
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3.4.4.3 (iii) Max pooling layer

The max pooling layer is one of the largely used layers in CNNs,

normally found after the convolutional layer. Its purpose is to

reduce the spatial dimensions (length and breadth in this case) of

the input feature map resulting from the preceding convolution

layer. The feature map is taken by the layer as input, which applies

the max pooling operation where a window slides through the

feature map the window content with the maximum value in the

window, thus down-sampling the feature map. Providing a stride

value lets the CNN know the number of pixels to move while sliding

through that particular layer. The max pooling layer can be

mathematically represented as shown in Equation (5):

O(x, y) = maxk−1i=0 maxk−1j=0 I(x · s + i,   y · s + j) (5)

where O(x,y) is the value in the output feature map at point (x,

y), s is the stride value, and I(x·s+i,y·s+j) is the value in the input

feature map at position (x·s+i,y·s+j), and k is the size of the

pooling window.

3.4.4.4 (iv) Average pooling layer

The purpose of using the average pooling layer is to reduce the

spatial dimensions such as the length and depth of the feature map

just like the max pooling function, but the difference here is that

down-sampling is performed by transforming the window into a

single value, which is the average of the values present in it. This

returns a smoother feature map compared to the max pooling layer,

which returns a feature map focusing on prominent features. The

average pooling layer can be mathematically represented as shown

in Equation (6):

Y ½i, j, c� = 1
kh * kw

  o
kh−1

p=0
o
kw−1

q=0
X½i * sh + p  ,   j * sw + q, c� (6)

where Y is the output after the pooling function, X is the input

feature map, kh is the height of the feature map, and kw is the width

of the feature map. sw and sh are the stride values for height and

width while sliding through the input feature map.
3.4.4.5 (v) Concatenation layer

The concatenation layer concatenates the inputs having the same

size in all dimensions except the concatenation dimension, received

by the layer along a specified dimension. This layer is used whenever

we want to merge the information from different parts of the network

or data modalities. The concatenation operation takes place by

combining multiple input tensors by stacking them along the

specified axis, resulting in a single tensor with an increase in size.

The layer is mathematically expressed as shown in Equation (7):

O½i, j, c� =
 A½i, j, c�               if   0 ≤ c < C1

B½i, j, c − C1�           if  C1 ≤ c ≤ C1 + C2

(
(7)

where O is the output, A is the first input tensor with C1

channels and B is the second input tensor with C2 channels for

the concatenation layer, i represents the height dimension and

ranges from 0 to H, j represents the width dimension and ranges
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from j to W, and c represents the channels and ranges from 0 to

C1+C2.

3.4.4.6 (vi) Addition layer

This layer adds inputs from multiple neural network element-

wise. This operation can be performed when the input tensors have

the same shape. This is done so that the information flows

seamlessly through the network just by the addition of the output

of one layer to the output of the previous layer. This layer is

mathematically represented as shown in Equation (8):

O½i, j, c� = A½i, j, c� + B½i, j, c� (8)

where O is the output, A is the first input tensor and B is the

second input tensor for the addition layer, i represents the height

dimension and ranges from 0 to H, j represents the width

dimension and ranges from j to W, and c represents the channels

and ranges from 0 to C.

3.4.4.7 (vii) Batch normalization layer

This layer helps in making neural networks faster and more

stable by performing standardization and normalization operations

in the feature map that is provided as input to the layer. The

normalization process is carried out in two steps:
Fron
• Normalization

• Rescaling and offsetting
Before performing normalization, the data are fed into the layer

in the form of mini batches. The mean and standard deviations of

these mini batches can be found using the following equations

shown in Equations (9, 10):

m =
1
mo

m

i=1
xi (9)

and

s 2 =
1
mo

m

i=1
(xi − m)2 (10)

where μ and s are the mean of the values in the ith value in the

mini-batch x of size m.

The main purpose of normalization is to transform the data to

have a mean equal to 0 and standard deviation equal to 1, which is

carried out using the expression as shown in Equation (11):

xi(norm) =
xi − μ
s + ϵ

(11)

Two learnable parameters g and b are used for rescaling and

offsetting, respectively, thereby normalizing each batch accurately.

This is represented using the expression shown in Equation (12):

xi = g xi(norm) + b (12)
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where xi is the ith value of mini batch x and xi(norm) is the

normalized ith value of mini batch x.
3.4.4.8 (viii) Dropout layer

The dropout layer acts as a mask to nullify some of the neurons’

contributions towards the next layer while the rest of the neurons

remain unmodified. It aims to prevent overfitting, avoid

dependency on a specific neuron during training, and ensure

better generalization from the model. The neurons are nullified

using a probability for random exclusion such that they behave like

they are not part of the architecture. The layer can be

mathematically represented as shown in Equations (13, 14):

O = X * M   during   training (13)

and

O = X * (1 − p)during   testing (14)

whereO is the output, X is the input, and p is the probability, and

it is scaled to a factor (1 − p) during output since the dropout will be

turned off during the testing phase.M is a binary mask with the shape

same as X and each element of M is set as 0 or 1 depending on p.
3.4.4.9 (ix) Global average pooling layer

The global average pooling layer is a pooling layer that performs

down-sampling. Unlike the usual pooling layer, the global pooling

layer condenses the feature maps into a one-dimensional mapping

that can easily be read by the single dense classification layer. The

mathematical representation is as shown in Equation (15):

O =
1

H*W
*o
H

i=0
o
W

j=0
(F½i,   j�) (15)
3.4.4.10 (x) Flatten layer

This layer performs the flattening operation that reshapes the

input received into a single-dimensional feature vector without

affecting the batch. It is done to allow the fully connected layers to

operate on the multi-dimensional feature maps since the fully

connected layers can only be trained with single-dimensional

feature vectors.
3.4.4.11 (xi) Fully connected layer

The fully connected layer or simply the dense layer is a CNN

layer where all the neurons or nodes in one layer is connected to

every node to the next layer. This layer works with activation

functions such as the ReLU during feature extraction and softmax

during multiclass classification. It is represented as a mathematical

function as shown in Equation (16):

O = f W*X + bð Þ (16)
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where X is the input,O is the output,W is the weight matrix, b is

the bias vector, and f is the activation layer, which would be ReLU in

case of feature extraction and softmax in case of classification.

3.4.4.12 (xii) ReLU activation layer

The ReLU is a piecewise linear function used to introduce non-

linearity into the feature map obtained as output before the

activation function is applied. The ReLU function works by

applying a simple thresholding operation where the positive

values remain the same while the negative values become zero.

The ReLU activation function can be expressed mathematically as

shown in Equation (17)

f = max (x, 0) (17)

where x is the input given into the function and f is the

output obtained.

3.4.5 Classification
3.4.5.1 (i) Softmax activation

The softmax activation function is responsible for the multi-

class classification of the vector obtained from the convolution

layers after the feature extraction phase in the output layer. It works

by calculating the exponent of each entry in the vector and dividing

the value by the sum of all the exponents in the vector as shown in

Equation (18).

softmax(xi) =
exi

oN
j=1e

xj
(18)

where x is the input vector and i is the ith entry in the input

vector with N entries. The denominator of the softmax activation is

the sum of the exponents of the entries. This is done for the

conversion of N real number entries into a probability

distribution of N possible outcomes.

3.4.5.2 (ii) Categorical cross-entropy loss function

This loss function (also known as softmax loss) is used with a

CNN to provide an output for the probability of each image over N

different classes. This function is a combination of softmax

activation and the cross-entropy loss function and is thus useful

during multi-class classification. Its use allows the comparison of

the target and predicted values by the CNN model as an output,

thereby measuring the modeling efficiency of the training data by

the CNN. The objective of this loss function is to calculate the

difference between the ground truth and predicted class

distribution. Techniques like gradient descent are used to adjust

the weights and biases for minimalization of this loss, thereby

improving the predictions. The categorical cross-entropy loss

function is written as the negation of logarithmic function of the

softmax function as shown in Equation (19):

CE = − log
exp

oN
j e

xj

 !
(19)
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where CE is the cross-entropy loss, xp is the positive class’ CNN

score, N is the number of classes for classification, and xj is the jth

class’ score.

To backpropagate through the network and optimize the

defined loss function resulting in tuning the net parameters, the

loss’ gradient is calculated with respect to the CNN’s output

neurons given by the gradient of the cross-entropy loss with

respect to each CNN’s class score. The derivatives are represented

mathematically as shown in Equations (20, 21):

Derivative with respect to positive class:

∂

∂ xp
− log

exp

oN
j e

xj

 ! !
=

exp

oN
j e

xj
− 1 (20)

Derivative with respect to negative class:

∂

∂ xn
− log

exp

oN
j e

xj

 ! !
=

exn

oN
j e

xj
(21)

where xn is the score of any negative class in N other than Np,

which consists of the positive classes.

3.4.6 Optimizer
3.4.6.1 (i) Adam optimizer

The Adam optimizer is an extension of the stochastic gradient

descent (SGD) algorithm based on adaptive moment estimation, which

takes advantage of two principles, namely, the momentum and root

mean square propagation (RMSprop). The momentum technique is

used to accelerate convergence in gradient descent by adding the

fraction of the previous gradient update with the current update,

reducing the oscillations. The convergence process speeds up along

shadow dimensions, which assists optimization. RMSprop adapts the

learning rate for each parameter individually by maintaining a moving

average of squared gradients. This helps in scaling learning rates and

making the optimization process more robust. With the help of these

twomethods, the following are obtained as shown in Equations (22, 23):

mt = b1mt−1 + (1 − b1)
dL
dWt

� �
(22)

vt = b2vt−1 + (1 − b2)
dL
dWt

� �2
(23)

where mt is the estimate of the first-order moment, which is the

aggregate of gradients at time t, vt is the estimate of the second-

order moment, which is the sum of the squares of the past gradients

at time t, b1 is the decay rate of average of gradient in the

momentum principle, and b2 is the decay rate of average of

gradient in the RMSprop principle. The moment estimates mt

and vt can be called the weight parameters.

In the Adam optimizer, the bias-corrected weights are

considered such that the weight parameters will not be biased

towards 0. The bias-corrected weight parameters are as shown in

Equations (24, 25):
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cmt =
mt

1 − b t
1

(24)

bvt = vt
1 − b t

2
(25)

These bias-corrected weight parameters are used in the general

weight update equation as shown in Equation (26):

wt+1 = wt −cmt
affiffiffiffibvtp
+ ϵ

 !
(26)

where a is the learning rate or the step size parameter and ϵ is a

small positive constant to avoid division by 0.

3.4.6.2 (ii) Enhanced weighted gradient optimizer

This is a modified Adam optimizer that accepts a custom weight as

a parameter and incorporates the gradients multiplied by the custom

weight into its operation. The custom weights are given as a parameter

and are introduced into the gradients with the values being multiplied.

The modified values are introduced into the Adam optimizer and then

used in our ensemble model. The updated weight with the custom

weight parameter before optimization is as shown in Equation (27):

w = g · wt (27)

This updated weight w is introduced to the weight update

process as shown in Equation (28).

wt+1 = w −cmt
affiffiffiffibvtp
+ ϵ

 !
(28)

where g is the custom weight parameter, a is the learning rate

or the step size parameter, ϵ is a small positive constant to avoid

division by 0, wt is the existing weight before the optimization

process, and wt+1 is the updated weight after optimization. m̂t and v̂t
are the bias-corrected weight parameters. The procedure for

enhanced weighted gradient optimizer is shown in Algorithm 9.
Fron
Initialize   epoch  ←   0;

while  EnsembleModel  is  running  do

  forward pass

predictions  ←  EnsembleModel(batch  i);

loss  ←  CategoricalCrossEntropy(predictions,  

batch   i   _ labels);

end forward pass

backward pass

gradient,  mL    ←   ∂L= ∂ q;  

Custom weights,  mL  custom  ←mL  ·  custom _ weight;

Update  EnsembleModel  parameters,  

q  ←   q   –  a  ·  mL  ;

end backward pass

early stopping check

Monitor  validation  loss  Lval

Criteria :   if  Lval  does  not  improve  for   4  

consecutive  epochs  then  end  training

if  Lval   ≤  best  loss   then
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best  loss  ←  Lval

patience  counter  ←   0

  else

patience  counter  ←  patience  counter   +   1

if  patience  counter   ≥   4   then

Break  training  loop;

end if

end else

end early stopping check

end while

end
Algorithm 9. Enhanced weighted gradient optimizer.
4 Results and discussion

In this paper, the focus of research starts by addressing a

pressing issue in agriculture: the management of plant diseases,

with a specific focus on tomato plants. Researchers have employed

complex deep learning methodologies and machine learning

models to tackle this challenge. This paper strives to revolutionize

the ways to identify plant diseases, especially those affecting tomato

plants, and manage them accordingly.

The study adopts data analysis and image preprocessing

techniques to ensure that the dataset used is well-balanced and

that the quality of the images is optimized for deep learning models.

It uses methods such as median filtering, resized cropping, and

brightness normalization to enhance the features derived from

them. This meticulous attention to data quality and balance is

crucial in developing a reliable disease classification system. To

extract relevant features from the tomato leaf images, the research

leverages two transfer learning models, VGG-16 and NASNet.

Furthermore, these models are fine-tuned, allowing them to adapt

to the specific characteristics of the dataset. This adaptability

showcases the potential for pre-trained models to significantly

improve classification accuracy when applied to particular datasets.

One of the key novelties is the incorporation of an ensemble model

with an EMA function and an EWGO. This innovative approach

optimizes the learning process, resulting in a more effective and

accurate disease classification system. It stands as a promising method

to enhance the performance of machine learning models in agriculture.
4.1 Performance metrics

The evaluation of the models is robust, using a variety of

performance metrics, including the confusion matrix, specificity,

accuracy, loss, precision, recall, F1-score, ROC curve, AUC, and

misclassification rate. These metrics provide a comprehensive

assessment of the model’s effectiveness, making it clear that the

research is backed by rigorous analysis and empirical evidence. The

overall proposed architecture is shown in Figure 1, the training data

distributions of the dataset is shown in Figure 2, the validated data

distributions is shown in Figure 3, images of dataset after

preprocessing is shown in Figure 4, images of tomato leaves
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observed at each preprocessing step in shown in Figure 5, layer

architecture for VGG-16 tomato leaf disease classifier is shown in

Figure 6, layer architecture for NASNet mobile tomato leaf disease

classifier is shown in Figure 7 and layer architecture for ensemble

model is shown in Figure 8.
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4.1.1 Confusion matrices
The confusion matrix is an n × nmatrix where the rows represent

the actual classes while the columns represent the predicted class. The

data points are stored in the matrix in cells corresponding to the

specific actual class and specific predicted class as count values.
FIGURE 2

Training data distributions of tomato leaf images.
FIGURE 3

Validation data distributions of tomato leaf images.
FIGURE 1

Overall proposed architecture for tomato leaf disease classification.
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FIGURE 4

The images from the tomato leaf dataset after preprocessing, representing (A) late blight, (B) healthy, (C) early blight, (D) septoria leaf spot, (E) yellow
leaf curl virus, (F) bacterial spot, (G) target spot, (H) mosaic virus, (I) leaf mold, and (J) two spotted spider mite.
FIGURE 5

Images of tomato leaves observed at each preprocessing step.
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FIGURE 6

Layer architecture for VGG16 tomato leaf disease classifier.
FIGURE 7

Layer architecture for NASNet mobile tomato leaf disease classifier.
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The above confusionmatrix consists of the values predicted by the

proposed model corresponding to the actual value. The confusion

matrix of the proposed model is shown in Figure 9, the confusion

matrix of the VGG-16 fine-tuned model is shown in Supplementary

Figure 2, the confusion matrix of the NASNet model is shown in

Supplementary Figure 3, the precision values of VGG-16, NASNet,

and the proposed model is shown in Supplementary Figure 4.
4.1.2 Specificity
The specificity is the ratio of true negatives to the actual number of

negative instances in a specific class. This is a metric to measure the

ability of the classifier for correct identification of negative instance

within a specific class.
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It is mathematically expressed as shown in Equation (29):

Specificity of VGG-16, NASNet, and the proposed model is

shown in Figure 10.

Specificity = on
k=1TNk

on
k=1(TNk + FPk)

(29)
4.1.3 Accuracy
Accuracy can be defined as the number of correctly classified

images to the total number of images in the dataset. This can be

expressed mathematically as shown in Equation (30): Accuracy

curves of VGG-16, NASNet, and the proposed model is shown in

Figure 11.
FIGURE 8

Layer architecture for ensemble model.
FIGURE 9

Confusion matrix of the proposed model.
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B

C

A

FIGURE 10

Specificity of (A) VGG-16, (B) NASNet, (C) proposed model.
B

C

A

FIGURE 11

Accuracy curves of (A) VGG-16, (B) NASNet, (C) proposed model.
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Accuracy = on
k=1(TPk + TNk)

on
k=1(TPk + TNk + FPk + FNk)

(30)
4.1.4 Loss
Loss is represented as the measure of the model’s performance

regarding the ability to minimize the difference between the

predicted and actual values. In our case, we have used the

categorical cross-entropy loss function. Loss Curves of VGG-16,

NASNet and the proposed Model are shown in Figure 12.

Precision = on
k=1TPk

on
k=1(TPk + FPk)

(31)
4.1.5 Precision
Precision is calculated as the ratio of the true total number of

instances that are correctly identified as positive by the classifier to

the total number of instances identified as positive by the classifier.

This is mathematically expressed as shown in Equation (31):

Recall = on
k=1TPk

on
k=1(TPk + FNk)

(32)
4.1.6 Recall
Recall or sensitivity is the ratio of the number of true positives to

the sum of the number of true-positive and false-negative instances

in a specific class. This is a metric to measure the ability of the
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classifier for correct identification of positive instances within a

specific class. The recall curves of VGG-16, NASNet, and the

proposed model is shown in Figure 13.

It is mathematically expressed as shown in Equation (32):

F1   Score =
2on

k=1TPk

on
k=1(2TPk + TNk + FPk)

(33)
4.1.7 F1-score
The F1-score is utilized for striking a balance between

minimizing the false positives and false negatives and is used as a

combination of both precision and recall. Thus, it can be

mathematically expressed as shown in Equation (33) and the F1

score curves of VGG-16, NASNet, and the proposed model is

shown in Figure 14.

4.1.8 ROC curve and AUC
The receiver operating characteristic (ROC) curve is a graphical

representation that consists of the performance of the model in

various classification thresholds and is plotted with sensitivity

against specificity, thereby visualizing the trade-off between both

metrics. AUC helps in quantifying the overall performance of the

classifier, which is measured as the area under the ROC curve and

the ROC curves of VGG-16, NASNet, and the proposed model is

shown in Figure 15.

4.1.9 Misclassification rate
The error rate can be defined as the number of inputs in a particular,

which are classified into a wrong class; this can be expressed
B

C

A

FIGURE 12

Loss curves of (A) VGG-16, (B) NASNet, (C) proposed model.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1382416
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


V. et al. 10.3389/fpls.2024.1382416
mathematically as shown in Equation (34): Misclassification rates in

VGG-16, NASNet, and proposed model is shown in Figure 16.

Error% =
No   of  Misclassified   Instances   in   a   class
Total  Number   of   Instances   in   a   class

(34)
4.2 Performance analysis

The comparison of the three models in the context of the above

explained metrics, namely, (a) VGG-16, (b) NASNet, and (c)

proposed model, is presented below in graphical representations.
4.3 Interpretation

The above computed performance metrics and the respective

graphical representations are proof that the proposed deep learning

technique, the suitable application of the ensemble model, and the

enhanced classifier and optimizer used have shown a tangible

increase of the feasibility in the disease prediction for the given

series of input images of tomato leaves. It also proves that the
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preprocessing procedure applied is a fitting one. The performance

values observed for accuracy, loss, precision, recall, ROC, and F1-

score are 98.7%,<4%, 97.9%, 98.6%, 99.97%, and 98.7% respectively.

It is apparent that the results obtained show significant

improvement compared with those shown by conventional and

present techniques as explained in the literature. The performance

scores recorded for the existing models in the literature are

tabulated below. The techniques studied do not record all the

performance metrics as in the proposed model in this work. One

parameter that is considered in all the models, namely, “accuracy”,

is exponentially high in the proposed approach. The performance

comparison of the proposed model with existing models is shown

in Table 1.
4.4 Testing of hypotheses

In order to provide a statistical analysis on the proposed work,

testing of hypothesis was carried out in this work. It consists of three

hypotheses including a Null hypothesis given in Table 2.

Hypothesis 1: There is a significant influence between season

and tomato leaf diseases.
B

C

A

FIGURE 13

Recall curves of (A) VGG-16, (B) NASNet, (C) proposed model.
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B

C

A

FIGURE 14

F1 score curves of (A) VGG-16, (B) NASNet, and (C) the proposed model.
B

C

A

FIGURE 15

ROC curves of (A) VGG-16, (B) NASNet, and (C) the proposed model.
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Hypothesis 2: There is no relationship between the occurrence

of tomato leaf disease and the environment.
4.5 Testing of Hypothesis 1

As the p-value in this test is greater than 0.01, the given null

hypothesis can be accepted at the 1% significance level. Hence, there

is a significant influence between season and tomato leaf diseases.

Table 3 shows the chi-square test for analyzing the relationship

between the deep learning classifier vs. tomato leaf disease detection.
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4.6 Testing of Hypothesis 2

H0: There is no relationship between the selection of the deep

learning classifier vs. tomato leaf disease detection for performing

accurate detection of the disease.

Since the value of p is less than 0.5, this hypothesis, which is

shown in Table 3, is rejected at the 5% significance level. Therefore, it

is concluded that there is a strong and direct relationship between the

selection of the deep learning classifier and tomato leaf disease

detection from tomato leaf images for performing accurate

detection of the disease.
B

C

A

FIGURE 16

Misclassification rates in (A) VGG-16, (B) NASNet, (C) proposed model.
TABLE 1 Performance comparison.

Models Performance scores (all in %)

Specificity Accuracy Recall Precision F1-score Loss ROC Misclassification

AlexNet (Wang et al., 2017) – 91.00 91.00 91.0 91.00 - - -

GoogLeNet (Wang et al., 2017) – 94.8 94 94 94 - - -

VGG-16 (Wang et al., 2017) – 95 95 95 95 - - -

VGG-16 (Bracino et al., 2020) – 90.40 - - - - - -

LBP M-SVM (Wang et al., 2017) 90.23 97.20 90.75 93.50 - - - -

GPR Quadratic SVM (Ashwinkumar et al., 2022) – 83.30 - - - - 86.00 -

OMCNN (Khan et al., 2019) – 98.7 98.2 - 98.5 - – -

Proposed adaptive ensemble model 98.9 98.7 98.6 97.9 98.7 <4 99.97 <9
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5 Conclusion and future work

In this research paper, a new ensemble classifier along with an

EMA function with temporal constraints, an EWGO that is

integrated with two CNN models, namely, VGG-16 and NASNet,

has been proposed for the effective detection of diseases in tomato

leaves at an early state. This integration of state-of-the-art deep

learning CNN technologies with a gradient optimizer and EMA

function with temporal constraints provides meticulous data

analysis. The proposed model uses image enhancement

techniques, and groundbreaking ensemble models underscore a

comprehensive approach to tomato leaf disease classification. The

amalgamation of image preprocessing, transfer learning, and the

pioneering ensemble model with EWGO exhibits promising

outcomes in disease classification and increases detection

accuracy compared with the existing systems. The main

limitation of this work is the lack of time during training.

However, an optimizer is added to this work to solve the training

time problem. In the future, the implications of this research shall

be extended to areas like crop health, global food security,

sustainable agriculture, and environmental preservation,

underscoring its value within the realm of plant pathology

and agriculture.
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TABLE 3 Analysis of deep learning algorithm’s role in tomato leaf
disease detection.

Important metric
applied on

the algorithm

Chi-
square
value

p-
value

Mean
availability

Up
to

80%

Above
80%

Accuracy of classification 1.91 0.41 25 11
TABLE 2 H0: There is a significant influence between season and tomato leaf diseases.

Reason for
tomato

leaf disease

Weighted mean
using experiments
(observed value O)

Weighted mean
based on

computation
(expected value E)

(O − E)2

V alue is c2 =

c2o(O E)2

E

p-value (with
6 dof)

Fungi 7.692 4.649 0.649

4.11 0.65

Fertilizer use 6.329 3.548 0.779

Bacteria 7.947 4.979 0.612

Virus 7.309 3.648 0.999

Viroids 7.519 4.718 0.60

Geographical Region 6.418 4.269 0.499
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