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Modern agriculture’s goal of improving crop resource acquisition efficiency relies

on the intricate relationship between the root system and the soil. Root and

rhizosphere traits play a critical role in the efficient use of nutrients and water,

especially under dynamic environments. This review emphasizes a holistic

perspective, challenging the conventional separation of nutrient and water

uptake processes and the necessity for an integrated approach. Anticipating

climate change-induced increase in the likelihood of extreme weather events

that result in fluctuations in soil moisture and nutrient availability, the study

explores the adaptive potential of root and rhizosphere traits to mitigate stress.

We emphasize the significance of root and rhizosphere characteristics that

enable crops to rapidly respond to varying resource availabilities (i.e. the

presence of water and mobile nutrients in the root zone) and their accessibility

(i.e. the possibility to transport resources to the root surface). These traits

encompass for example root hairs, mucilage and extracellular polymeric

substance (EPS) exudation, rhizosheath formation and the expression of

nutrient and water transporters. Moreover, we recognize the challenge of

balancing carbon investments, especially under stress, where optimized traits

must consider carbon-efficient strategies. To advance our understanding, the

review calls for well-designed field experiments, recognizing the limitations of

controlled environments. Non-destructive methods such as mini rhizotron

assessments and in-situ stable isotope techniques, in combination with

destructive approaches such as root exudation analysis, are proposed for

assessing root and rhizosphere traits. The integration of modeling,

experimentation, and plant breeding is essential for developing resilient crop

genotypes capable of adapting to evolving resource limitation.
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Introduction

Sustainable food production relies on the efficient acquisition

and utilization of soil resources by crops. Key to this challenge is the

plants root system which controls the access to essential resources

like nutrients and water. Traditionally, the prevailing perspective

has been to treat nutrient and water uptake as distinct processes.

Crucially, however, we argue that both processes are closely linked

by the underlying physical mechanisms that control soil transport

properties and related processes.

Plant water and nutrient accessibility are significantly impacted

by soil water content, particularly the cross-section of water-filled

pores and their spatial distribution within the soil matrix. Nutrient

transport within soils and to the roots is driven by mass flow (e.g.

nitrogen in form of nitrate) and diffusion (e.g. phosphorus)

(Marschner, 2011). Mass flow depends on both the movement of

water within the soil and the availability of nutrients in the soil

solution. Nutrient diffusion is driven by concentration gradients

and is controlled by the diffusion properties of the soil, which are

highly dependent on soil water content (Barber, 1962). The relative

importance of mass flow and diffusion in nutrient transport to roots

is nutrient-specific, depending on the mobility and availability of

each nutrient within the soil (Tester and Leigh, 2001). However, the

effective transport of most nutrients, those transported by diffusion

and by mass flow to roots, is significantly hindered as soil dries

(Seiffert et al., 1995; Zarebanadkouki et al., 2019). In this review, we

therefore emphasize the interconnected nature of water and

nutrient uptake processes and advocate for a holistic view that

considers the interplay of root and rhizosphere traits that facilitate

both nutrient and water acquisition. In this context, availability

refers to the presence of water and mobile nutrients, while

accessibility pertains to the transport of these resources to the

root surface. By adopting an integrated perspective, we can better

understand and optimize the root-soil interactions that are critical

for sustainable crop production in the face of variable and often

limited soil moisture conditions.

Growing concerns suggest climate change will intensify

perturbations in soil moisture (Eyring et al., 2021). This, in turn,

disrupts the availability and accessibility of water and nutrients for

plants (Mitchell et al., 2006; Rahmstorf and Coumou, 2011).

Consequently, predicting both the amount and variability of soil

water will become more challenging, further complicating the

picture of nutrient availability. Primary factors like precipitation

and temperature strongly influence soil microbial activity which in

turn affects nutrient turnover and availability (Schimel, 2018). We

argue that the expected rise in fluctuating soil water and nutrient

levels requires the development of genotypes that can adapt to

these conditions.

A promising strategy for breeding plants with superior nutrient

and water efficiency lies in harnessing root and rhizosphere traits

(Wissuwa et al., 2009; Lynch, 2019; Rangappa et al., 2023; Galindo-

Castañeda et al., 2024). Root characteristics can be categorized into

architectural (e.g. rooting depth, branching), morphological (e.g.

root hairs), physiological (e.g. nutrient transporters), and biotic

(symbiosis with microorganisms) (Bardgett et al., 2014). These
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traits significantly impact a plant’s ability to explore the soil,

mobilize nutrients, and absorb resources (e.g., Ma et al., 2001;

Lynch, 2013; Griffiths and York, 2020). Additionally, rhizosphere

traits describe the properties of soil in the vicinity of roots (Wissuwa

et al., 2009) modified by root exudation, root-microbial interactions

or changes in soil structure. Root and rhizosphere traits influence

the accessibility and availability of water and nutrients in soil. While

water and nutrient availability is controlled by factors like soil

texture, structure, organic matter, pH and microbial activity

(Droogers et al., 1997; Fageria and Baligar, 2005), accessibility,

determined by soil moisture and transport properties, reflects the

ease with which plants can acquire these resources to meet

transpiration and nutritional needs (Bray, 1954; Droogers

et al., 1997).

As extreme events and environmental patterns become more

frequent, a crucial question emerges: which plant traits are most

suited to mitigate the adverse effects induced by these changes? This

ability, known as plasticity, allows organisms to adjust their physical

characteristics (phenotype) based on the environment (Sultan,

2000; Yetgin, 2023). However, the usefulness of plasticity in

responding to rapidly changing environments depends on how

quickly a trait can be adapted. For example, establishing symbiosis

with mycorrhiza is a gradual process with delayed benefits, and

initial stages may temporarily hinder plant growth (Plenchette et al.,

2005; Jacott et al., 2017). Consequently, this symbiosis might be

particularly advantageous in situations characterized by static stress

conditions. Additionally, many traits are known to enhance

resource acquisition of singular resources (Lynch and Brown,

2001; Lynch, 2013). As such “topsoil foraging” has been suggested

as a root architectural ideotype for phosphorus limiting conditions,

including for example lateral root branching, shallow rooting angles

or high crown root numbers (Lynch and Brown, 2001; Zhu et al.,

2005; Sun et al., 2018). In contrast, the “steep, cheap and deep”

ideotype has been suggested for water and nitrogen limiting

conditions including traits like low crown root numbers, steep

rooting angles and low lateral branching (Klein et al., 2000;

Lynch, 2013, 2018). The inherent risk of optimization conflicts,

for example if deep rooting during drought conditions results in

diminished nutrient uptake from shallow soil, have been addressed

recently for root traits (Van Der Bom et al., 2020; Rangarajan et al.,

2022). However, the role of rhizosphere traits in the context of

combined water and nutrient stress has received little attention in

the past.

To tackle rapidly fluctuating climatic conditions that lead to

dynamic soil moisture and nutrient limitations, we need to focus on

root and rhizosphere processes that offer 1) rapid (temporal scale of

seconds to days) responses beneficial for 2) both, water and nutrient

supply. These could be traits that do not change quickly but enable

the plant to react fast (deep rooting and subsequent water uptake

change from deeper layers or hydraulic lift) or traits that respond

fast to changing resource availabilities (exudation, root hairs). For

example, a critical feature to enable a crop to rapidly respond to

drying soil is to adjust root water uptake proportionality and to

redistribute water horizontally (hydraulic lift) (Horton and Hart,

1998). Hydraulic lift serves the dual purpose of facilitating both the
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movement of deep water and the absorption of nutrients by roots

from superficial soil layers, where, in many cases, nutrients, such as

phosphorus, are more abundant. However, rooting depth, root axial

hydraulic conductivity and xylem diameter, the underlying traits

enabling hydraulic lift or changes in root water uptake

proportionality, do not display rapid plasticity (Bechmann et al.,

2014; Vadez, 2014).

There is a significant need for novel analytical frameworks in

order to assess the impact of root and rhizosphere traits holistically.

While progress has been made in understanding the impact of

different root and rhizosphere traits on water and nutrient uptake,

significant gaps remain, especially with regard to field conditions.

This is primarily related to the complexity of the rhizosphere, the

manifold feedbacks shaping it, and the upscaling of small

scale processes.

This review explores root and rhizosphere traits allowing crops

to rapidly respond to environmental perturbation and adjust to

challenging variations in water and nutrient conditions

simultaneously. Moreover, we propose a novel observational

scheme to quantify the impact of root/rhizosphere traits on water

and nutrient co-limitation under field conditions.
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Root and rhizosphere traits in
dynamic resource
limited environments

Traits that exhibit rapid responsiveness to changing

environmental conditions and that enhance water and nutrient

supply simultaneously are predominantly observed within

morphological root traits and rhizosphere features. The most

promising root and rhizosphere traits to simultaneously enhance

water and nutrient uptake efficiency in dynamic environments are

summarized in Figure 1. One example are root hairs that are well

known to enhance nutrient acquisition and exhibit highly plastic

and potentially quick response to resource limitation (Nestler and

Wissuwa, 2016; Klamer et al., 2019). Root hairs are efficient due to

their ability to increase effective root surface area and forage for

nutrients (Bienert et al., 2021; Rongsawat et al., 2021). Additionally,

root hairs are identified as hotspots for root exudation, promoting

microbial and enzymatic activities (Holz et al., 2020, 2017). In

contrast, the contribution of root hairs to water uptake is debated,

with less consistent results on their effectiveness in sustaining plant
FIGURE 1

Root and rhizosphere traits (displayed in black boxes) that are suggested to enhance water and nutrient uptake efficiency in dynamic environments
and that are covered by this review. We here distinguish water/nutrient availability and accessibility. Availability refers to the amount and forms of
water and nutrients that are present for plant uptake while accessibility is determined by soil moisture and transport properties and reflects the ease
with which plants can acquire these resources. The color gradients indicate the ability of traits to help acquiring water and nutrients under combined
stress (green), the temporal degree of plasticity, i.e. how fast traits can be adjusted to changing environments (blue) and the carbon costs of the
traits (brown). Note that the information on carbon cost is hypothetical, as for many traits this has not been quantified but can rather be assumed or
estimated. LMWOS: low molecular weight organic substances.
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transpiration during drought (Carminati et al., 2017; Cai et al.,

2021; Marin et al., 2021; Duddek et al., 2022). Therefore, while being

a promising root trait with rapid and substantial plastic responses,

the effectiveness of root hairs in alleviating combined water and

nutrient stress requires further research.

Disentangling the impact of changes in water and nutrient

fluxes at the rhizosphere scale becomes exceptionally challenging.

As the soil dries, both the hydraulic conductivity and the diffusion

of solutes, which are crucial for transport, diminish (Javaux and

Carminati, 2021). Consequently, under dry conditions, rhizosphere

properties may limit plant transpiration and nutrient uptake (Lang

and Gardner, 1970; Carminati et al., 2017). Critical rhizosphere

traits like root exudation and rhizosphere soil structure, however,

play a vital role in enhancing the availability and accessibility of

water and nutrients to plants.

Root exudation of low molecular weight carbon (LMWOC)

compounds is a rhizosphere trait that is often associated with plant

nutrient acquisition (Dakora and Phillips, 2002). Particularly organic

anions are well known for their P solubilization and plastic response

upon P limitation (Zhang et al., 1997; Neumann and Römheld, 1999).

When it comes to the combined water and nutrient stress, mucilage, a

gel-like substance released from root tips, is a promising trait.

Mucilage possesses three intrinsic properties crucial for its

functional impact on water dynamics in the soil: the ability to

retain water, to reduce water’s surface tension, and to increase

water viscosity (e.g. Read and Gregory, 1997; Benard et al., 2019).

Additionally, a positive effect on P solubilization has been suggested

(Grimal et al., 2001; Liebersbach et al., 2004). Due to mucilage’s

characteristics, it can help maintaining a wet rhizosphere during soil

drying and improve the contact between roots, soil and soil water,

thereby ensuring sustained water and nutrient transport (Carminati

et al., 2010; Holz et al., 2019; Zarebanadkouki et al., 2019).

Additionally, enhanced liquid retention promotes microbial activity

in the rhizosphere by providing more stable conditions for solute

diffusion and protection from desiccation (Or et al., 2007; Nazari

et al., 2020). The extent to which plants can exhibit plastic responses

and adapt mucilage production remains unclear. However,

considering that mucilage secretion is an active process (Weston

et al., 2012), it is reasonable to speculate that plants might engage in

such plastic responses. Similarly, extracellular polymeric substances

(EPS) released by microorganisms can induce comparable

modifications of soil transport properties (Benard et al., 2019;

Zarebanadkouki et al., 2019). This is of fundamental importance as

microbial activity is controlled by the diffusion of enzymes and

nutrients (Schimel, 2018), particularly in the rhizosphere. Improved

diffusion benefits rhizosphere microorganisms in two ways: a

sustained supply of root metabolites, and enhanced nutrient

availability and accessibility through improved enzymatic activity

and solute transport. However, understanding the feedback between

soil moisture, nutrient conditions, soil properties, microorganisms,

and roots in shaping rhizosphere hydraulics requires further research.

The complex interaction between different substances such as

mucilage and EPS but also root hairs, lead to soil structural changes,

resulting in the so called rhizosheath formation (Mo et al., 2023;

Pang et al., 2017). The rhizosheath is defined as the weight of soil

adhering to the root surface upon excavation (McCully, 1999).
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Though no correlation between root hair length and rhizosheath

weight has been found in previous studies, the presence of root hairs

is required for effective rhizosheath formation (Brown et al., 2017).

Additionally, mucilage and microbial EPS are suggested to control

rhizosheath formation (McCully, 1999; Pang et al., 2017; Mo et al.,

2023). Rhizosheath creates a protective microenvironment around

roots, enhancing water and nutrient absorption by improving soil

structure, fostering microbial activity, and facilitating the release

and utilization of root exudates (Cheraghi et al., 2023). Rhizosheath

formation starts with root penetration, altering soil porosity and

initiating its structural dynamics (Helliwell et al., 2017). It is

thereafter controlled by soil moisture fluctuations and EPS/

mucilage acting as glueing agents enhancing soil structural

stability (Martin, 1971; Czarnes et al., 2000). Note that

rhizosheath, as a quantity is ill-defined because the water content

upon root excavation is rarely controlled nor reported. Yet, since it

is an easily obtainable parameter, rhizosheath should be considered

as a potential breeding target under combined water and nutrient

stress (Cheraghi et al., 2023).

Physiological root traits such as aquaporin and nitrate

transporter expression (i.e. uptake kinetics) become crucial when

soil nutrient availability is unpredictable, and adaptations through

changes in root structure are challenging for plants (Jackson and

Caldwell, 1996; Schneider and Lynch, 2020). Yet, when it comes to

physiological traits marked by high plasticity, substantial knowledge

gaps persist, given their comparatively limited exploration

compared to better-studied aspects like root architecture (Griffiths

and York, 2020). When combined with rhizosphere traits that

enhance nutrient and water availability, physiological responses

such as increased transporter activity could have a substantial

positive impact on the plant. However, the interaction between

traits such as mucilage or EPS exudation and physiological traits

such as transporter expression needs further investigation.
Root-shoot interaction and links with
carbon metabolism

When identifying plastic traits enhancing both nutrient and water

uptake, it’s crucial to recognize that 1) the root system and its plasticity

is not acting isolated from the aboveground (Mao et al., 2018) and 2)

that the cost efficiency of carbon investments might significantly

change under drought stress or nutrient limitation (Wang et al., 2021).

Consequently, overarching strategies of plants to optimize water

use describe an arsenal of below- and aboveground, physiological and

morphological adaptations working in conjunction to mitigate

drought (Cowan, 1982; Anderegg et al., 2018). A useful classification

is the distinction between isohydric (“conservative water use strategy”)

with early stomatal closure upon soil drying at the expense of reduced

carbon gain, and anisohydric (less conservative water use strategy

maintaining high stomatal conductance and carbon gain at the risk of

hydraulic failure under drought) (Jones and Sutherland, 1991;

McDowell et al., 2008). Isohydric plant species often rely on deep

roots and continuous water access. In contrast anisohydric plant

species are often shallow rooted (McDowell et al. 2008) but have

developed a broad range of structural and functional adaptations (e.g.
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preventing excessive transpiration by thick cuticle or adjusting leaf

angle), allowing them to sustainably function even under severe

drought stress (Tardieu and Simmoneau, 1998). Resource utilization

strategies are not limited to adaptions of the root system or the

rhizosphere but also encompass adaptations to the aboveground plant

development: resource acquisitive species reduce the leaf area while

increasing their photosynthetic rate or display enhanced nutrient

absorption capabilities (Wright et al., 2004; Freschet et al., 2010;

Reich, 2014; Dıáz et al., 2016).

Hence, breeding for effective drought and nutrient adaptation

faces the challenge of linking below- and aboveground plant

responses. Furthermore, investing in root and rhizosphere traits

may compromise carbon allocation to aboveground biomass in

agricultural plants, potentially affecting yields (Jansson et al., 2021).

Under stress, especially when photosynthesis is limited, balancing

water, nutrient, and carbon metabolism becomes challenging.

Developing (plastic) traits in response to drought and nutrient

limitations can be costly in terms of carbon investment, particularly

when carbon availability is limited. Therefore, optimizing traits should

encompass both carbon-efficiency and prioritization of carbon

assimilation or the photosynthesis/respiration balance (Poorter and

Nagel, 2000; Amthor et al., 2019). Up to now, information on the

carbon costs of most root and rhizosphere traits remains limited.

While we hypothesize about these costs based on physiological

principles (as reflected in Figure 1), quantifying the exact energetic

investment for various traits is a developing field. This highlights the

importance of further research in this area.
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Way forward

This review stresses the need to view nutrient and water uptake as

interconnected rather than independent processes. Climate change,

with increased variability in soil moisture and nutrient conditions,

requires genotypes capable of swift adjustments to changing

environmental conditions. Examining phenotypic plasticity in root

and rhizosphere traits and rapid responses of crops under combined

resource limitations provides insights into their adaptive potential. In

particular, root morphological and physiological root traits, along

with rhizosphere features, allow for high responsiveness to combined

water and nutrient limitations at the root-soil interface.

To study these promising root and rhizosphere traits, future

research needs well-designed experimental setups, preferably in

authentic field conditions, as controlled conditions may differ from

real-world settings, impacting transferability (Nestler et al., 2017). To

account for dynamic environmental conditions in response to the

accelerating climate change, we propose conducting drought-

recovery experiments rather than solely relying on static drought

stress scenarios (Zheng et al., 2023).

To capture a range of valuable root and rhizosphere traits, we

suggest using diverse measurement approaches (Figure 2). Non-

destructive methods can be used, such as measuring water

potentials along the soil-plant-atmosphere gradient (Turner et al.,

1984; Pagay, 2022) and estimating water uptake from varying soil

depths by combining in-situ stable water isotope sensors and

statistical modelling (Deseano Diaz et al., 2023; Dubbert et al., 2023).
FIGURE 2

Suggested approaches that can be used in combination in order to study root and rhizosphere traits for combined water and nutrient limitation.
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Mini rhizotron assessments enable the quantification of root

morphology, including root hairs and, to some extent, root

architecture across various soil depths over time (Vamerali et al.,

2012; Vincent et al., 2017). Another viable method is mucilage

collection from brace roots, especially in maize plants (Ahmed

et al., 2015).

Finally, proximal sensing techniques, like spectral reflectance

and infrared thermometry, non-invasively monitor plant status and

development (Karthikeyan et al., 2020; Kimaro et al., 2023),

allowing real-time assessments of biomass production, canopy

structure, and photosynthetic activity (Gamon et al., 2015).

Continuous monitoring of spectral reflectance during the growth

period provides insights into physiological status, enabling early

detection of nutrient limitations (Weiss et al., 2020; Fiorentini et al.,

2021; Sanaeifar et al., 2023), possibly guiding breeding programs

towards genotypes with improved resource use strategies. Proximal

sensing therefore not only contributes to biomass quantification but

also enhances our capacity to proactively address nutrient-related

challenges and optimize agricultural practices for improved crop

performance and resource use efficiency (Rajath et al., 2021).

Destructive approaches, particularly those for studying the

rhizosphere, often involve sampling the entire plant. To collect

root exudates in field conditions, perforated columns can be

inserted, employing a soil-hydroponic-hybrid exudation sampling

approach (Santangeli et al., 2024) (Figure 2). We propose

combining this approach with a) the assessment of C costs of

root traits based on either 13C labeling (Zhou et al., 2022) or C3-C4

vegetation change (Kumar et al., 2016) and b) the addition of

isotopically labeled fertilizers and irrigation at different soil depths

within the perforated columns to determine nutrient uptake from

various soil layers (Kristensen and Thorup-Kristensen, 2004; Chen

et al., 2021).

Integrating insights gained from these diverse measurement

approaches with efforts in plant breeding (Galindo-Castañeda et al.,

2024; Wissuwa et al., 2009), can help accelerate the development of

crop varieties specifically designed to thrive under future

climate scenarios.
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This holistic approach ensures a comprehensive understanding

of root and rhizosphere traits under diverse conditions, guiding

future agricultural strategies for sustainable resource management.
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