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Introduction: Chrysanthemum morifolium Ramat. is a perennial herb in the

Compositae family, often employed in traditional Chinese medicine due to its

medicinal value. The planting of C. morifolium faces the challenges of

continuous cropping, and intercropping is able to somewhat overcome the

obstacles of continuous cropping.

Methods: In our study, we designed two different C. morifolium-maize

intercropping patterns, including C. morifolium-maize narrow-wide row

planting (IS) and C. morifolium-maize middle row planting (IM). Compared with

monoculture, the agronomic traits, yield, active ingredients, soil physicochemical

properties, soil enzyme activities, and rhizosphere soil microbial communities of

C. morifolium and maize were measured under the two C. morifolium-maize

intercropping patterns.

Results: The findings indicated that (1) Intercropping elevated the agronomic

traits, yield, and active ingredients of C. morifolium, especially in C. morifolium-

maize narrow-wide row planting pattern, which indicating that interspecific

distance played an important role in intercropping system; (2) Intercropping

enhanced soil physicochemical properties and enzyme activities of C.

morifolium and maize; (3) Intercropping altered rhizosphere soil microbial

communities of C. morifolium and maize, making microbial interrelationships

more complex. (4) Intercropping could recruit a large number of beneficial

microorganisms enrich in the soil, including Bacillus, Sphingomonas,

Burkholderia-Caballeronia-Paraburkholderia, Chaetomium, and Ceratorhiza,

which may increase the content of AN, NN, AvK, ExCa, AvCu, AvZn and other

nutrients in soil and promoted the growth and quality of C. morifolium.
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Discussion: In summary, intercropping with maize could promote the

accumulation of beneficial microorganisms in the soil, thus improving the

overall growing environment, and finally realizing the growth and improvement

of C. morifolium.
KEYWORDS

Chrysanthemum morifolium, maize, intercropping, yield, quality, soil condition,
rhizosphere soil microbial communities
Introduction

In recent years, monoculture has been widely used because of its

ease of planting, field management and mechanization. However,

monoculture deprived the soil of nutrients, limiting its ability to

support healthy plant growth in the long term (Wolińska et al.,

2015). Therefore, monoculture usually improved yields by

increasing fertilizer application, which in turn disrupt the natural

composition of the soil, leading to further loss of nutrients from the

soil (Wolińska et al., 2022). Moreover, continuous monocultures

limited the diversity of soil microbial species (Yusuf et al., 2009),

disrupted the ecological stability of the soil microbial community

(Misra et al., 2019), and resulted in the spread of pests and diseases

(Brooker et al., 2015). Many medicinal plants and crops suffered

from these negative effects (Arafat et al., 2019; Li et al., 2019; Liu

et al., 2020; Gong et al., 2022).

To overcome these problems, intercropping can be used as an

alternative. Intercropping refers to the simultaneous planting of several

(two or more) crops on the same land (Zhao et al., 2018; Stomph et al.,

2020), acting as a sustainable approach applied to modern agricultural

production systems globally (Zhu et al., 2015; Zaeem et al., 2019).

Compared to monoculture, intercropping could better utilize light,

water, and nutrient resources (Willey, 1990; Ren et al., 2017), improve

soil quality (Cong et al., 2015), limit soil erosion (Chen et al., 2010;

Kurothe et al., 2014), enhance crop yield (Gronle et al., 2015; Gou et al.,

2016; Latati et al., 2016), and increase land use efficiency (Wang et al.,

2015). Intercropping usually has a profound effect on soil, the green

garlic-cucumber intercropping has been proved to regulate the soil

micro-ecological environment by improving the content of AvP, AvK,

and other nutrients (Xiao et al., 2019). Prior studies also found that

intercropping could help enhance the crop yield and quality (Liu et al.,

2021). Moreover, intercropping can change the microbial communities

to improve soil condition, microorganisms are directly related to the

decomposition of organic matter and the transformation of mineral

elements in the soil, which in turn affects the growth and quality of

crops (Anderson, 2003). Lily-maize intercropping could produce

beneficial effects on lily through influencing the diversity and

structure of the bacterial community and increasing the relative

abundance of beneficial bacteria in the lily rhizosphere soil (Zhou

et al., 2018). Therefore, intercropping may be an effective way to solve

the dilemma of continuous monoculture.
02
Chrysanthemum morifolium Ramat. acts as a medicinal plant

member of the Compositae family, which originated in China has

been used for over 3000 years (Yuan et al., 2020), and is commonly

employed as a traditional Chinese medicinal drink (Wang et al., 2019).

The primary active ingredients in C. morifolium include caffeoylquinic

acids such as 3-O-caffeoylquinic acid, 3,5-dicaffeoylquinic acid, as well

as luteolin-7-O-glucoside and other flavonoids (Ranxin et al., 2004;

Kim and Lee, 2005; Xie et al., 2012). Currently, in response to the

increasing demand for C. morifolium for medicinal uses, cultivation

has expanded dramatically. C. morifolium has typically been planted

in long-term continuous monocultures. However, numerous studies

have indicated that C. morifolium continuous monocultures led to

massive reproduction of pathogens, soil nutrients imbalance, changing

in soil microbial community, and the destruction of soil structure

(Wang et al., 2011; Liu et al., 2012).

Thus, in order to solve the current problems in the cultivation of

C. morifolium, we proposed the C. morifolium-maize intercropping

system. Several studies have demonstrated that maize is suitable for

intercropping with medicinal plants and crops (Jiao et al., 2021;

Noushahi et al., 2021; Zhang et al., 2021; Peng et al., 2022). Maize

promotes the sustainable productivity of intercropping plants by

increasing beneficial soil microorganisms, altering the microbial

structure, improving microbial abundance, inhibiting disease

occurrence, and promoting nitrogen absorption (Fan et al., 2019;

Chang et al., 2020). However, intercropping between C. morifolium

and maize has been rarely reported.

To investigate the advantages of C. morifolium-maize

intercropping, two different patterns were employed to study the

effect of intercropping on agronomic traits, yield, and active

ingredients of C. morifolium, as well as the effects on soil

physicochemical properties, soil enzyme activities, and rhizosphere

soil microbial communities. This study will lay a foundation for the

promotion and application of C. morifolium-maize intercropping

patterns in C. morifolium production.

Materials and methods

Experimental location

The experimental site was located at Hubei University of

Chinese Medicine, Wuhan City, Hubei Province, China (30° 37’
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N, 114° 37’ E, altitude 30 m), in the North subtropical monsoon

climate region. Before the experiment, the following chemical

properties of the yellow-brown soil in the test field were

determined: pH 6.80, soil organic matter (SOM) 20.72 g·kg-1,

total nitrogen (TN) 1.07 g·kg-1, total phosphorus (TP) 0.77 g·kg-1,

and total potassium (TK) 22.37 g·kg-1.
Experimental design and field management

This experiment was conducted in May 2022 using three replicates

of four treatments in a randomized block design. Monoculture C.

morifolium (MC) and monoculture maize (MM) were established as

control, the transverse and longitudinal distance between each C.

morifolium or maize and its surrounding C. morifolium or maize

was 40 cm × 40 cm (Figures 1A, B). Two intercropping patterns of C.

morifolium-maize intercropping were established as follows: C.

morifolium-maize narrow-wide row planting (IS), i.e., the relay

intercropping combination of two crop strips with a total width of

320 cm, composed of two rows of maize and six rows of C. morifolium

with 60 cm row width for maize, 40 cm or 80 cm row width for C.

morifolium, and 10 cm spacing between the adjacent rows of maize and

C. morifolium (C. morifolium and maize of IS were known as ISC and

ISM, respectively) (Figure 1C); C. morifolium-maize middle row

planting (IM), i.e., maize was planted between the middle row of C.

morifolium, 80 cm plant spacing for maize, 40 cm plant spacing for C.

morifolium, and 20 cm spacing between the adjacent plants of maize

and C. morifolium (C. morifolium and maize of IM were known as

IMC and IMM, respectively) (Figure 1D). In two different

intercropping patterns, the transverse and longitudinal distance

between each C. morifolium and its surrounding C. morifolium was

40 cm × 40 cm (Figures 1C, D). C. morifolium and maize were planted

on ridges (20 cm high); each ridge was 120 cm wide and separated by a

40 cm wide furrow. Basal fertilizers were administered to the soils prior

to the planting of the C. morifolium and maize. The organic fertilizer

[organic matter ≥ 70%, N-P2O5-K2O ≥ 6% (2-2-2)] and compound

fertilizer [N-P2O5-K2O ≥ 40% (20-8-12)] were administered at rates of

7500 kg·ha-1 and 750 kg·ha-1 as basal fertilizers, respectively. All field

management practices were consistent across treatments, including

intertillage, weeding, watering, drainage, disease control, and topping.
Sampling of rhizosphere soil

Each rhizosphere soil sample was obtained from the C.

morifolium and maize rhizosphere of each intercropping and

monoculture pattern at the flowering stage of C. morifolium

(November 2022) and at the mature stage of maize (September

2022). The rhizosphere soils from five randomly selected C.

morifolium and maize plants were obtained in each replicate of

each treatment as one biological replicate, with three biological

replicates performed in each treatment. A total of 18 rhizosphere

soil samples were acquired. After removing non-soil particles,

crushing, and passing through a 2-mm sieve, the rhizosphere soil

was separated into two segments. One segment was stored in a -80°

C freezer and used to analyze soil microbial community structure
Frontiers in Plant Science 03
and diversity detection; the second segment was dried at room

temperature and pulverized into a powder to detect soil

physicochemical properties and enzyme activities.
Determination of agronomic traits and
yield of C. morifolium and maize

Fifteen C. morifolium and maize plants were randomly chosen

from each experimental treatment to examine agronomic traits and

yield. Measurements of C. morifolium included plant height, stem

diameter, number of first branches, number of second branches, leaf

length, leaf width, flower outside diameter, flower inside diameter,

number of flowers per plant, 100-fresh flower weight, fresh flower

weight per plant, dry flower weight per plant. Measurements for

maize included grain weight per plant. The land equivalent ratio

(LER) represented the total land area of crops required to achieve the

same yield as the intercrops: LER = Yic/Ymc + Yim/Ymm. Yic and Ymc

represented the yield of intercropping and monoculture C.

morifolium, and Yim and Ymm were the yields of intercropping and

monoculture maize, respectively. The yields of C. morifolium and

maize were converted by multiplying the fresh flower weight and

grain weight per plant by planting density, respectively. Intercropping

systems exhibit yield advantages when LER > 1, while LER < 1

exhibits yield disadvantages (Mead and Willey, 1980).
Determination of active ingredients of
C. morifolium

3-O-caffeoylquinic acid, rutin, luteolin-7-O-glucoside, 3,4-

dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, and 4,5-dicaffeoylquinic

acid were obtained to use as a control from China National Institute for

the Control of Pharmaceuticals and Biological Products (Beijing, China).

Sample solutions were prepared according to the method in

Pharmacopoeia of the People's Republic of China (2020 Edition), Part

1, medicinal materials and cut crude drugs, Chrysanthemum. The

contents of the primary active ingredients in C. morifolium were

determined using a Shimadzu LC-2030C 3D PLUS high-performance

liquid chromatography (HPLC) instrument alongside an Agilent

ZORNAX SB-C18 column (4.6 mm × 250 mm, 5 mm). A binary

solvent system of A) 0.1% phosphoric acid in water and B) acetonitrile

(v/v) was utilized with a 0.8 mL·min-1 flow rate. The injection volume

was 20 mL, and gradient elution including 0-8 minutes, 16% B; 8-13

minutes, 16%-20% B; 13-30minutes, 20% B; 30-35minutes, 20%-25% B;

35-60 minutes, 25%-30% B; 60-70 minutes, 30-60% B; 70-80 minutes,

60% B. The detection ultraviolet wavelength was established at 348 nm,

and the column temperature was 30°C (Wang et al., 2022).
Determination of soil physicochemical
properties and enzyme activities of
C. morifolium and maize

Soil pH was identified using the potentiometric method in

which the soil-to-water ratio was 1:2.5. Soil organic matter (SOM)
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was determined using the potassium dichromate volumetric

method. The total nitrogen (TN) was determined by the Kjeldahl

method. Total phosphorus (TP) was determined through the

molybdenum antimony colorimetry method. Total potassium

(TK), exchangeable calcium (ExCa), exchangeable magnesium

(ExMg), available ferrum (AvFe), available manganese (AvMn),

and available zinc (AvZn) were determined using the flame

spectrophotometry method. Available cuprum (AvCu) was
Frontiers in Plant Science 04
determined through the graphite furnace spectrophotometry

method. Available boron (AvB) was determined by the

Azomethime-H colorimetry method (Bao, 2000). Ammonium

nitrogen (AN), nitrate nitrogen (NN), available phosphorus

(AvP), and available potassium (AvK) were determined using

assay kits produced by Beijing Solarbio Science & Technology

Co., Ltd., according to the manufacturer’s instructions. Soil urease

(S-UE) activity was determined by the phenolsodium hypochlorite
A

B

D

C

FIGURE 1

Schematic diagram of C. morifolium-maize intercropping and monoculture treatments. (A) monoculture C. morifolium (MC); (B) monoculture maize
(MM); (C) C. morifolium-maize intercropping, C. morifolium-maize narrow-wide row planting (IS, C. morifolium and maize of IS known as ISC and
ISM, respectively); (D) C. morifolium-maize intercropping, C. morifolium-maize middle row planting (IM, C. morifolium and maize of IM known as
IMC and IMM, respectively).
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colorimetric method. Soil sucrase (S-SC) activity was determined

using the 3,5-dinitrosalicylic acid colorimetric method. Soil acid

phosphatase (S-ACP) activity was determined by the disodium

phenyl phosphate colorimetric method. Soil catalase (S-CAT)

activity was determined using the potassium permanganate

titration method (Guan et al., 1986).
Soil DNA extraction, PCR amplification, and
Illumina Miseq sequencing

Total DNA was extracted from the microbial community

according to the E.Z.N.A.® soil DNA kit (Omega Bio-tek, Norcross,

GA, U.S.) instructions, and DNA extraction quality was measured

using 1% agarose gel electrophoresis. DNA concentration and purity

were determined using a NanoDrop2000. The primers 338F (5’-

ACTCCTACGGGAGGCAGCAG-3 ’ ) a nd 8 0 6R ( 5 ’ -

GGACTACHVGGGTWTCTAAT-3 ’) were used for PCR

amplification of the V3-V4 variable region of the 16S rRNA gene

and ITS1F (5’-CTTGGTCATTTAGAGGAAGTAA-3’) and ITS2R (5’-

GCTGCGTTCTTCATCGATGC-3’) were used for PCR amplification

of the I1-I2 variable region of the ITS rRNA gene. The amplification

procedure was as follows: pre-denaturation at 95°C for 3 minutes,

followed by 27 cycles of denaturation at 95°C for 30 seconds, annealing

at 55°C for 30 seconds, extension at 72°C for 30 seconds, followed by a

final extension at 72°C for 10 minutes, and finally storage at 4°C (PCR

instrument: ABI GeneAmp® 9700). The 20 mL PCR reaction system

was made up of: 5×TransStart FastPfu buffer, 4 mL; 2.5 mM dNTPs, 2

mL; each primer (5 mM), 0.8 mL; TransStart FastPfu DNA polymerase,

0.4 mL; template DNA, 10 ng; ddH2O, to the final volume of 20 mL.
There were three replicates performed per sample. PCR products from

the same sample were combined and recovered using 2% agarose gel

electrophoresis. The recovered products were purified using an

AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union City,

CA, USA) and quantified by a Quantus™ Fluorometer (Promega,

USA). Sequencing was conducted using an Illumina Miseq PE300

platform (ShanghaiMeiji Biomedical Technology Co., LTD.). Raw data

was uploaded to the NCBI SRA database (serial number:

SRR26142235-SRR26142252, SRR26450172-SRR26450189).
Data processing statistical analysis

Fastp (https://github.com/OpenGene/fastp, version 0.20.0)

software was utilized to perform quality control on the original

sequencing sequence (Chen et al., 2018). FLASH (http://

www.cbcb.umd.edu/software/flash, version 1.2.7) software was

employed for Mosaic (Magoč and Salzberg, 2011): (1) The base of

reads with a mass value below 20 at the tail end was removed, and a

50 bp window was established. (2) According to the overlap between

PE reads, pairs of reads were merged into a sequence with a

minimum overlap length of 10 bp. (3) The maximum mismatch

ratio allowed in the overlap area of the splicing sequence was 0.2, and

the non-conforming sequence was screened. (4) The samples were

differentiated based on the barcode and primers at both ends of the

sequence, and the sequence direction was adjusted. The allowable
Frontiers in Plant Science 05
mismatch number of the barcode was 0, and the maximummismatch

number of the primer was 2. Using UPARSE software (http://

drive5.com/uparse/, version 7.1) (Edgar, 2013), according to 97%

OTU on the sequence of similarity clustering and eliminate chimeras

(Stackebrandt and Goebel, 1994; Edgar, 2013). Species classification

annotation was conducted on each sequence using the RDP classifier

(http://rdp.cme.msu.edu/, version 2.2) (Wang et al., 2007). The

sequence was compared using the Silva database (Release138 http://

www.arb-silva.de) of the 16S rRNA gene and the Unite database

(Release 8.0 http://unite.ut.ee/index.php) of the ITS rRNA gene, and

the comparison threshold was established as 70%.
Statistical analysis

Microsoft Excel 2010 software and SPSS 26.0 software were

employed for statistical data analysis. The results were expressed as

means ± standard deviations (SD). One-way analyses of variance

(ANOVA) followed by multiple comparison tests of means (Duncan’s

new multiple range test) was used to compare the difference between

the different treatments. The figures in the manuscript were generated

using GraphPad Prism 8 and Adobe Photoshop CC.
Results

The effect of C. morifolium-maize
intercropping on the agronomic traits and
yield of C. morifolium and maize

Compared to MC, the agronomic traits of C. morifolium were

increased in both ISC and IMC, with the number of second

branches and flower inside diameter differing significantly in ISC

(Supplementary Table 1). For the yield of C. morifolium, number of

flowers per plant, fresh flower weight per plant, and dry flower

weight per plant, were all highest in ISC and lowest in MC

(Figures 2A–D). As for maize, grain weight per plant in ISM and

IMM was significantly increased when compared to MM

(Figure 2E). The land equivalent ratio is greater than 1, with the

higheret in IS treatment, indicating that intercropping had a yield

advantage (Figure 2F). These findings indicated that intercropping

could promote the growth and development of C. morifolium and

maize, especially in IS treatment.
The effect of C. morifolium-maize
intercropping on the active ingredients of
C. morifolium

The content of primary active ingredients of plants are

important quality characteristics. ISC contained the highest level

of main active ingredients, including 3-O-caffeoylquinic acid (10.26

mg/kg), rutin (2.13 mg/kg), luteolin-7-O-glucoside (5.86 mg/kg),

3,4-dicaffeoylquinic acid (2.87 mg/kg), 3,5-dicaffeoylquinic acid

(24.30 mg/kg) and 4,5-dicaffeoylquinic acid (10.76 mg/kg).

Compared to MC, the content of 3-O-caffeoylquinic acid, 3,4-
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dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, and 4,5-

dicaffeoylquinic acid, were significantly increased by 12.25%,

15.70%, 19.07% and 17.56%, respectively, while luteolin-7-O-

glucoside and rutin were dramatically decreased by 12.40% and

15.50%, respectively in IMC (Figures 3A–F). In summary,

intercropping could enhance quality of C. morifolium, particularly

in IS treatment.
The effect of C. morifolium-maize
intercropping on soil physicochemical
properties and enzyme activities of
C. morifolium and maize

The physicochemical properties and enzyme activities of soil are

closely related to plants. The contents of majority of soil

physicochemical properties of C. morifolium were highest in IMC,

containing SOM, NN, AvP, AvK, ExCa, ExMg, AvFe, AvMn, AvCu,

AvZn, and AvB, reached 28.94 g/kg, 20.83 mg/kg, 37.36 mg/kg,

225.17 mg/kg, 411.63 mg/kg, 17.13 mg/kg, 82.09 mg/kg, 20.47 mg/

kg, 2.61 mg/kg, 6.65 mg/kg, and 0.55 mg/kg, respectively.

Contrasted with MC, ISC dramatically elevated the levels of SOM,

TP, TK, AvP, AvFe, AvCu, and AvZn by 76.31%, 8.66%, 17.94%,

10.19%, 7.34%, 3.28%, and 2.06%, respectively, however,

considerably lowered the contents of pH, AN, ExCa, and AvB by

2.21%, 2.61%, 13.33%, and 17.31%, respectively. As for maize,

Compared to MM, pH value, the levels of SOM, TP, AN, AvP,
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ExCa, ExMg, AvFe, AvCu, and AvZn were greatly enhanced in ISM

and IMM, the contents of SOM, TP, AvP, AvFe, AvCu, and AvZn

were highest in IMM, and the levels of pH value, AN, ExCa, and

ExMg peaked in ISM (Table 1).

For the soil enzyme activities of C. morifolium, S-UE, S-SC, S-

ACP, and S-CAT were increased in ISC and IMC, IMC represented

the highest S-UE activity (808.73 U/g), S-ACP activity (42.83 kU/g),

and S-CAT activity (55.29 U/g), whereas ISC had the highest S-SC

activity, reached 46.21 U/g. As for maize, Contrasted with MM, ISM

significantly raised S-UE, S-SC, and S-CAT activities by 15.56%,

23.07%, and 0.33%, respectively; S-UE, S-SC, and S-ACP activities

were dramatically increased by 5.84%, 38.63%, and 26.19%,

respectively in IMM (Figures 4A–D). Generally, intercropping

could promote most of soil physicochemical properties and

enzyme activities, especially in IM treatment.
The effect of C. morifolium-maize
intercropping on rhizosphere soil microbial
community characteristics of C. morifolium
and maize

Shannon and Chao1 indexes represent the diversity and

richness of microbial communities, respectively. For the

rhizosphere soil bacterial community, compared to MC, Shannon

and Chao1 indexes were significantly reduced in ISC. Shannon

index was markedly increased, while Chao1 index had no
A B

D E F

C

FIGURE 2

The effect of C. morifolium-maize intercropping on yield of C. morifolium and maize. C. morifolium: (A) Number of flowers per plant, (B) 100-fresh
flower weight, (C) Fresh flower weight per plant, (D) Dry flower weight per plant. Maize: (E) Grain weight per plant. Data are shown as means ±
standard deviations (n = 15). Boxes with different letters represent significant differences (P < 0.05). (F) The land equivalent ratio of different
intercropping treatments.
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TABLE 1 The effect of C. morifolium-maize intercropping on soil physicochemical properties of C. morifolium and maize.

Soil physicochemical properties
C. morifolium maize

MC ISC IMC MM ISM IMM

pH 7.25 ± 0.03a 7.09 ± 0.02b 6.50 ± 0.02c 6.30 ± 0.03c 6.50 ± 0.02b 6.92 ± 0.02a

SOM (g/kg) 12.79 ± 0.88c 22.55 ± 1.41b 28.94 ± 0.70a 10.93 ± 0.20c 20.11 ± 0.53b 21.27 ± 0.70a

TN (mg/kg) 167.33 ± 2.01a 168.04 ± 2.15a 97.84 ± 3.86b 192.69 ± 0.99c 203.02 ± 2.57b 235.06 ± 1.87a

TP (mg/kg) 166.71 ± 9.28b 181.14 ± 3.33a 108.03 ± 2.89c 105.15 ± 5.77b 120.54 ± 8.33a 116.69 ± 7.64ab

TK (g/kg) 30.55 ± 0.14c 36.03 ± 0.23a 34.58 ± 0.45b 32.32 ± 0.09a 24.43 ± 0.29c 28.38 ± 0.19b

AN (mg/kg) 17.98 ± 0.09a 17.51 ± 0.09b 16.93 ± 0.33c 8.70 ± 0.09c 11.58 ± 0.18b 15.20 ± 0.36a

NN (mg/kg) 10.08 ± 2.02b 11.42 ± 1.16b 16.80 ± 3.08a 30.05 ± 0.98b 29.48 ± 1.96b 38.55 ± 0.98a

AvP (mg/kg) 30.52 ± 2.06c 33.63 ± 0.45b 37.36 ± 0.65a 18.94 ± 5.42c 32.35 ± 3.10b 54.69 ± 6.88a

AvK (mg/kg) 167.35 ± 1.41b 164.87 ± 2.01b 225.17 ± 1.10a 129.53 ± 3.57b 105.58 ± 4.16c 156.69 ± 1.77a

ExCa (mg/kg) 362.62 ± 1.21b 314.29 ± 2.27c 411.63 ± 1.60a 357.27 ± 2.16c 492.34 ± 2.32a 420.50 ± 2.68b

ExMg (mg/kg) 16.01 ± 0.11b 15.93 ± 0.21b 17.13 ± 0.22a 15.68 ± 0.10b 17.24 ± 0.20a 16.98 ± 0.24a

AvFe (mg/kg) 48.10 ± 0.30c 51.63 ± 0.22b 82.09 ± 0.44a 35.40 ± 0.11c 44.44 ± 0.24b 95.54 ± 0.63a

AvMn (mg/kg) 20.47 ± 0.23a 20.44 ± 0.05a 19.70 ± 0.20b 19.60 ± 0.12b 19.35 ± 0.18b 20.49 ± 0.15a

AvCu (mg/kg) 1.83 ± 0.03c 1.89 ± 0.01b 2.61 ± 0.02a 1.18 ± 0.03c 1.34 ± 0.01b 2.05 ± 0.02a

AvZn (mg/kg) 5.82 ± 0.02c 5.94 ± 0.04b 6.65 ± 0.04a 4.13 ± 0.09c 4.78 ± 0.04b 5.91 ± 0.08a

AvB (mg/kg) 0.52 ± 0.03a 0.43 ± 0.03b 0.55 ± 0.02a 0.42 ± 0.02b 0.43 ± 0.02b 0.64 ± 0.03a
F
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pH, soil organic matter (SOM), total nitrogen (TN), total phosphorus (TP), total potassium (TK), ammonium nitrogen (AN), nitrate nitrogen (NN), available phosphorus (AvP), available
potassium (AvK), exchangeable calcium (ExCa), exchangeable magnesium (ExMg), available ferrum (AvFe), available manganese (AvMn), available cuprum (AvCu), available zinc (AvZn),
available boron (AvB). Data are shown as means ± standard deviations (n = 3). Different letters represent significant differences (P < 0.05).
A B

D E F

C

FIGURE 3

The effect of C. morifolium-maize intercropping on the active ingredients of C. morifolium. The content of (A) 3-O-caffeoylquinic acid, (B) Rutin, (C)
Luteolin-7-O-glucoside, (D) 3,4-dicaffeoylquinic acid, (E) 3,5-dicaffeoylquinic acid, and (F) 4,5-dicaffeoylquinic acid. Data are shown as means ±
standard deviations (n = 3). Columns with different letters represent significant differences (P < 0.05).
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significant differences in IMC. Contrasted with MM, apart from

ISM reduced Chao1 index, no considerable alterations were

observed in Shannon and Chao1 indexes in ISM and IMM

(Figures 5A, C). As for fungal community, Among the Shannon

and Chao1 indexes of different treatments, only Shannon index

between MC and ISC showed noteworthy distinctions (Figures 5B,

D). The Shannon and Chao1 indexes demonstrated that

intercropping induced greater changes in bacterial community

than fungal community, particularly in IS treatment. Non-metric

multidimensional scaling (NMDS) analysis revealed bacterial and

fungal communities differed considerably between C. morifolium

and maize, divided into two categories (by NMDS1). Moreover,

ANOSIM analysis also showed soil bacterial (R = 0.9918, P = 0.001)

and fungal (R = 0.9967, P = 0.001) community structures of

different treatments had clear distinctions (Figures 5E, F).
The effect of C. morifolium-maize
intercropping on rhizosphere soil microbial
community compositions of C. morifolium
and maize

C. morifolium and maize rhizosphere soil microbial

communities were all mainly composed of the bacterial phyla

Proteobacteria (19.75%-41.50%), Actinobacteria (17.00%-31.34%),
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Acidobacteriota (5.21%-15.55%), and Chloroflexi (5.58%-15.06%)

and the fungal phyla Ascomycota (39.11%-77.38%) and

Basidiomycota (13.66%-56.25%) in different treatments

(Figures 6A, C, Supplementary Table 2). However, the abundance

of dominant microbial genera had an evident change. Compared to

MC, Sphingomonas, Burkholderia-Caballeronia-Paraburkholderia,

Coprinellus, Chaetomium, and Ceratorhiza were more enriched in

ISC; Bacillus, Sphingomonas, Ceratobasidium, Mortierella,

Chaetomium, and Ceratorhiza were more enriched in IMC. The

proportion of Streptomyces, Bacillus, Burkholderia-Caballeronia-

Paraburkholderia, Mortierella, and Ceratobasidium were all the

lowest in MM, Bacillus increased most in ISM, and Streptomyces,

Sphingomonas, Burkholderia-Caballeronia-Paraburkholderia,

Mortierella, and Ceratobasidium peaked in IMM (Figures 6B, D,

Supplementary Table 3).
The effect of C. morifolium-maize
intercropping on rhizosphere soil microbial
co-occurrence patterns of C. morifolium
and maize

Co-occurrence network analysis is commonly adopted to

explore the interactions among microorganisms and uncover the
A B

DC

FIGURE 4

The effect of C. morifolium-maize intercropping on enzyme activities of C. morifolium and maize. (A) Soil urease (S-UE), (B) Soil sucrase (S-SC), (C)
Soil acid phosphatase (S-ACP), (D) Soil catalase (S-CAT). Data are shown as means ± standard deviations (n = 3). Columns with different letters
represent significant differences (P < 0.05).
frontiersin.org

https://doi.org/10.3389/fpls.2024.1383477
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liao et al. 10.3389/fpls.2024.1383477
differences between microbial communities. In both rhizosphere

soil bacterial and fungal communities, compared to MC, the

number of links, average degree, and graph density were

increased in ISC and IMC; compared to MM, the number of

links, average degree, and graph density were increased in ISM

and IMM, suggesting that intercropping systems had more

complex microbial networks (Figures 7A, B, Supplementary

Tables 4, 5).
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The relationship among agronomic traits,
yield, active ingredients, soil
physicochemical properties, soil enzyme
activities, and rhizosphere soil microbial
communities of C. morifolium and maize

Use principal component analysis (PCA) to extract the main

influencing factors based on all soil environmental indicators (soil
A B

D

E F

C

FIGURE 5

The effect of C. morifolium-maize intercropping on rhizosphere soil microbial community characteristics of C. morifolium and maize. The Shannon
index at the OTU level: (A) Bacteria, (B) Fungi. The Chao1 index at the OTU level: (C) Bacteria, (D) Fungi. Data are shown as means ± standard
deviations (n = 3). Columns with different letters represent significant differences (p < 0.05). NMDS analysis at the OTU level: (E) Bacteria, (F) Fungi.
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physicochemical properties and enzyme activities) of C. morifolium

and maize. The cumulative contribution of PC1 and PC2 amounted

to 69.33% (Supplementary Table 6), the load of AN, AvK, AvCu,

and AvZn, were larger in PC1, the load of NN and ExCa were larger

in PC2, they were selected as representative soil environmental

factors (Supplementary Table 7). Redundancy analysis (RDA)

indicated that AN, AvK, AvCu, and AvZn were positively

correlated with Bacillus, Sphingomonas, Ceratobasidium, and

Ceratorhiza; NN and ExCa were positively correlated with

Burkholderia-Caballeronia-Paraburkholderia , Mortierella ,

Neocosmospora, and Chaetomium (Figure 8A). Likewise, various

agronomic traits, yield, and active ingredients of C. morifolium were

positively correlated with Bacillus, Sphingomonas, Burkholderia-

Caballeronia-Paraburkholderia, Coprinellus, Chaetomium and

Ceratorhiza (Figure 8B). Moreover, plant height of C. morifolium

was significantly positively correlated with AvZn, number of flowers

per plant was significantly positively related to AvCu, rutin and

luteolin-7-O-glucoside were significantly negatively related to AvK

and ExCa (Supplementary Table 8).
Discussion

In intercropping systems, the distance between crops has a great

influence on soil microbial communities and physicochemical

properties, and plants yield and quality. In this study, we designed

two different C. morifolium-maize intercropping patterns, including C.

morifolium-maize narrow-wide row planting (IS) and C. morifolium-

maize middle row planting (IM). We found that the diversity and
Frontiers in Plant Science 10
richness of the rhizosphere soil microbial communities in IS treatment

were more variable than that in IM treatment (Figures 5A–D). We

hypothesize that it may be because the spacing between intercropping

crops affects the interactions between species (Li et al., 1999). Under IS

treatment, the closer spacing between neighboring C. morifolium and

maize caused more interaction. However, the promotion of the

majority of soil physicochemical properties in IM treatment was

greater than that in IS treatment (Figure 4). This may be due to the

spacing between adjacent C. morifolium and maize was increased

under IM treatment, which could reduce interspecific competition

and lead to improved soil nutrition (Thorsted et al., 2006). In our study,

C. morifolium-maize narrow-wide row planting had a higher

improvement in C. morifolium yield and quality (Figures 2, 3).

Therefore, in intercropping systems, interspecific distance

plays an important role in balancing nutrient utilization and

microbial interaction.

Due to differences in crop species (Li and Wu, 2018) and root

exudates (Jiang et al., 2022), intercropping impacts soil microbial

communities. Previous studies have identified that intercropping could

alter soil microbial characteristics and microbial community

compositions (Sanguin et al., 2009; Bainard et al., 2012; Zhang et al.,

2015). In our study, C. morifolium and maize rhizosphere soil bacterial

and fungal networks in intercropping systems all exhibited higher

average degrees and graph densities than monoculture, implying the

interactions amongmicroorganisms in intercropping systems were more

active (Figure 7, Supplementary Tables 4, 5). In particular, intercropping

with maize recruit a large number of beneficial microorganisms in the

rhizosphere soil of C. morifolium, including Bacillus, Sphingobium and

Burkholderia-Caballeronia-Paraburkholderia, Chaetomium and
A B

DC

FIGURE 6

The effect of C. morifolium-maize intercropping on rhizosphere soil microbial community compositions of C. morifolium and maize. Percent of
community abundance at the phylum level: (A) Bacteria, (C) Fungi. Percent of community abundance at the genus level: (B) Bacteria, (D) Fungi.
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Ceratorhiza (Figures 6B, D). Bacillus was shown to inhibit Verticillium

dahliae growth and induce systemic resistance in plants (Zhou et al.,

2023). Sphingomonas had plant growth-promoting effects, which

attributed to the ability to produce plant growth hormones such as

gibberellins and indole acetic acid (Asaf et al., 2020; Jin et al., 2023).

Burkholderia-Caballeronia-Paraburkholderia had the ability to induce

systemic resistance against grey mold disease, and contained genes

involved in plant growth promotion and biocontrol (Esmaeel et al.,

2020). Chaetomium produced an array of antibiotics and secondary

metabolites, thereby preventing pathogen entry and colonization of plant

tissues and reducing the harmful microbial population (Seethapathy

et al., 2023). Ceratorhiza produced plant growth regulators to stimulate

significantly plant root development (Grönberg et al., 2006). They could

promote plant growth and development by producing auxin and

inhibiting disease. Therefore, the increased abundance of them in
Frontiers in Plant Science 11
intercropping systems, may be one of the reasons for the high yield

and quality of C. morifolium (Figure 8B).

It has been suggested that crop roots interact extensively with soil

microorganisms to promote plant growth and development by

affecting soil nutrient availability (Richardson et al., 2009). We also

studied the relationship between soil physicochemical properties and

rhizosphere microbial microorganisms of C. morifolium and maize.

We found that C. morifolium-maize intercropping systems showed an

enrichment of several beneficial bacterial genera in regulating soil

condition, including Sphingomonas, Bacillus, and Burkholderia-

Caballeronia-Paraburkholderia (Figure 6B). Sphingomonas was one

of nitrogen-fixing bacteria, which could increase nitrogen utilization

efficiency with significant impacts on nutrient transformation, thereby

promoting sustainable growth and productivity of plants (Videira

et al., 2009; Jalal et al., 2022). Bacillus has been documented to
A

B

FIGURE 7

Co-occurrence network analysis of C. morifolium and maize rhizosphere soil microbial communities in different treatments. (A) Bacteria, (B) Fungi.
Nodes indicate bacterial and fungal genera with relative abundance in the top 100; the size of each node is proportional to the number of
connections, and the color represents the respective phylum. The links (lines between the nodes) indicate significant correlations (Spearman, |r| >
0.5, P < 0.05). Red and green lines represent positive and negative correlations, respectively.
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solubilize potassium for improving crop production (Basak and

Biswas, 2009). Bacillus also had the ability to solubilize zinc to

support plants growth and yield (Khande et al., 2017; Masood et al.,

2022). Burkholderia-Caballeronia-Paraburkholderia was known to fix

nitrogen (Tapia-Garcıá et al., 2020), and widely promoted plant

growth through nitrogen-dependent mechanisms (Madhaiyan et al.,

2021). Moreover, these enriched microbes were positively correlated

with AN, NN, AvK, and AvZn in soil through redundancy analysis

(Figure 8A). In conclusion, intercropping could increase the

abundance of soil beneficial microorganisms, which could promote

soil conditions, thus improving the overall growing environment and

ultimately improving the growth and quality of C. morifolium.
Conclusion

We examined the advantages of intercropping C. morifolium with

maize. The results indicated that intercropping increased the

agronomic traits, yield, and active ingredients of C. morifolium,

especially in the IS treatment. Intercropping could also promote the

soil physicochemical properties and enzyme activities, and change

rhizosphere soil microbial communities of C. morifolium and maize.

Moreover, intercropping could recruit a large number of beneficial

bacteria enrich in the soil, including Bacillus, Sphingobium and

Burkholderia-Caballeronia-Paraburkholderia, Chaetomium, and

Ceratorhiza, which could increase the content of AN, NN, AvK,

ExCa, AvCu, AvZn and other soil nutrients, improve the overall

growing environment, and achieved the growth and improvement of

C. morifolium. Overall, this study revealed that intercropping could

produce more beneficial effects than monoculture, especially in C.

morifolium-maize narrow-wide row planting patterns. Therefore, this

pattern is worth popularizing in C. morifolium production.
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FIGURE 8

(A) Redundancy analysis of C. morifolium and maize soil environmental factors with dominant microorganisms at the genus level. Ammonium
nitrogen (AN), nitrate nitrogen (NN), available potassium (AvK), exchangeable calcium (ExCa), available cuprum (AvCu), available zinc (AvZn). (B)
Redundancy analysis of C. morifolium growth and quality indicators with dominant microorganisms at the genus level. Plant height (PH), stem
diameter (SD), number of first branches (NFB), number of second branches (NSB), leaf length (LL), leaf width (LW), flower outside diameter (FOD),
flower inside diameter (FID), number of flowers per plant (NF), 100-fresh flower weight (100FFW), fresh flower weight per plant (FFW), dry flower
weight per plant (DFW), 3-O-caffeoylquinic acid (3-CQA), rutin, luteolin-7-O-glucoside (luteoloside), 3,4-dicaffeoylquinic acid (3,4-diCQA), 3,5-
dicaffeoylquinic acid (3,5-diCQA), 4,5-dicaffeoylquinic acid (4,5-diCQA).
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