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Objectives: Bamboo is a globally significant plant with ecological, environmental,

and economic bene-fits. Choosing suitable native tree species for mixed planting

in bamboo forests is an effective measure for achieving both ecological and

economic benefits of bamboo forests. However, little is currently known about

the impact of bamboo forests on nitrogen cycling and utilization efficiency after

mixing with other tree species. Therefore, our study aims to compare the

nitrogen cycling in pure bamboo forests with that in mixed forests.

Methods: Through field experiments, we investigated pure Qiongzhuea

tumidinoda forests and Q. tumidinoda-Phellodendron chinense mixed forests,

and utilized 15N tracing technology to explore the fertilization effects and fate of

urea-15N in different forest stands.

Results: The results demonstrated the following: 1) in both forest stands,

bamboo culms account for the highest biomass percentage (42.99%-51.86%),

while the leaves exhibited the highest nitrogen concentration and total nitrogen

uptake (39.25%-44.52%/29.51%-33.21%, respectively) Additionally, the average

nitrogen uptake rate of one-year-old bamboo is higher (0.25 mg kg-1 a-1)

compared to other age groups. 2) the urea-15N absorption in mixed forests

(1066.51–1141.61 g ha-1, including 949.65–1000.07 g ha-1 for bamboo and

116.86–141.54 g ha-1 for trees) was significantly higher than that in pure forests

(663.93–727.62 g ha-1, P<0.05). Additionally, the 15N recovery efficiency of

culms, branches, leaves, stumps, and stump roots in mixed forests was

significantly higher than that in pure forests, with increases of 43.14%, 69.09%,

36.84%, 51.63%, 69.18%, 34.60%, and 26.89%, respectively. 3) the recovery

efficiency of urea-15N in mixed forests (45.81%, comprising 40.43% for

bamboo and 5.38% for trees) and the residual urea-15N recovery rate in the 0–

60 cm soil layer (23.46%) are significantly higher compared to those in pure

forests (28.61%/18.89%). This could be attributed to the nitrogen losses in mixed

forests (30.73%, including losses from ammonia volatilization, runoff, leaching,

and nitrification-denitrification) being significantly lower than those in pure

forests (52.50%).
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Conclusion: These findings suggest that compared to pure bamboo forests,

bamboo in mixed forests exhibits higher nitrogen recovery efficiency, particularly

with one-year-old bamboo playing a crucial role.
KEYWORDS

biomass, N recovery efficiency, bamboo-broadleaf mixed forests, Qiongzhuea
tumidinoda, 15N tracing technology
1 Introduction

Qiongzhuea tumidinoda was one of the two bamboo species

listed in the first edition of the “Chinese Rare and Endangered

Plants Protection List” published in 1984, designated as a nationally

protected plant at the third level. It is indigenous to the

southwestern region of China, with its natural distribution

confined to a narrow strip along the lower reaches of the Jinsha

River in the provinces of Sichuan and Yunnan. There exists a total

area of 13900 hectares of natural Q. tumidinoda resources in

Daguan County. This area accounts for 59% of the global total

area of natural Q. tumidinoda, which amounts to 23560 hectares

(Dong, 2019; Wu et al., 2023b). The highly raised nodes on the

culms of Q. tumidinoda make it an excellent material for crafting

walking sticks, bamboo handicrafts, and round bamboo furniture

(Yiyuan et al., 2020; Li et al., 2021). Bamboo shoots from Q.

tumidinoda are renowned for their exquisite taste, crisp and

tender texture, and delightful sweetness, while also boasting a rich

nutritional profile. Consequently, over 90% of products derived

from Q. tumidinoda, such as fresh bamboo shoots, dried bamboo

shoots and salted bamboo shoots, have consistently enjoyed robust

sales in Japan and the Greater China region, encompassing Hong

Kong, Macau, and Taiwan (Dong, 2019; Li et al., 2021).

Q. tumidinoda demonstrates rapid growth, taking just around

50 days from the emergence of bamboo shoots to reaching full

height and diameter, enabling the proliferation of numerous new

individuals within a span of two months and consuming

substantial nutrients (Dong et al., 2002; Wu et al., 2022). Q.

tumidinoda forests are primarily managed for bamboo timber

and bamboo shoots. With the rapid development of the bamboo

industry, the substantial annual harvest of bamboo timber and

bamboo shoot biomass inevitably leads to direct removal of a

significant amount of nutrients, resulting in the depletion of soil

nutrients in bamboo forests (Yang et al., 2012; Li et al., 2024).

Furthermore, the slow decomposition of residual rhizomes and

stumps left after harvesting in bamboo forests results in a low

nutrient return rate (Jiang, 2007; Zheng et al., 2022). Therefore,

achieving sustainable high yields in bamboo forests requires

nutrient supplementation through fertilization. Among these,

nitrogen fertilizer stands as the primary nutrient factor

enhancing bamboo forest productivity (Sardar et al., 2023; Zhao

and Cai, 2023; Zou et al., 2023). In bamboo forest ecosystems,
02
nitrogen allocation directly influences the growth of bamboo

shoots, the development of bamboo culms, and the overall

productivity of the stand (Wu et al., 2023a; Zuo et al., 2024).

However, overreliance solely on nitrogen fertilizers can lead to

a series of issues such as soil compaction and groundwater

contamination, particularly pronounced in monoculture

bamboo forests (Tariq et al., 2015; Wang et al., 2023a). To

tackle this challenge, strategies involving intercropping broadleaf

forests with bamboo stands are frequently employed (Peng et al.,

2021). Research indicated that compared to pure forests, mixed

forests may have had higher species diversity, leading to

potentially more diverse root exudates and leaf litter, further

enhancing soil chemical properties such as total nitrogen

(Gillespie et al., 2021; Liang et al., 2022). Additionally, studies

found differences in microbial diversity and composition between

pure and mixed forests, resulting in distinct nitrogen utilization

patterns possibly indirectly influenced by pH and differing litter

qualities (Wen et al., 2014; Bai et al., 2023). These variances

possibly led to higher rates of soil nitrogen mineralization and

nitrification in broadleaf trees in mixed forests compared to pure

ones, consequently elevating nitrogen concentrations in the soil

(Yan et al., 2008; Kong et al., 2020; Yan et al., 2022). Furthermore,

broadleaf forests aid in soil moisture retention, providing

compensatory ecosystem services to address the limitations of

pure bamboo forest ecosystems (Bauhus et al., 2017; Gong et al.,

2022). Research has shown that this difference was determined by

specific hybrid tree species and hybrid ratios. For instance, Weih

et al (Weih et al., 2021). studied the nitrogen utilization patterns of

four hybrid willow forests and found that individual species’

functionalities played a determining role. Recent studies on

nitrogen in monoculture and mixed forests focused mostly on

the distribution patterns of nitrogen in plants, soil or systems, but

there was limited research on the fate of nitrogen in monoculture

and mixed forests (Voigtlaender et al., 2019; Masuda et al., 2022).

Q. tumidinoda, a small to medium-sized bamboo species,

thrives in temperate and humid environments. Lots of research

have indicated that mixed forests of Q. tumidinoda with broadleaf

trees exhibit superior productivity (Zhang et al., 2020b; Chen et al.,

2022), soil quality (Xia et al., 2022; Yuan et al., 2022), species

diversity (Yang et al., 2012) and water conservation (Zhong et al.,

2020) compared to pure Q. tumidinoda forest. Studies on nitrogen

in Q. tumidinoda have mainly focused on soil nitrogen
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concentration related to its growth (Zhang et al., 2020b; Zhong

et al., 2023), whereas research on nitrogen allocation patterns in

bamboo and its utilization in different forest types remains

unexplored. Simultaneously, to effectively utilize nitrogen, the 15N

tracing technique has been widely employed to quantify nitrogen

fertilizer uptake, residual amounts, and losses in research. However,

few studies have existed regarding the distribution and

translocation of urea-15N in different forest types within Q.

tumidinoda ecosystems. This study focuses on bamboo and soil

from Q. tumidinoda forests and mixed forests of Q. tumidinoda

with P. chinense. Utilizing 15N tracing techniques, the objectives are:

(1) to compare the partitioning efficiency of applied nitrogen in

different organs at various ages between pure forests and mixed

forests; (2) to compare the nitrogen recovery and residue rates in

bamboo ecosystems between pure forests and mixed forests to

determine which type exhibits higher rates.
2 Materials and methods

2.1 Site description

The experimental site is located in Daluohanba, Mugan Town,

Daguan County, Yunnan Province, China (Figure 1), the climate

condition is the moderate temperate continental climate, with an
Frontiers in Plant Science 03
annual average temperature of 10.5°C, the maximum temperature

of 29°C, the lowest temperature of -10°C, annual average

precipitation of 1200 mm, annual average evaporation of

1076 mm and relative humidity of 85%. The soils in the research

area were a type of yellow-brown forest soil (mostly Inceptisols,

United States Soil Taxonomy), originating from basalt with a loam

texture. Before the experiment, we measured the soil physical

properties of the 0–60 cm soil depth. The soil physicochemical

properties were presented in Table 1, soil bulk density was

measured by the ring knife method (Qiao et al., 2020). Soil

organic matter was determined by the potassium dichromate

external heating method (Fan et al., 2016). Soil pH was

determined using a pH meter at a soil/water ratio of 1:2.5. Soil

total nitrogen (TN) was determined by the appropriate Kjeldahl’s

method. soil total phosphorus (TP) and total potassium (TK) were

determined by using colorimetrically (ammonium molybdate

method) and flame photometer after wet digestion (Bao, 2000).

There were two types of forest stands in the study area, Q: Q.

tumidinoda pure forest and Q-P: a mixed forest of Q. tumidinoda

and artificially planted 1-year-old saplings of Phellodendron

chinense. The Q. tumidinoda forest was a natural forest, The P.

chinense was planted in September 2012 within the bamboo forest

at a density of 400 individuals per hectare, with a spacing of 5m ×

5m between plants, an average diameter at breast height (DBH) of

6.12 cm, and an average tree height of 5.50 m. Underneath the forest
FIGURE 1

Geographical location of the research area. (A) China; (B) Daguan County, Zhaotong city; (C, D) Q and Q-P represent a mixed forest of pure Q.
tumidinoda and Q. tumidinoda-Phellodendron chinense, respectively.
TABLE 1 Soil physicochemical properties in soil layer 0–60 cm across various forest types (Mean ± SD).

Forest
type

Soil depth
(cm)

Bulk density
(g cm-3)

pH
(1:2.5)

Organic
matter
(g kg-1)

Total N
(g kg-1)

Total P
(g kg-1)

Total K
(g kg-1)

Q

0–20 1.12 ± 0.04 4.76 ± 0.32 77.55 ± 5.63 5.27 ± 0.61 0.61 ± 0.04 25.04 ± 1.23

20–40 1.31 ± 0.08 5.36 ± 0.35 43.10 ± 3.40 2.09 ± 0.46 0.46 ± 0.02 21.09 ± 1.81

40–60 1.41 ± 0.07 5.79 ± 0.41 25.74 ± 1.65 1.58 ± 0.39 0.39 ± 0.03 18.63 ± 0.99

Q-P

0–20 1.02 ± 0.09 4.85 ± 0.28 91.66 ± 6.19 6.20 ± 33.79 0.93 ± 0.07 33.38 ± 2.65

20–40 1.18 ± 0.06 5.37 ± 0.26 51.44 ± 2.41 2.74 ± 0.25 0.77 ± 0.05 26.10 ± 1.85

40–60 1.30 ± 0.06 5.89 ± 0.34 32.18 ± 2.62 1.98 ± 0.18 0.67 ± 0.04 20.24 ± 1.74
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canopy, there are understory plants including Hydrangea davidii,

Smilax china, Elatostema involucratum, Selaginella tamariscina,

Achyranthes bidentata, Pilea sinofasciata, and Dryopteris

erythrosora and the vegetation cover is approximately 30%.
2.2 Experimental design

The experimental design employed a factorial design with two

forest types (Q:28° 5′ N, 104° 0′ E, altitude 1488 - 1512 m a. s. l.,

slope 21, Q-P:28° 6′ N, 104° 1′ E, altitude 1411 - 1435 m, a. s. l.,

slope 22°), and two treatments: fertilized and unfertilized. The

experimental plots had an area of 400 m2 (20 m × 20 m),

replicated three times, with distances larger than 20 m between

adjacent plots. Four isolation trenches were excavated around each

plot, with a depth of 60 centimeters to sever rhizomes and effectively

prevent long-distance nutrient transport. The bamboo in the study

area was used for both shoot harvesting and timber production.

Before the initiation of the experiment, uniform density control

measures were applied to the bamboo forest; however, fertilization

management was not implemented. The bamboo stand structures

before harvest for the two forest types are presented in Table 2.

Per the previous study (Wang et al., 2022), the experimental

fields received a single application of 300 kg ha−1 urea (46% N).

Additionally, in each fertilization plot, 200 g of 15N-labeled urea

(10.06 atom%, supplied by the Shanghai Research Institute of

Chemical Industry) was administered. The fertilization

experiment was conducted in August 2022 (Dai et al., 2011),

coinciding with the initiation of substantial underground growth

in the bamboo, demanding a significant nutrient supply. Furrow

application was employed in the trial, consisting of nine fertilizer

furrows per plot arranged along contour lines (each furrow

measuring 0.2 meters in width, 0.15 meters in depth, spaced 2

meters apart). Before application, all fertilizers were thoroughly

mixed and uniformly blended, then applied at the specified depth.

To achieve this, initially blend 200 g of 15N-labeled urea with 2 kg of

urea evenly, subsequently distribute 10 kg of urea uniformly to a

specific depth, sprinkle 2.20 kg of the mixed urea evenly on its

surface, turn over and uniformly mix.
2.3 Plant and soil sampling and analyses

In each plot, three bamboo individuals with different ages (1a,

2a, 3a, 4a) and with an average diameter at DBH were selected and
Frontiers in Plant Science 04
harvested, totaling 144 individuals in November 2022. The bamboo

was separated into culms, branches, leaves, stumps, and stump

roots. The specific procedure was as follows: Firstly, the diameter of

each bamboo was measured one by one using a vernier caliper.

Next, standard bamboo specimens were selected and cut down, and

their heights were measured using a steel tape measure.

Subsequently, all leaves and branches were collected, the bamboo

culms were segmented and labeled, the stumps were excavated, and

allstump roots were collected, cleaned, dried, and labeled. The

sampling method for rhizomes and rhizome roots involved

placing five randomly selected 1 m × 1 m subplots in an “S”

shape within each plot. All culms and culm roots were collected,

washed, dried, and labeled, and then their fresh weights were

measured in batches. Finally, each organ (rhizomes sampled in

appropriate proportions) was taken back to the laboratory, where

fresh samples were dried at 105°C, then dried at 70°C to constant

weight to determine dry weight and calculate organ biomass. m m

Dried samples were ground and sieved through a 0.15 mm mesh

screen for 15N analysis.

An Isotope Ratio Mass Spectrometer (IsoPrime 100, IsoPrime

limited, UK) was employed to analyze the total nitrogen content in

all plant and soil samples, the pure abundance of nitrogen in both

plant and soil from the unfertilized plot, and the atom percentage of
15N in the fertilized plot.
2.4 Calculation methods

The urea-15N derived percentage (%Ndff) is calculated using

Equation 1, while other nitrogen-related indicators are calculated

separately using Equations 2–7. (Shi et al., 2012; Su et al., 2019):

%Ndff =
b − a
c − a

� 100 (1)

In which a is the at% 15N in the unfertilized plant organ or soil,

b represents the atom% 15N of the fertilized plant organ or soil, and

c is the atom% 15N of the fertilizer.

Organ total uptake N(kg ha−1) = organ dry matter (t ha−1)

� N concentration(g kg−1)� 10−6

(2)

Organ 15N uptake(kg ha−1) = (2)� (1)� 10−2 (3)

Plant 15N uptake(kg ha−1) =o(3) (4)
TABLE 2 Bamboo forest structure (Mean ± SD).

Forest type
Bamboo forest

area
(ha-1)

Density
(individual ha−1)

Mean DBH (cm) Mean Height (m)
Age Structure
(1a:2a:3a:4a)

Q 3.12 77800 ± 1415 1.41 ± 0.40 4.18 ± 0.74 1.28:1.56:1.72:1

Q-P 3.05 76000 ± 566 1.58 ± 0.42 4.59 ± 0.83 1.44:1.56:1.66:1
1a, 2a, 3a and 4a represent 1, 2, 3 and 4 years, respectively.
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Urea−15N residual of soil (kg ha−1)

= (fertilization area(m2)� soil thickness(cm))

� soil bulk density (g cm−3)

�N concentration(g kg−1)

� (1)� 10−2)=400(m2)

(5)

N recovery efficiency ( % ) = (4)=Total fertilizer 15N(kg ha−1)� 100

(6)

N residual efficiency ( % ) = (5)=Total fertilizer 15N(kg ha−1)� 100

 N loss efficiency ( % ) = 1 –(6) –(7)

(7)
2.5 Statistical analysis

One-way analysis of variance (ANOVA) was employed to assess

significant distinctions among treatments across all variables

throughout the experiment. The Duncan’s multiple range test was

utilized for mean separation, and statistical significance was

determined at P< 0.05. by SPSS 23.0 (SPSS Inc., Chicago, IL,

USA), while figure creation relied on Origin 8.6 software

(OriginLab Corporation, Northampton, MA, USA).
3 Results

3.1 Q. tumidinoda bamboo biomass

Under fertilization treatment, the biomass of various organs in

bamboo of Q-P type at different ages was significantly higher than

that of Q type (Figure 2, P< 0.05). This result was similar under no

fertilization treatment, but the difference in rhizomes and rhizome

roots were not significant (P>0.05). Compared with the unfertilized

treatment, under the fertilization treatment, the biomass of various

organs in bamboo of different ages of Q-P and Q types increased, but

only the difference in rhizomes and rhizome root of Q-P type

bamboo reached a significant level. The average proportion of

bamboo culm biomass to total biomass was 47.55% (ranging from

42.99% to 49.33%), ranking first. Following that, the rhizomes

emerged as the second-highest component, with an average

biomass of 14.12 t/ha-1 and peaking at 17.93 t/ha-1 in Q-PF type,

with no significant differences observed in other plots (P > 0.05). The

aboveground biomass of the bamboo in the four plots (comprising

leaves, branches, and culms) exceeded the belowground biomass

(including stumps, stump roots, rhizomes, and rhizome roots).
3.2 N Concentration and N uptake

Under the fertilization treatment, the nitrogen concentrations

in various organs of different-aged bamboo in the Q. tumidinoda

mixed forest (Q-P) were higher than those in the pure Q.
Frontiers in Plant Science 05
tumidinoda forest (Q, Figure 3). This result was similar to the

unfertilized treatment, but some organs showed no significant

differences (P > 0.05). Compared to the unfertilized treatment,

the nitrogen concentrations in various organs of Q-P and Q types

significantly increased under the fertilization treatment, with Q-P

type (averaging a growth of 41.92%) showing a more pronounced

increase than Q type (averaging a growth of 37.23%). Among the

types, Q-PF type exhibited the highest concentrations in various

organs, followed by QF type. The nitrogen concentrations varied

among different organs ofQ. tumidinoda, with the leaves of bamboo

in all four plots exhibiting significantly higher nitrogen

concentrations than other organs, ranging from 13.76 to 27.03 g

kg-1. Additionally, the nitrogen concentrations in various organs

across the four plots showed a decreasing trend with the increasing

age of the bamboo.

The differences in total nitrogen uptake among various organs of

different ages in different types of bamboo were significant (P< 0.05,

Figure 4), with all showing higher values for Q. tumidinoda mixed

forest (Q-P) compared to pure Q. tumidinoda forest (Q). Compared

to the unfertilized treatment, the nitrogen concentrations in various

organs of both Q-P and Q types significantly increased under the

fertilized treatment. Among them, the Q-P type showed a more

pronounced increasing trend (average growth of 45.10%) than Q type

(average growth of 42.41%). Nitrogen uptake for each organ (except

rhizomes and rhizome roots) decreased with increasing bamboo age.

Among these, leaves exhibited the highest total nitrogen uptake,

accounting for an average of 29.33% (ranging from 28.31% to

31.52%) of the total uptake, and the aboveground parts showed a

31.52% higher total nitrogen uptake than that of the underground

parts (P< 0.05). Q-PF type displayed the highest total nitrogen uptake,

reaching up to 478.41 kg ha-1.
3.3 Allocation of urea-15N in various forest
types of Q. tumidinoda bamboo forests

Under fertilization, there was no significant difference in Ndff

between Q-P and Q types (Table 3). There were significant

differences in Ndff among different organs. The average Ndff of

stump (0.25%) was the highest, while the average Ndff of branch

(0.13%) was similar to that of culm (0.13%), with no significant

difference (P > 0.05).

Significant differences were observed in the total 15N uptake

among various organs of different types of Q. tumidinoda (Figure 5).

The total 15N uptake in organs of Q-P type was notably higher than in

Q type (P< 0.05). Except for culms and culm roots, most organs

showed a decreasing trend in 15N uptake with increasing bamboo age.

The total 15N uptake in leaves was notably higher than in other

organs across both forest types, averaging 35.62% of the total uptake,

ranging from 32.72% to 38.53%.

There were significant differences observed in the absorption of
15N among bamboo of different ages (Figure 6), with absorption

efficiency gradually decreasing as bamboo aged. The absorption

efficiency of 1a bamboo was notably higher than that of other ages,

ranging from 0.20 to 0.28 (mean 0.25).
frontiersin.org

https://doi.org/10.3389/fpls.2024.1382934
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wu et al. 10.3389/fpls.2024.1382934
3.4 Allocation of residual urea-15N in soil

In the same soil layer, Q-P type exhibited significantly higher

total residual urea-15N compared to Q type (Figure 7). With

increasing soil depth, there was a decreasing trend observed in

the total residual urea-15N among different forest types. The

majority of residual urea-15N was found in the 0–20 cm soil layer,

accounting for 44.86% of the total residual in Q type and 45.56 in Q-

P type, respectively.
3.5 Fate of urea-15N in bamboo-soil system

There were significant differences observed in nitrogen recovery

efficiency among different forest types, with Q-P type showing
Frontiers in Plant Science 06
significantly higher nitrogen recovery efficiency in various organs

compared to Q type. The 15N recovery efficiency of Q-P type culms,

branches, leaves, stumps, and stump roots was significantly higher

than that of Q type, with increases of 43.14%, 69.09%, 36.84%,

51.63%, 69.18%, 34.60%, and 26.89%, respectively. From an overall

perspective, the nitrogen recovery efficiency of leaves averaged at

12.28%, ranging from 9.57% to 15.76%, notably higher than other

organs. The culm roots exhibited the lowest recovery efficiency,

ranging from 1.18% to 1.52% (Figure 8). The nitrogen recovery

efficiency of Q-P and Q types at different ages showed no significant

difference, but they exhibited the same pattern. That is, with the

aging of bamboo, the nitrogen recovery efficiency significantly

decreased (Figure 9). The nitrogen recovery efficiency and

residual urea-15N were higher in Q-P type than in Q type, but

nitrogen loss rate showed the opposite trend (Figure 10).
FIGURE 2

Organ biomass characteristics of Qiongzhuea tumidinoda forests across four types of plots (Mean ± SD). In the first five figures, different uppercase
letters in the same sampling site represent significant distinctions between different ages (P< 0.05), and different lowercase letters in the same age
indicate significant differences between sampling sites (P< 0.05). In the last figure, different lowercase letters within the same organ indicate
significant differences between different plots (P< 0.05).
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4 Discussion

Bamboo and broadleaved mixed forest is an excellent

agricultural forestry model featuring bamboo. Research indicates

that in competition with broadleaved trees, bamboo exhibits a

greater advantage, possibly owing to its enhanced plasticity and

environmental adaptability (Zheng and Lv, 2023). For instance, an

experiment on nitrogen uptake conducted with Castanopsis fargesii

and moso bamboo revealed that moso bamboo maintained

dominance due to its higher tolerance threshold to ammonium

nitrogen (Zou et al., 2020). Numerous studies indicated that a

beneficial competition was established when bamboo was mixed

with an appropriate proportion of broadleaved trees (Cao, 2001;

Cheng et al., 2015; Yan et al., 2018). For example, research indicated
Frontiers in Plant Science 07
that when the intercropping ratio ofmoso bamboo and broadleaved

trees was in the range of 20–30%, optimal soil nutrients were

achieved, leading to the best growth performance of moso

bamboo (Zhang et al., 2020a). Similarly, The intercropping of Q.

tumidinoda with other tree species had a certain impact on the

growth of the bamboo forest, and the extent of this impact

depended on the choice of tree species (Zhou et al., 2016).

Previous research indicated that P. chinense was one of the

excellent native tree species for establishing Q. tumidinoda mixed

forests. In the mixed forests of P. chinense and Q. tumidinoda, the

diameter at breast height, height, and biomass of bamboo were

significantly higher than those in pure Q. tumidinoda forests

(Zhang et al., 2020b; Chen et al., 2022). This study also confirmed

these findings, where the biomass of various parts of Q-P type’s Q.
FIGURE 3

Organ nitrogen concentration of Qiongzhuea tumidinoda forests across four types of plots (Mean ± SD). In the first five figures, different uppercase
letters in the same sampling site represent significant distinctions between different ages (P< 0.05), and different lowercase letters in the same age
indicate significant differences between sampling sites (P< 0.05). In the last figure, different lowercase letters within the same organ indicate
significant differences between different sampling plots (P< 0.05).
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T

FIGURE 4

Organ nitrogen uptake of Qiongzhuea tumidinoda forests across four types of plots (Mean ± SD). In the first five figures, different uppercase letters
in the same plot represent significant distinctions between different ages (P< 0.05), and different lowercase letters in the same age indicate
significant differences between plots (P< 0.05). In the last figure, different lowercase letters within the same organ indicate significant differences
between different plots (P< 0.05).
ABLE 3 Ndff of Qiongzhuea tumidinoda forests across various forest types (Mean ± SD).

Forest
type

Age
Culm
(100%)

Branch
(100%)

Leaf
(100%)

Stump
(100%)

Stump
root
(100%)

Rhizome
(100%)

Rhizome
root
(100%)

QF

1 0.17 ± 0.01Aa 0.17 ± 0.03Ab 0.26 ± 0.03Aa 0.31 ± 0.02Aa 0.32 ± 0.03Aa 0.15 ± 0.01a 0.16 ± 0.01a

2 0.16 ± 0.02Aa 0.16 ± 0.02Ab 0.20 ± 0.01Bb 0.27 ± 0.03Ba 0.26 ± 0.02Bb

3 0.11 ± 0.01Ba 0.14 ± 0.02Aa 0.18 ± 0.01Ba 0.19 ± 0.02Ca 0.13 ± 0.02Ca

4 0.06 ± 0.01Ca 0.05 ± 0.01Ba 0.10 ± 0.01Cb 0.11 ± 0.01Da 0.06 ± 0.01Db

Q-PF

1 0.19 ± 0.02Aa 0.22 ± 0.02Aa 0.27 ± 0.03Aa 0.32 ± 0.02Aa 0.46 ± 0.03Aa 0.20 ± 0.01a 0.21 ± 0.01a

2 0.19 ± 0.02Aa 0.21 ± 0.01Aa 0.24 ± 0.03Ba 0.30 ± 0.03Aa 0.32 ± 0.01Aa

3 0.13 ± 0.01Ba 0.09 ± 0.01Ba 0.21 ± 0.02Ba 0.21 ± 0.03Ba 0.16 ± 0.01Ba

4 0.07 ± 0.01Ca 0.04 ± 0.01Ca 0.14 ± 0.02Ca 0.13 ± 0.01Ca 0.08 ± 0.01Ca
F
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Different lowercase letters for the same forest type indicate significant differences between different organs (P< 0.05). Different capital letters for the same forest type indicate significant differences
between different ages (P< 0.05).
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FIGURE 5
15N uptake of Qiongzhuea tumidinoda forests across four types of plots (Mean ± SD). In the first five figures, different uppercase letters in the same plot
represent significant distinctions between different ages (P< 0.05), and different lowercase letters in the same age indicate significant differences between
plots (P< 0.05). In the last figure, different lowercase letters within the same organ indicate significant differences between different plots (P< 0.05).
FIGURE 6

Total absorption efficiency of different ages in Qiongzhuea tumidinoda forests. Different lowercase letters represent significant differences between
different ages (P< 0.05).
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tumidinoda was significantly higher compared to Q type (except for

rhizome and rhizome root). However, the difference in

underground rhizome-root system (rhizome and rhizome root)

between Q-P and Q types was not significant, possibly due to the

occupation of certain underground spaces by p. chinense root. In the

fertilized treatment, there was a significant difference in the

underground rhizome-root system of Q-P type, indicating that

compared to Q type, Q-P type’s rhizome-root system absorbed

more nitrogen, consequently accumulating more biomass.

Furthermore, compared to the unfertilized treatment, the biomass

of various bamboo organs in both forest types increased under

fertilization, but only the rhizome and rhizome roots reached

significant levels, This could be attributed to the relatively high

soil temperature and abundant rainfall during this period, which
Frontiers in Plant Science 10
prompts bamboo to primarily focus its growth on the underground

parts, accumulating a significant amount of nutrients in its

rhizomes and shoots (Chen and Yang, 2003; Zhu et al., 2023).

Due to age structure and individual size (Figure 11), the

biomass of various organs of the four-year-old bamboo was

significantly lower than in other age groups. The biomass of culm

was the highest, consistent with previous research findings,

accounting for 42.72% of the total biomass as revealed by this

study (Chen et al., 2022).

Following fertilization, both the nitrogen concentration and

uptake in various organs of Q-P type were significantly higher than

in Q type, further emphasizing Q-P type’s greater nitrogen

absorption. The leaves exhibited the highest nitrogen concentration

and uptake, likely attributed to their photosynthetic activity. Despite
FIGURE 7

The distribution of residual urea-15N in the soil. Different lowercase letters of the same soil layer indicate significant differences among different
sampling sites at the P< 0.05 level.
FIGURE 8

Effects of various forest types on 15N recovery efficiency in Qiongzhuea tumidinoda forests. Different lowercase letters within the same organ
indicate significant differences between different sampling sites (P< 0.05).
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FIGURE 9

Effects of various forest types on the N recovery efficiency of different ages in Qiongzhuea tumidinoda forests. Different lowercase letters within the
same forest type indicate significant differences in nitrogen recycling efficiency among different ages (P< 0.05).
FIGURE 10

Effects of various forest types on the fate of urea-15N in Qiongzhuea tumidinoda forests.
FIGURE 11

Comparison of Morphological Characteristics of Qiongzhuea tumidinoda in different forest types. The different lowercase letters of columns of the
same color representing the height and diameter at breast height at different ages show significant differences (P< 0.05), respectively.
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the culms having the largest biomass, their nitrogen absorption was

lower due to their comparatively lower nitrogen concentration.

In bamboo forest ecosystems, nitrogen fertilizer is primarily

utilized in three ways: uptake by bamboo, retention within the soil,

or loss from the bamboo-soil system (Chalk et al., 2015; Wang et al.,

2023b). Currently, the use of 15N isotope tracing technology is

considered the optimal method for studying nitrogen fertilizer

utilization efficiency and nitrogen balance in bamboo forest

ecosystems (Haque et al., 2022). This technique, employing labeled
15N fertilizers, enables direct or indirect determination of nitrogen

recovery by bamboo, residual fertilizer levels in the soil, and nitrogen

loss rates (Raymond et al., 2016; Su et al., 2019). In this study, 15N

distribution varied among different types of Q. tumidinoda forests,

yet the overall allocation pattern remained largely consistent. A range

of 32.72% to 38.53% of the total 15N absorption was allocated to the

leaves, representing the highest proportion. Following this, the

branches accounted for 19.06% to 23.89% of the total 15N

absorption. This alignment with the distribution of 26.90% to

37.21% of total 15N absorption in the leaves in Moso bamboo

forests. However, discrepancies in the overall 15N absorption

distribution were evident among different Q. tumidinoda forests.

For instance, inMoso bamboo forests, bamboo stump ranked second

(Su et al., 2019), indicating variations possibly attributed to different

bamboo species. Based on previous studies, the residual amount and

downward movement of nitrogen fertilizer can be reflected by the

concentration of 15N in the soil layers (Wang et al., 2011; Jing et al.,

2020). The average residual amount of 15N-labeled urea in the 0–60

cm soil layer of Q-P type was 567.73 g ha-1, accounting for 23.46% of

the total applied 15N. It was significantly higher in all soil layers

compared to Q type, correlating with the soil organic matter content.

Research has shown that nitrogen becomes immobilized within soil

organic matter (Mostafa et al., 2020). In this study, the participation

of p. chinense ‘s litter in decomposition led to higher organic matter

content in all soil layers of Q-P type compared to Q type,
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consequently immobilizing more nitrogen. The residual 15N in

both forest types exhibited a decreasing trend with increasing soil

depth, consistent with previous reports (Ru et al., 2020; Nguyen et al.,

2021; Effah et al., 2022).

It is well-known that ammonia volatilization, nitrification-

denitrification, runoff, and leaching are the primary pathways for

nitrogen loss (Räbiger et al., 2020; Shi et al., 2020; Lan et al., 2022). In

this study, it was found that the nitrogen recovery efficiency and soil

nitrogen residual efficiency of the mixed forest (Q-P) were

significantly higher than those of the pure forest (Q), which may

be attributed to the differences in nitrogen loss between them. All

types of nitrogen loss pathways in the Q-P type (including ammonia

volatilization, runoff, leaching, and nitrification-denitrification) were

significantly higher than those in the Q type (Figure 12). This

conclusion can be inferred from previous studies. For instance,

research has indicated that compared to pure bamboo forests, the

canopy of mixed bamboo and broadleaf tree forests provides effective

shading, thus reducing ammonia volatilization (Cheng et al., 2015;

Zhang et al., 2020a). Additionally, the canopy interception by

broadleaf trees in mixed forests, along with the impact of their

litter and root systems on soil and water conservation (Zhang et al.,

2020a; Nainar et al., 2021; Ding et al., 2023), results in lower nitrogen

losses from runoff and leaching compared to pure forests. Apart from

differences in nitrogen loss, the Q-P type exhibited two distinct

nitrogen recovery pathways: the recovery rate of 15N from P.

chinense (5.37%, Table 4) and the recovery rate of 15N from

bamboo (40.43%). Compared to the single forest type of Q type,

Q-P type more efficiently utilized the abundant nitrogen resources.

In this study, the mean nitrogen recovery rate for both bamboo

forest systems was 37.21%, significantly higher than the nitrogen

recovery rate determined by Su et al (Su et al., 2019). in fertilized

Moso bamboo forests (28.98%). These findings differed from the

recovery rate of fertilization in Moso bamboo forests reported byMao

et al (Mao et al., 2016). (13.96%). This discrepancy could potentially
FIGURE 12

Comparison of nitrogen loss rates through various pathways of Qiongzhuea tumidinoda in different forest types. Different lowercase letters within
the same forest type indicate significant differences in nitrogen loss rates through different nitrogen loss pathways (P< 0.05), respectively. Avo,
ammonia volatilization; Nru, nitrogen runoff; Nle, nitrogen leaching; Nde, nitrification-denitrification.
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stem from variations in bamboo biological characteristics, timing,

and dosage of fertilizer applications. Therefore, further experiments

are needed to validate the specific reasons.
5 Conclusions

In this study, it was clearly indicated that there are significant

differences in the fate and distribution ratios of nitrogen labeled

urea applied in different types of bamboo forest ecosystems. The

bamboo forest with mixed P. chinense and Q. tumidinoda exhibited

notably higher nitrogen recovery and soil residue compared to the

pure Q. tumidinoda forest, while showing an opposite trend in

nitrogen loss rate. In these two types of bamboo forests, despite the

largest biomass being in the bamboo culms, the leaves exhibited the

highest nitrogen absorption and content. The residual 15N was

primarily concentrated in the fertilized layer. These studies indicate

that the proportion of trees to bamboo in this experimental design

may fall within an appropriate range of mixed cropping ratios,

thereby enhancing the nitrogen recovery efficiency of bamboo and

reducing nitrogen loss efficiency. However, the competitive

relationship between trees and bamboo cannot be ignored.

Therefore, we hypothesize that increasing or decreasing the

proportion of trees in bamboo forests may have similar or

opposite effects on the nitrogen cycle of bamboo, which requires

further experimental support. Additionally, the impact of different

types of mixed tree species on bamboo may vary, especially the

intercropping of nitrogen-fixing tree species with bamboo, which

will be the focus of future research.
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TABLE 4 Biomass allocation characteristics and nitrogen fate of phellodendron chinense forests in Q-P (Mean ± SD).

Organ
Biomass
(t ha-1)

Nitrogen
concentration

(g kg-1)

Nitrogen uptake
(kg ha-1)

15N uptake
(g ha-1)

Nitrogen
recovery
efficiency

(%)

Trunk 8.87 ± 1.26 7.23 ± 0.38 64.00 ± 8.10 57.60 ± 7.29 2.38 ± 0.30

branch 4.29 ± 0.77 10.23 ± 0.94 43.45 ± 3.95 39.10 ± 3.56 1.61 ± 0.15

Leaf 0.05 ± 0.01 19.09 ± 1.38 0.91 ± 0.19 0.82 ± 0.17 0.03 ± 0.01

Root 1.67 ± 0.20 21.90 ± 1.70 36.38 ± 24.11 32.72 ± 2.86 1.35 ± 0.12
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