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1 Introduction

Palms encompass over 2,500 species, across 200 genera, ranking second only to grasses

(Poaceae) and legumes (Fabaceae) in the realm of agricultural food production and

industrial applications. The coconut (Cocos nucifera L.), arecanut (Areca catechu L.), oil

palm (Elaeis guineensis Jacq.), and date palm (Phoenix dactylifera L.) are among the

economically significant perennial species within the Arecaceae family. Coconut, often

referred to as the “tree of life,” is celebrated for its diverse range of applications in food,

nutrition, medicine, and various industrial uses (Ramesh et al., 2021). Coconut products

encompass edible oil derived from the kernel or testa, tender coconut water, kernel, copra,

coconut shell, coconut cake, wood-based products, coir pith, and items resulting from

various valorization processes. The unopened spathe is tapped to extract inflorescence sap

(neera), which can be further processed into jaggery, sugar, vinegar, and a variety of

secondary products (Hebbar et al., 2022).

Arecanut (Areca catechu L.) is a crop in tropical Asia and certain parts of East Africa. In

India, it holds a prominent place as a major commercial crop and is also medically important,

primarily grown in a few states of the country. Nevertheless, its commercial products are

distributed throughout India, and the country undeniably leads in terms of both area under

cultivation and production, accounting for 54% of the world’s output. The fruit or nuts of the

Areca catechu L. palm, commonly known as betel nut or supari, have a long history of use as a

masticatory product by the Indian population, dating back to the Vedic period. As a result,

arecanut is deeply intertwined with India’s history and social heritage. On a global scale, the

betel quid is used by as many as 600 million people in Asia alone.

Date palm, on the other hand, thrives in arid regions such as Egypt, Iran, Saudi Arabia,

and the UAE, among others (Aljohi et al., 2016). In addition to its fruit, date palm seeds also

serve as a novel source of edible oil, further expanding its industrial applications (Ali et al.,

2015). Oil palm stands out as an economically vital palm species, supplying approximately

35% of the world’s vegetable oil. The genetic improvement of oil palm could play a pivotal

role in global nutritional security.
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2 Palm problems

Economically important palm species worldwide are

experiencing stagnation in yield, a rapid deceleration in land

expansion, the effects of climate change, a surge in the cost of

production due to agricultural inputs and labor, as well as biotic

stressors like the emergence or reemergence of major pests and

diseases, among other challenges (Figure 1). The long juvenile phase

of palms, which can extend beyond 5-9 years, the time-consuming

process of backcross breeding (30 years for date palms and 15-18

years for oil palms), and the reliance on seeds, as the primary

propagule, severely hinder palm crop improvement programs.

Therefore, expediting the adoption of novel breeding

technologies, such as genome editing (GE), is imperative to

ensure that missed opportunities in genomics-assisted breeding

and genetic engineering, which have already revolutionized other

cereal and legume crops, are not lost.

Genome editing (GE) approaches have been transforming the

fields of plant breeding and genomics by enabling precise genetic

manipulation of crop species. The utilization of CRISPR/Cas9 holds

significant promise in revolutionizing agriculture and creating

opportunities for innovative developments in plant gene editing

systems (Chinnusamy et al., 2023; Saini et al., 2023). While the

effectiveness of GE techniques has been demonstrated in other field

crops and even in tree crops, it remains a relatively uncharted path

for genetic improvement in palm species such as coconut, arecanut,

or date palm, with the exception of oil palm. The utilization of

genetic engineering technologies for commercial purposes in palms

is currently quite limited. In addition to the complexity of palm
Frontiers in Plant Science 02
genomes, significant obstacles related to genetic transformation and

the development of efficient regeneration protocols pose major

challenges to the widespread adoption of GE technologies.
3 Palm genomic resources

Continuous improvement of genomic resources for palm

species is of paramount importance. Over the past decade, there

has been a significant increase in the scale of genome assemblies for

palms, opening the door to multi-omics studies. Genome

assemblies are now available for economically important palm

species such as oil palm (Elaeis guineensis Jacq), date palm

(Phoenix dactylifera L), coconut (Cocos nucifera L), and arecanut

(Areca catechu L), as well as related species like Calamus

simplicifolius and Daemonorops jenkinsiana. These assemblies

have been complemented by numerous resequencing and

transcriptomics approaches (Al-Mssallem et al., 2013; Singh et al.,

2013; Wang et al., 2021; Yang et al., 2021; Zhao et al., 2018). In this

context, the development of the Arecaceae Multi-omics Database,

ArecaceaeMDB (http://arecaceae-gdb.com), is a significant step

forward. This database houses genomes of six economically

important palms, along with resequencing data from 1631

different accessions, over 800 transcriptome sequences, and 138

metabolome datasets (Yang et al., 2023). However, unlike fruit and

nut crops that benefit from well-assembled and high-quality

genome sequences (Savadi et al., 2021), palms, such as date palm,

present unique challenges due to their dioecious nature, requiring

specialized assembly software and additional considerations for the
FIGURE 1

General considerations of research in palms and the defining role of genome editing in developing future-ready palms.
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development of effective genomic resources (Hazzouri et al., 2020).

Nonetheless, the successful demonstration of the proof-of-concept

of CRISPR/Cas9 application in various fruit tree crops, including

apple, cacao, coffee, citrus, grape, pomegranate, pear, and walnut

(Savadi et al., 2021), as well as in some forest tree crops (Cao et al.,

2022) and in palms (Yeap et al., 2021), suggests that this approach

may become a mainstay in the long run.
4 Potential applications of CRISPR-
Cas9 system in palms

In the context of coconut, the identification of disease

susceptibility factors represents a crucial area of research. This is

essential to identify genomic regions or genes responsible for

disease susceptibility, with the aim of manipulating them through

the adoption of gene-editing technologies. Some of the potential

gene targets include PR1, PR4, the pathogenesis-related genes

transcriptional activator PT15-like gene, thaumatin-like protein,

HSP70, and glutathione S-transferase. These genes have been

identified as susceptibility factors in the case of root (wilt)

disease in coconut (Rajesh et al., 2015; Verma et al., 2017;

Arumugam and Hatta, 2022). Considering the diversity of pests

affecting palms, adoption of multi-pronged strategies such as

CRISPR-Cas9 based sterile insect technique, and targeting

female insect reproductive fitness (eg., egg-specific protein

encoding gene), or incorporating ovary targeting molecular

signals in CRISPR-Cas9 system for heritable genome editing are

warranted. These strategies aim to enhance the resilience of palm

crops against insect pest damage.

In certain plants characterized by a low transformation

efficiency, such as maize, the issue of limited transformation

success has been successfully addressed through the over-

expression of key regulators of somatic embryogenesis, such as

Baby Boom (Bbm) and Wuschel2 (Wus2). While this particular

approach has not yet been explored in the context of coconut, there

is potential value in enhancing the regeneration process by adopting

this method.

Palm products, especially those derived from the minimal

processing of tender coconut nuts, require suitable anti-

browning agents to prevent enzymatic browning reactions,

ensuring visually appealing end products. In addition to the

manipulation of agronomic traits, the application of the

CRISPR/Cas9 system has been explored to mitigate enzymatic

browning. This is achieved by creating mutations in the StPPO2

gene, resulting in a significant reduction in enzymatic browning

by up to 75% (González et al., 2020). Similarly, Maioli et al.

(2020) discussed the potential application of genome editing

technologies in the development of eggplant berries, which

exhibited a 52% reduction in PPO activity in edited lines

compared to wild types, achieved by knocking out three PPO

genes (SmelPPO4, SmelPPO5, and SmelPPO6). These studies

demonstrate that, in addition to reducing enzymatic browning,

the nutritional potential of post-harvest produce, including

their ant ioxidant potent ial and phenol ic content , i s

effectively preserved.
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Palms in field conditions face a range of abiotic stresses induced

by climate change, including monsoon variability, elevated

temperature stress, rising atmospheric CO2 levels, and sea-level

rise leading to salinity stress. Unlike annual crops, palms endure

these abiotic challenges for an extended period during their lifespan,

necessitating the adoption of genomics technologies to mitigate

these stresses. Genetic mapping of genes associated with abiotic

stress tolerance or related traits in mature palms is hindered due to

their long juvenile phase and the costs involved in cultivating and

maintaining large mapping populations in the field. Additionally,

regions where palms are grown are experiencing increased soil

salinity and sea-level rise, making it imperative to molecularly

characterize abiotic stress response pathways.

Consequently, the adoption of CRISPR/Cas9 editing in palms

involves numerous strategic considerations, including the selection

of target genes, the sequence features of sgRNA, the method and

tissue used for delivery, and the implementation of appropriate in

vitro regeneration protocols. The highly heterozygous nature of

palm genomes presents a challenge in designing sgRNAs that

effectively match the target gene sequences near a protospacer

adjacent motif (PAM) site. Traditional breeding methods, which

can take 15-20 years or more, coupled with obstacles in developing

genetic engineering-based high oleic acid-producing oil palm lines,

have prompted the use of a multiplex CRISPR/Cas9 system to target

multiple genomic sites (Bahariah et al., 2023). Given the nutritional

significance of dietary oils, the application of CRISPR/Cas9

technology for targeting oil palm genes such as fatty acid

desaturase 2 (FAD2) and palmitoyl-acyl carrier protein

thioesterase (PAT) to modulate fatty acid metabolism and

produce high-oleic acid oil holds significant promise for similar

interventions in coconut palms (Bahariah et al., 2023).

Tree crops necessitate rapid genetic modification protocols

and the development of genetically modified plants within a few

generations as expediently as possible. In this context, the

biallelic edits achievable through the CRISPR/Cas9 approach

offer a means to swiftly generate genetically homozygous lines,

circumventing the need for elaborate breeding methods to

introduce homozygosity (Hazzouri et al., 2020). The successful

establ ishment of e lectroporat ion-mediated protoplast

transformation of sgRNA and genome editing components in

oil palm suggests the potential for generating DNA-free genome-

edited palms. However, the lack of an effective regeneration

protocol for oil palm protoplasts significantly hampers the

development of DNA-free genome-edited palms. Moreover,

the creation of an efficient in vitro electro-transfection assay in

oil palm for rapid assessment and evaluation of gRNA efficiency

would substantially reduce the time and cost of transformation

and regeneration, particularly for oil palm and other palm

species (Yeap et al., 2021). In addition, development of gene

editing protocol through de novo induction of meristems

in dicots and the efficiency of cut–dip–budding (CDB)

delivery system could enable rapid production of genetically

modified germplasm (Maher et al., 2020; Cao et al., 2023).

By implementing the PEG-mediated delivery system for

Cas proteins and sgRNA, coupled with the establishment of a

proficient protoplast regeneration system for palms, as
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successfully demonstrated in Hevea brasiliensis (Fan et al., 2020),

we can significantly expedite the genome-editing-mediated

breeding process.

Palm genomes are characterized by high allelic heterozygosity

due to their outcrossing nature. Consequently, the presence of a

high number of single nucleotide polymorphisms (SNPs) in the

genome makes GE technologies less efficient in these crops. Thus,

resequencing cultivars of interest and incorporating features related

to the multi-ploidy nature of palm genomes into web-based

algorithms, for sgRNA design in plants, are recommended to

enhance the existing genomic resources for homozygous crops

and model plants (Sattar et al., 2017). Nevertheless, it is

anticipated that the application of CRISPR/Cas9-based genome

editing will greatly facilitate the exploration of gene-function
Frontiers in Plant Science 04
relationships and their impact on phenotypic traits, expediting

crop improvement programs in palm species (Table 1).
5 Concluding remarks

Thus far, the CRISPR/Cas9 technology has demonstrated its

effectiveness in genome editing of trees. Genome modification has

been successfully accomplished in oil palm, and numerous fruit and

nut tree crops. Several genes within these tree or perennials have

manipulated through genome editing, aimed at enhancing

resistance to both biotic and abiotic stressors, manipulating

flowering and fruit ripening times, improving plant growth

attributes, and enhancing the flavor profiles of their fruits.
TABLE 1 Major achievements in genome editing (GE) for tree crops and the prospects for its application in palms.

Sl.
No

Species Target gene(s) Strategy Features Reference

1 Cocoa TcNPR3 (Non-Expressor of Pathogenesis-Related 3) CRISPR/
Cas9

Knock down of defense suppressor TcNPR3 resulted in
enhanced resistance to pathogen
Phytophthora tropicalis

Fister
et al., 2018

2 Elaeis
guinensis

EgPDS (phytoene desaturase) and EgBRI1
(brassinosteroid-insensitive 1)

CRISPR/
Cas9

Electroporation based transformation of protoplast
showed 62.5-83.33% and 58.82-100%
mutation frequency

Yeap
et al., 2021

3 Sweet
orange

CsPDS (phytoene desaturase) CRISPR/
Cas9 sgRNA

Agrofiltration utilizing Xcc targeting carotenoids
biosynthesis caused 3.2-3.9% mutation but no albinos

Jia and
Wang, 2014

4 Apple Reporter gene uidA ZFN (Zinc
finger
nuclease)

Stable and heritable gene mutation Peer
et al., 2015

5 Populus
tomentosa

PtoPDS (phytoene desaturase) CRISPR/
Cas9

Mutation efficiency of 51.7% and albino phenotypes Fan
et al., 2015

6 Hevea
brasiliensis

flowering time related genes (HbFT1, HbFT2 and
HbTFL1−1, HbTFL1−2, HbTFL1−3)

CRISPR/
Cas9

Used endogenous U6 promoters in protoplasts Dai
et al., 2021

7 HbPDS(phytoene desaturase) CRISPR/
Cas9

Stable transformation Dai
et al., 2021

8 Eucalyptus
grandis

CCR1 (cinnamoyl-CoA Reductase1), IAA9A (an
auxin-dependent transcription factor of Aux/
IAA family)

CRISPR/
Cas9

Wood-related genes edited in Eucalyptus hairy root Dai
et al., 2020

9 Elaeis
guinensis

EgPDS (phytoene desaturase) CRISPR/
Cas9

Albino phenotypes with a
mutation efficiency of 62.5–83.33%.

Yeap
et al., 2021

EgBRI1 (brassinosteroid-insensitive 1) CRISPR/
Cas9

premature necrosis and stunted phenotype Yeap
et al., 2021

EgWRKY, DREB1, EgRBP42, EgEREBP and EgNAC Base editing Abiotic stress tolerance Yarra
et al., 2020

10 Phoenix
dactylifera

Pdpcs and Pdmt – Abiotic stress tolerance
(Cd and Cr) resistance

Chaâbene
et al., 2018

Pdpcs and Pdmt – Abiotic stress tolerance
(heavy metals)

Chaâbene
et al., 2017

11 Cocos
nucifera

*PTI5
*PR1, PR4,
*pathogenesis-related genes transcriptional activator
PT15-like gene,
*thaumatin-like protein, HSP70,
*glutathione S-transferase

– Root (wilt) disease resistance Verma
et al., 2017

(Continued)
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Innovations have led to the development of modified enzymes,

offering increased efficiency in genome editing. Additionally, new

and improved systems for gene editing and simultaneous activation

of transcription have emerged, which are pertinent to the creation

of novel palm varieties with wider applications.
Author contributions

SR: Conceptualization, Formal analysis, Investigation,

Resources, Writing – original draft, Writing – review & editing.

MR: Formal analysis, Writing – review & editing. KH: Formal

analysis, Resources, Writing – review & editing. AD: Formal

analysis, Funding acquisition, Writing – review & editing.
Funding

The author(s) declare that financial support was received for the

research, authorship, and/or publication of this article. Authors
Frontiers in Plant Science 05
acknowledge the funding for this work from ICAR-Central

Plantation Crops Research Institute (ICAR-CPCRI Grant No:

1000766014) and ICAR-NEH fund of ICAR-CPCRI, Kahikuchi.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
Ali, M. A., Al-Hattab, T. A., and Al-Hydary, I. A. (2015). Extraction of date palm seed
oil (Phoenix dactylifera) by soxhlet apparatus. Int. J. Adv. Eng. Technol. 8 (3), 261–271.

Aljohi, H. A., Liu, W., Lin, Q., Zhao, Y., Zeng, J., Alamer, A., et al. (2016). Complete
sequence and analysis of coconut palm (Cocos nucifera) mitochondrial genome. PloS
One 11 (10), e0163990. doi: 10.1371/journal.pone.0163990

Al-Mssallem, I. S., Hu, S., Zhang, X., Lin, Q., Liu, W., Tan, J., et al. (2013). Genome
sequence of the date palm phoenix dactylifera l. Nat. Commun. 4 (1), 2274.
doi: 10.1038/ncomms3274

Arumugam, T., and Hatta, M. A. D. (2022). Improving coconut using modern
breeding technologies: Challenges and Opportunities. Plants 11, 3414. doi: 10.3390/
plants11243414

Bahariah, B., Masani, M. Y. A., Fizree, M.P.M.A.A., Rasid, O. A., and Parveez, G. K.
A. (2023). Multiplex CRISPR/Cas9 gene-editing platform in oil palm targeting
mutations in EgFAD2 and EgPAT genes. J. Genet. Eng. Biotechnol. 21, 3.
doi: 10.1186/s43141-022-00459-5

Cao, X., Xie, H., Song, M., Lu, J., Ma, P., Huang, B., et al. (2023). Cut–dip–budding
delivery system enables genetic modifications in plants without tissue culture.
Innovation 4 (1), 100345. doi: 10.1016/j.xinn.2022.100345

Cao, X. H., Vu, G. T. H., and Gailing, O. (2022). From genome sequencing to
CRISPR-based genome editing for climate-resilient forest. Int. J. Mol. Sci. 23, 966.
doi: 10.3390/ijms23020966
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