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Bulked segregant RNA-seq
reveals complex resistance
expression profile to powdery
mildew in wild emmer
wheat W762
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Jiangchun Wang2, Yan Yin2, Qingguo Xin2, Ningning Yu1,
Jiadong Zhang1, Yaoxue Li1, Jiatong Li1, Yintao Dai1,
Cheng Liu4*, Yuli Jin1* and Pengtao Ma1*
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Innovative Utilization, College of Life Sciences, Yantai University, Yantai, China, 2Institute of Grain and
Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, China, 3Institute of Cereal and Oil Crops,
Hebei Academy of Agricultural and Forestry Sciences/Hebei Laboratory of Crop Genetic and
Breeding, Shijiazhuang, China, 4Crop Research Institute, Shandong Academy of Agricultural Sciences,
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Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most

destructive fungal diseases threatening global wheat production. Exploring

powdery mildew resistance (Pm) gene(s) and dissecting the molecular

mechanism of the host resistance are critical to effectively and reasonably

control this disease. Durum wheat (Triticum turgidum L. var. durum Desf.) is an

important gene donor for wheat improvement against powdery mildew. In this

study, a resistant durum wheat accession W762 was used to investigate its

potential resistance component(s) and profile its expression pattern in

responding to Bgt invasion using bulked segregant RNA-Seq (BSR-Seq) and

further qRT-PCR verification. Genetic analysis showed that the powdery mildew

resistance in W762 did not meet monogenic inheritance and complex genetic

model might exist within the population of W762 × Langdon (susceptible durum

wheat). After BSR-Seq, 6,196 consistently different single nucleotide

polymorphisms (SNPs) were called between resistant and susceptible parents

and bulks, and among them, 763 SNPs were assigned to the chromosome arm

7B. Subsequently, 3,653 differentially expressed genes (DEGs) between resistant

and susceptible parents and bulks were annotated and analyzed by GeneOntology

(GO), Cluster of Orthologous Groups (COG), and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway enrichment. The potential regulated genes were

selected and analyzed their temporal expression patterns following Bgt

inoculation. As a result, nine disease-related genes showed distinctive expression

profile after Bgt invasion and might serve as potential targets to regulate the

resistance against powdery mildew in W762. Our study could lay a foundation for

analysis of the molecular mechanism and also provide potential targets for the

improvement of durable resistance against powdery mildew.
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Introduction

Wheat (Triticum aestivum L., 2n = 6X = 42, AABBDD) is a

globally significant staple crop closely associated with food security

worldwide (Li et al., 2019; Han et al., 2020). As a primary source of

nutrition, wheat provides essential macronutrients such as

carbohydrates, proteins, and a variety of vitamins. However,

wheat production often faces the threat from various fungal

diseases. Powdery mildew, caused by Blumeria graminis f. sp.

tritici (Bgt), is one of the most devastating diseases of wheat and

can significantly reduce wheat yield by 10%–15% and even up to

62% in severe cases (Singh et al., 2016; Li et al., 2019; Wang et al.,

2021). Therefore, it is important and urgent to explore and utilize

more novel and broad-spectrum powdery mildew resistance (Pm)

genes to effectively control this disease.

To date, more than 100 Pm genes/alleles have been identified in

common wheat and its relatives, including 69 officially designated

Pm genes at 64 loci (Pm1-Pm69, Pm8 = Pm17, Pm18 = Pm1c, Pm22

= Pm1e, Pm23 = Pm4c, Pm31 = Pm21) as well as dozens of

provisionally named genes (McIntosh et al., 2020; He et al., 2021;

Wang et al., 2023; Li et al., 2024). Among them, the genes derived

from common wheat can be directly introduced into susceptible

cultivars for resistance breeding, such as Pm1a (Sears and Briggle,

1969), Pm3b (Briggle, 1969), Pm5e (Huang et al., 2003), Pm24 (Xue

et al., 2012), Pm38/Lr34/Yr18/Sr57 (Krattinger et al., 2009), and

Pm46/Yr46/Lr67/Sr55 (Moore et al., 2015), but these genes often

have low genetic diversity compared to wheat cultivars and are easy

to be defeated after long-term of promotion in production. In

comparison, the genes originated from the wheat relatives often

possess higher genetic variations and exhibit strong ability to

withstand Bgt variations, such as Pm12 from Aegilops speltoides

Tausch (Zhu et al., 2023) and Pm21 from Dasypyrum villosum L.

Candagy (He et al., 2018) and, hence, have higher value in wheat

improvement against powdery mildew in the future (Han et al.,

2024a, Han et al., 2024b, Han et al., 2024c). Meanwhile, more and

more Pm genes have gradually lost their resistance to powdery

mildew and also many effective Pm genes are difficult to be utilized

in breeding due to linkage drags and other negative effects in the

breeding practices. For example, Pm1a and Pm8 have been widely

used in wheat production and breeding for many years, but their

resistance have gradually lost in all or part of wheat planting areas

due to the continuous variation of powdery mildew pathogens

(Cowger et al., 2018). The Pm12 was not only highly resistant to

powdery mildew but also accompanied by poor yield and quality

traits, making it difficult to directly utilize in breeding (Zhu et al.,

2023). Therefore, mining more novel effective Pm genes and

introducing them into wheat cultivars are significant for wheat

production and disease resistance breeding.

Durum wheat (T. turgidum L. var. durum Desf., simply T.

durum, 2n = 4X = 28, AABB) is a tetraploid wheat species and often

possesses multiple resistances to leaf rust, stem rust, stripe rust and

powdery mildew (Miedaner et al., 2019). Four Pm genes have been

identified in the past decades, includingMld, Pm3h, PmDR147, and

Pm68. Among them, Mld is a recessive gene located on

chromosome 4B which could be solely used or pyramided with
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other Pm genes in wheat breeding (Bennett, 1984); Pm3h is a

dominant resistance gene located on chromosome arm 1AS,

probably originates from an Ethiopian durum wheat accession

(Srichumpa et al., 2005); Pm3h was also originally identified in

durum wheat, and subsequently confirmed to be same as Pm3d after

cloning (Yahiaoui et al., 2006); PmDR147 is also a dominant gene

mapped on chromosome arm 2AL in durum wheat accession

DR147 (Zhu et al., 2004).

Bulked segregant RNA-Seq (BSR-Seq), which combined the

bulked segregant analysis (BSA) and RNA sequencing (RNA-Seq),

is a high-efficiency strategy in genomics research of the complex

polyploid species. In this strategy, RNA-seq is independent on pre-

existing databases of expressed genes and can provide an unbiased

view of gene expression profiling (Pearce et al., 2015; Pankievicz

et al., 2016; Han et al., 2024a), thus is an effective and low-cost

method to comprehensively evaluate the gene expression pattern of

the Pm genes after inoculation by Bgt isolates. Additionally, BSR-

seq can also overcome the adverse effects of the genome sequences

and obtain sequence and expression information of almost all

transcripts of a specific cell or tissue in a certain stage, so it is an

efficient method for rapid gene mapping (Wang et al., 2017; Hao

et al., 2019), especially for the crop species with complex genomes,

such as wheat and its relatives (Zhang et al., 2017).

W762 is a durum wheat accession that shows high resistant to

powdery mildew at the whole stage. To dissect its genetic basis

against powdery mildew, in this study, we intended to (i) clarify the

genetic pattern of powdery mildew resistance, (ii) identify

differentially expressed genes (DEGs) at the whole-genome scale,

and (iii) profile the expression of the key genes associated with

resistance to powdery mildew. Our study could lay a foundation for

analysis of the molecular mechanism and also provide potential

targets for the improvement of durable resistance against

powdery mildew.
Materials and methods

Plant materials and pathogens

The durum wheat accession W762, provided by International

Maize and Wheat Improvement Center (CIMMYT), was used to

test its reaction pattern against powdery mildew. The susceptible

durum wheat accession Langdon (LDN), also provided by

CIMMYT, was crossed with W762 to produce F1, F2, and F2:3
generations for genetic analysis and BSR-Seq analysis. Wheat

cultivar Mingxian 169, which was susceptible to all the Bgt

isolates tested in this study (Ma et al., 2018), was used as the

susceptible control in phenotypic assessment experiment. Thirty-

two Bgt isolates B05, E07, E09, E15, E17, E18, E20, E21, E23–1, E31,

F01, F02, F03, F05, F06, F07, F08, F09, F10, F11, F13, F16, F17, F18,

F19, F21, F22, F23, F24, F25, F28, and F32, provided by Prof.

Hongxing Xu, Henan University, Kaifeng, China and Prof. Yilin

Zhou, Institute of Plant Protection, Chinese Academy of

Agricultural Sciences, Beijing, China, were used to evaluate the

resistant spectrum of W762. These Bgt isolates were previously and
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preserved on the susceptible seedlings which were put in

independent glass tubes with three layers of gauze to avoid

cross infection.
Phenotypic assessment to different
Bgt isolates

Phenotypic assessment of W762 to the 32 Bgt isolates was

determined in the greenhouse of Yantai University, Yantai, China.

At least five seeds of W762 and LDN were sown in a 128-cell (3.2

cm× 3.2 cm× 4.2 cm) rectangular tray (54 cm× 28 cm× 4.2 cm) and

the susceptible control Mingxian 169 was planted randomly in the

trays. These trays were put in an independent growth chamber

separately to be infected with different Bgt isolates. When the

seedlings grown to the two-leaf stage, all the seedlings were

inoculated with fresh conidiospores increased on Mingxian 169

seedlings and incubated in a chamber at 18°C for 24h with 100%

humidity and then cultivated with a daily cycle of 14h of light at 22°C

and 10h of darkness at 18°C. After 10–14 days, the spores were fully

developed on the first leave of susceptible check Mingxian 169.

Infection types (ITs) on each plant were assessed on a 0–4 scale,

with IT 0, 0; 1, and 2 being regarded as resistant, and IT 3 and 4 as

susceptible (Si et al., 1992; Wang et al., 2009). All tests were repeated

three times to assure the reliability of the data.
Microscopic analyses of reaction process
after Bgt invasion

Microscopic analyses were performed as previously described

(Wang et al., 2014). The 2 cm leaf segments were cut at 0h, 0.5h, 2h,

4h, 12h, 24h, 36h, 48h, and 72h after inoculating the Bgt isolate E09

and immediately fixed at 37°C for 24h in 2 ml of Carnoy’s Fluid

(ethanol: acetic acid, 3:1, v/v), then stained with 2 ml of 0.6% (w/v)

Coomassie blue solution for 3 min. Excess dye was rinsed off

carefully with distilled water. Samples were observed under an

Olympus BX-53 microscope (Olympus, Japan).
Genetic analysis and preparation of
samples for BSR-Seq

To determine the inheritance of powdery mildew resistance in

W762, the Bgt isolate E09, a prevalent Bgt isolate in North China

(Zhou et al., 2005), was selected to inoculate W762, LDN, and their

F1, F2, and F2:3 progenies for genetic analysis. After phenotypic

evaluation, the numbers of resistance and susceptible plants were

counted, and then a goodness-of-fit assessment was performed to

determine the resistant/susceptible ratio using a chi-squared (c2)
test. The deviations of the observed phenotypic data from the

theoretically expected segregation ratios were then evaluated

using the SPSS 16.0 software (SPSS Inc., Chicago, United States)

at p < 0.05.

More than 20 seeds of each F2:3 family were sown for further

genetic analysis and preparation of the samples for BSR-Seq.
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Resistant and susceptible RNA bulks were constructed by

separately mixing equal amounts of RNA from the 30

homozygous resistant and susceptible F2:3 families, respectively.

When the spores were fully developed on the first leaves of

Mingxian 169, the total RNA of W762, LDN, resistant, and

susceptible RNA bulks were extracted from the young leaves

using TRIzol reagent (Invitrogen, Carlsbad, California, USA)

following the manufacturer’s recommendations.
BSR-Seq analysis

First, the RNA samples underwent quality and integrity testing.

The eligible mRNA was isolated from total RNA by using Oligo

(dT) magnetic beads paired with poly(A) tails of mRNA through A-

T complementary nature. Then, the mRNA was randomly

fragmented by adding the fragmentation buffer. The cDNAs were

synthesized based on the mRNA template, random hexamers,

dNTPs, buffer, and DNA polymerase I. After cDNA purification,

end reparation, 3′ add A-tail, and sequencing adaptors ligation,

fragment sizes were selected with AMPure XP beads. Finally, a

cDNA library was obtained through polymerase chain reaction

(PCR) amplification. After passing the library inspection, high-

throughput sequencing was performed using the platform of

Illumina HiSeq 4000 in Beijing Biomics Technology Co. Ltd.

(Beijing, China). The sequencing indicator was set as 10 Gb clean

data for the parents W762 and LDN and 20 Gb clean data for the

bulks. After filtering on raw reads, and removing the adaptors and

low-quality reads using software Trimmomatic v0.36 (Bolger et al.,

2014) with default parameters, the clean reads were obtained. The

high-quality reads were aligned to the Chinese Spring reference

genome sequence v2.1 (RefSeq v2.1) (Zhu et al., 2021) and its

annotation files by using software TopHat2 (Dobin et al., 2013). The

mapped reads were used for further analysis. The read alignments

were masked for PCR duplications and split for reads spanning

introns before they were used to call SNPs and InDels using module

“HaplotypeCaller” of software GATK v3.6 (McKenna et al., 2010).

The resulting SNPs and InDels with sequencing depth less than four

were abandoned, and the remaining ones were used for BSA

analysis. Only variants with P-value of Fisher’s exact test on read

count data < 1e−8 and allele frequency difference (AFD) > 0.6 were

considered to be related to powdery mildew resistance. The RefSeq

v2.1 was further used as a reference to call SNPs and InDels.
Identification and statistics of DEGs

The genes expression levels were evaluated using FPKM

(fragments per kilo base of transcript per million fragments

mapped) (Trapnell et al., 2010). Using the software EBSeq (http://

www.bioconductor.org/packages/release/bioc/html/EBSeq.html),

DEGs were identified based on the standard of error detection rate

(EDR) <0.01 and fold change (FC; ratio test/common reference) ≥2.

The statistical significance of DEGs was performed using multiple

tests and EDR was adjusted with the Benjamini–Hochberg

procedure (Reiner et al., 2003).
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Functional annotation and
enrichment analysis

The DEGs, which showed consistent expression difference

between the resistant and susceptible parents and bulks, were

annotated on the platform WheatOmics 1.0 (http://202.194.139.32/).

Then, Gene Ontology (GO), Cluster of Orthologous Groups (COG),

and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways

enrichment analysis of DEGs were performed using an R package

referred to Sherman et al. (2022), and among them, significance

enrichment analysis for KEGG pathway was performed on the DEGs

to further determine the signal transduction pathway(s) that these

DEGs may be involved in.
Quantitative real-time polymerase
chain reaction

The seedlings of W762 and LDN were inoculated with the Bgt

isolate E09 at the two-leaf stage. Then, the first leaves were sampled

at 0h, 0.5h, 2h, 4h, 12h, 24h, 36h, 48h, and 72h post-inoculation

(hpi) for RNA extraction using TRIzol reagent (Invitrogen, USA)

following the manufacturer’s recommendations. The FastKing

gDNA Dispelling RT SuperMix kit (Tiangen, Beijing, China) was

employed to remove residual DNA and synthesize the

corresponding cDNA using the following PCR procedure: 42°C

for 15 min and 95°C for 3 min. The qRT-PCR procedure was

performed using SYBR Premix Ex Taq (Takara, Beijing, China) on
Frontiers in Plant Science 04
the Bio-Rad CFX Connect real-time PCR system (BIO-RAD, USA).

The expression pattern of each gene was calculated as a fold change

using the comparative CT method (Livak and Schmittgen, 2001).

For each sample, three technical replications were set. The gene

TaActin was used as the internal control for normalization.
Results

Powdery mildew resistance evaluation and
its genetic analysis

After inoculated with 32 Bgt isolates, W762 conferred resistance

to 10 isolates with IT 0, six isolates with IT 1, and five isolates with

IT 2, whereas 11 isolates with ITs 3 and 4 (Table 1), which suggested

the resistance to powdery mildew is moderate.

Then, W762 was crossed with LDN to obtain F1, F2, and F2:3
progenies. When inoculated with the Bgt isolate E09, W762 showed

no visible symptoms on the first leaves (IT 0). In contrast, the

susceptible parent, LDN, had abundant sporulation which covered

an area of more than 50% of the first leaves (IT 4) (Figure 1).

Coomassie blue staining also showed large number of spores

produced in LDN, and meanwhile had very mild cell death

(Figure 2). All the F1 plants of W762 × LDN showed resistance at

the level of IT 0 as similar as W762. Among the 200 F2 plants, the

segregation ratio of the resistant (66) and susceptible (134)

individuals did not fit for 3:1, the theoretical Mendelian

segregation ratio for monogenic inheritance. The F2:3 families
TABLE 1 Seedling infection types of W762 and Langdon to 32 different Blumeria graminis f. sp. tritici (Bgt) isolates.

Bgt isolates W762 Langdon Bgt isolates W762 Langdon

B05 1 4 F08 4 4

E07 1 4 F09 0 4

E09 0 4 F10 1 4

E15 3 4 F11 4 4

E17 0 4 F13 2 4

E18 1 4 F16 2 4

E20 1 4 F17 0 4

E21 2 4 F18 4 4

E23–1 3 4 F19 4 4

E31 0 4 F21 1 4

F01 4 4 F22 4 4

F02 0 4 F23 0 4

F03 2 4 F24 0 4

F05 4 4 F25 0 4

F06 3 4 F28 2 4

F07 0 4 F32 4 4
Infection type (IT) described as Si et al. (1992), and 0–4 scale was used to score the infection types: 0, 0; among which 1 and 2 were regarded as resistant phenotypes, 3 and 4 were
susceptible phenotypes.
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segregated 31 homozygous resistant: 94 segregating: 75

homozygous susceptible, also not fitting for the ratio 1:2:1 with

monogenic inheritance. Therefore, the powdery mildew resistance

in W762 did not meet monogenic inheritance and complex genetic

model might exist within this population.
Summary of the RNA-Seq data

After filtering low-quality reads and adaptors, the clean reads of

26,390,677,800 (W762), 34,391,335,500 (LDN), 40,197,188,700

(resistant bulks), and 38,205,766,800 (susceptible bulks) were

obtained, respectively. The data size was more than the transcript

size of the wheat genome. Therefore, it was considered to cover

most expressed genes in the wheat genome. The percentage of clean

reads with a Q30 was greater than 94.00% and a Q20 was greater

than 97.00% for all the four samples, and the GC content ranged

from 54.02% to 55.48%. After mapping the four sets of clean reads

to RefSeq v2.1 individually, the percentage of reads mapping to the

reference genome ranged from 81.51% to 83.31%, and the coverage

of uniquely mapped reads was 99.16%–99.33%. In conclusion, the

sequencing quality was high and suitable for subsequent analysis.
Frontiers in Plant Science 05
Confirmation of candidate intervals

To evaluate the candidate intervals associated with the powdery

mildew resistance, a total of 63,641, 727,819, 52,093, and 64,438 SNPs

were detected from the clean data of W762, LDN, resistance and

susceptible bulks, respectively. Among them, 6,196 SNPs were

confirmed to be consistently different between the resistant and

susceptible parents and bulks, and used for subsequent SNP index

analysis. Using 99% confidence as the threshold, the putative

candidate regions of 66,805,294–404,438,437 and 525,703,735–

645,084,093 on chromosome 7B were identified (Figure 3). In this

interval, 763 SNPs were identified to be consistently different between

resistance and susceptible parents and bulks, account for a proportion

of 34.7%. This revealed a high confidence of these candidate regions.

These SNPs were used for subsequent DEGs analysis.
Analysis of DEGs at the whole-
genome scale

A total of 124,200 genes were identified from the parents and

bulks after BSR-Seq. Among them, 10,431 DEGs were detected
FIGURE 2

Infection process of the Blumeria graminis f. sp. tritici (Bgt) isolate E09 on the first leaves of W762 and Langdon (LDN). Wheat leaf samples were
taken at different hpi for Coomassie blue staining. Bar = 200 mm. The black arrows indicate deformed appressorium, and the red arrows indicate
normal appressorium.
FIGURE 1

Reaction patterns of susceptible control Mingxian 169, durum wheat accessions W762, and Langdon (LDN) to the Blumeria graminis f. sp. tritici (Bgt)
isolate E09 at the seedling stage.
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between parents W762 and LDN, of which, 5,512 ones were

upregulated and 4,919 ones were downregulated compared to

LDN (Figure 4). Furthermore, 9,088 DEGs were detected between

the resistance and susceptible bulks, of which 4,803 and 4,285 DEGs

were downregulated and upregulated, respectively. For further

screening, 3,653 DEGs showed consistent expression difference

between the parents and bulks (Figure 4). Combined with the

candidate interval analysis, only 21 DEGs were located in this

interval. These genes were considered as prime candidates in the

resistance response pathway to powdery mildew in W762.

After GO analysis, the DEGs were mainly involved in three

branches: biological processes, cellular components and molecular

function. Among them, biological processes included metabolic

processes and cellular processes; cellular components included

cells, cell parts, membranes, membrane’s part and organelles; and

molecular functions contained binding and catalytic activity

(Figure 5). However, the results of the GO analysis mainly

focused on the processes after Bgt inoculation. The “response to

stimuli” process was significantly enriched and may be involved in
Frontiers in Plant Science 06
disease defense, but no known DEGs related to defense mechanism

(s) were detected. Therefore, cluster of COG analysis was carried

out using the same DEGs above mentioned. The data showed that

the DEGs were mainly involved in signal transduction mechanisms

(13.75%), transcription (13.38%), and replication, recombination

and repair (12.25%). Among them, a few DEGs were directly

involved in defense mechanisms, but accounting for only 2.18%

(Figure 6). These results demonstrated that except for defense-

related genes themselves, genes related to biological metabolism and

synthesis also responded to the biological defense process.

After KEGG analysis, a total of 50 pathways were significantly

enriched using these DEGs, involving cellular processes,

environmental adaptation processing, genetic information

processing, metabolism, and organismal system. Among them, a

plant-pathogen interaction pathway as well as a plant hormone

signal transduction pathway emerged (Figures 7, 8). These genes

might be potential candidates for understanding the interaction

between pathogen and plants and were also the candidate targets for

molecular mechanism against wheat powdery mildew.
A

B

FIGURE 3

Distribution of the SNPs with consistent differences between the resistant parent W762 and susceptible parent Langdon (LDN) and their derived
resistant and susceptible bulks on 21 chromosomes (A) and chromosome 7B (B).
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Expression pattern of the key genes related
to the powdery mildew resistance in W762

To screen and verify the potential candidate genes responding to

Bgt invasion, we monitored the infection process using the Bgt isolate

E09. From the microscopic analyses of reaction process after Bgt

invasion, we can see that 0 hpi can be used as blank control, 2–4 hpi as

primary germ tube formation, 12 hpi as penetration, 24 hpi as

haustorium formation, 48 hpi as secondary penetration, and 72 hpi

as microcolony formation (Figure 2). Then, we designed the point-in-

time for sampling based on the process of microcolony formation,

and monitored the transcription levels of 18 potential target genes

(including 12 DEGs in the candidate intervals) at different time after

inoculating with the Bgt isolate E09. Nine genes showed significant

differences expression patterns between W762 and LDN. Among

them, TraesCS7B03G0190200.1 and TraesCS7B03G0320300 encoding

serine/threonine protein kinases, TraesCS7B03G0319700.1 and

TraesCS7B03G1012000.1 encoding protein kinase domain,

TraesCS7B03G0910400.1 encoding disease resistance protein

expressed at low levels in LDN, while upregulated in W762 from

0.5 hpi, indicating that they were likely to play roles at the early stage

in fighting Bgt invasion. TraesCS7B03G0812600 encoding

transcription factor expressed at high level at almost all the

invasion process and can be considered as a key gene in the process

of fighting Bgt invasion. While, TraesCS7B03G0272100.1 encoding a
FIGURE 4

M-versus-A (MA) plot of the differentially expressed genes (DEGs)
with consistent differences between the resistant parent W762 and
susceptible parent Langdon (LDN) and their derived resistant and
susceptible bulks. X and Y axes showed overall signal strength and
output difference of the DEGs between resistant and susceptible
parents and bulks.
FIGURE 5

Gene ontology (GO) analysis of the differentially expressed genes (DEGs) with consistent differences between the resistant parent W762 and
susceptible parent Langdon (LDN) and their derived resistant and susceptible bulks.
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FIGURE 6

Clusters of orthologous groups (COG) analysis of the differentially expressed genes (DEGs) with consistent differences between the resistant parent
W762 and susceptible parent Langdon (LDN) and their derived resistant and susceptible bulks.
FIGURE 7

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analysis for differentially expressed genes (DEGs) with consistent
differences between the resistant parent W762 and susceptible parent Langdon (LDN) and their derived resistant and susceptible bulks.
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leucine rich repeat (LRR) protein, TraesCS7B03G0925400.1 encoding

a homologous gene of Arabidopsis thaliana RPM1 protein,

TraesCS7B03G0959700.1 encoding serine/threonine protein kinases,

and TraesCS7B03G0812600.1 encoding transcription factor expressed
Frontiers in Plant Science 09
after Bgt invasion in both W762 and LDN, and reached the peak at 2

hpi in LDN (Table 2; Figure 9), suggesting that they may be involved

in other pathways related to Bgt invasion. Therefore, these genes and

their expression patterns can be used as valuable references for
FIGURE 8

Plant-pathogen interaction pathway enriched from differentially expressed genes (DEGs) with consistent differences between the resistant parent
W762 and susceptible parent Langdon and their derived resistant and susceptible bulks.
TABLE 2 Partial candidate genes of W762 on chromosome 7B and the primers for quantitative real-time PCR (qRT-PCR).

Gene
Physical
genomic location

Functional annotation Forward primer(5′–3′) Reverse primer(5′–3′)

TraesCS7B03G0190200 77775536.77786594
Belongs to the protein
kinase superfamily AACGCGGTGATGGAGACTGT CCGACGGCTGCTTCTTGGT

TraesCS7B03G0272100 122453467.122459516 LRR-repeat protein GTCGTGCTGTCCTTTCTGC ATAATGCGTAGGGTGGGTG

TraesCS7B03G0319700 147090873.147093400 Protein kinase domain AAGCGTCCCGTCTTCTCCCT TGTTCTTCTGTTTGCCACCACC

TraesCS7B03G0320300 147700331.147707756 Serine/Threonine protein kinases GACTGGTGGACCTTTGGTA GCTCACGACTGGGTATTCT

TraesCS7B03G0345700 163329488.163332909 disease resistance protein ATACCTCCTCATCAAGCAA ATCCCACAATAGATACCACTT

TraesCS7B03G0378900 189804519.189808558 Protein kinase domain TATGTCCTACGGCGTCCTGG TCGTTGGCTCTGCGTTGAT

TraesCS7B03G0446100 241732753.241736063 LRR-repeat protein CACCAAGGGCGTCAAGCAG GGGAACACCCAGGCACAGAT

(Continued)
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TABLE 2 Continued

Gene
Physical
genomic location

Functional annotation Forward primer(5′–3′) Reverse primer(5′–3′)

TraesCS7B03G0506300 299127491.299151515 Protein kinase domain GCGTCAACTTCTGCGACAT TGCTGTTCCCAACCGAGTA

TraesCS7B03G0532100 327508868.327510511
Zinc finger CCCH domain-
containing protein GCCCGTATGTGACAAACTGC CATCCCTCCTCGGTGTAGAA

TraesCS7B03G0569800 370388905.370393531 Serine/Threonine protein kinases CGAGGATTGAAGTATGTGC AAGTCAGTCTCAGTGGTGG

TraesCS7B03G0577700 378060043.378068505
Serine threonine-protein
kinase Rio1 ACGAGCCACCAGCGGATAA TCCTTCCGAGCAGCCTTCC

TraesCS7B03G0581800 381059421.381062323 LRR-repeat protein TGACGCCGTGGGAGATTGT TTGATGCGGAGCCAGAACG

TraesCS7B03G0812600 545776588.545785098 transcription factor GTGGAGCTGAGCTGAAAGG GAAGGCATACGACCAAGAA

TraesCS7B03G0863700 578446982.578448448 Disease resistance protein ACATGGCGGATACCTGAGCG TCCGGCGTCTCGAACCACT

TraesCS7B03G0910400 598101444.598107287 disease resistance protein CCGCTTATCTTAGAGGTCC AACTCGTGCAATCCAATAC

TraesCS7B03G0925400 605759635.605761734 Disease resistance protein RPM1 CAAGGGTCGTTGGAGGAGT AGAAAGCGATGGCAGTGGG

TraesCS7B03G0959700 622253623.622256064 Serine threonine-protein kinase CCTCCGTAGCAGCGTAGACA CCATTCACGTTTGCCATTTT

TraesCS7B03G1012000 647238432.647243000 Protein kinase domain GGATGATGTTCCCGGTGAG TCGGAGGCTTGGCTTTATT
F
rontiers in Plant Scienc
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FIGURE 9

Expression profiles of nine genes in W762 and Langdon (LDN) after inoculating with the Blumeria graminis f. sp. tritici (Bgt) isolate E09 at 0, 0.5, 2, 4,
12, 24, 36, 48 and 72 hours post inoculation (hpi). Normalized values of target genes expression relative to TaActin were given as mean ± SD from
three replicates. Statistically significant differences (Student’s t-test): *, P < 0.05; **, P < 0.01. ns: not significant.
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dissecting the genetic and molecular basis of the powdery mildew

resistance in W762.
Discussion

Durum wheat is an important germplasm for wheat

improvement against powdery mildew. In this study, a durum

wheat accession W762 was resistant to 21 of 32 tested Bgt

isolates, indicating that it was a valuable resistance donor for

wheat improvement against powdery mildew. Genetic analysis

showed that the powdery mildew resistance in W762 did not

meet monogenic inheritance and complex genetic model might

exist in W762. There are several reasons that may be related to this

phenomenon, including alien translocation and gametocidal genes

and quantitative inheritance. For example, there were evidences that

the homologous group two chromosomes of Triticeae spp. carried

genes favoring the transmission of specific gametes (Tsujimoto and

Tsunewaki, 1988). Fu et al. (2013) identified a recessive Pm gene

(pmX) located on chromosome arm 2AL that showed abnormal

segregation. Inheritances of the two stem rust resistance genes Sr36

and Sr40 showed segregation distortion and recombination

suppression which involved alien translocations (Tsilo et al., 2008;

Wu et al., 2009). In the present study, molecular genetic analysis of

F2 populations of the cross W762 × LDN and their derived F2:3
families deviated significantly from monogenic inheritance. It was

supposed that the resistance to powdery mildew in W762 may be

controlled by quantitative trait loci or several major Pm genes.

Further studies on isolating single genes through multiple

generations of backcrossing and self-crossing were needed in

the future.

BSR-Seq is an efficient method for both rapid gene mapping and

differential gene expression profiling (Wang et al., 2017; Hao et al.,

2019). Using BSR-Seq, the resistance genes in W762 were

postulated to be located on the intervals of 66.8–404.4 Mb and

525.7–645.1 Mb on chromosome 7B. The candidate regions have a

total of 740 DEGs, and the resistance gene(s) in responding to Bgt

invasion in W762 may be located in these candidate intervals. To

further identify candidate genes/regulatory genes, we selected 18

potential targeted genes in the candidate intervals to analyze their

response patterns against Bgt invasion. Nine of these genes did not

express in both resistant parent W762 and susceptible parent LDN,

and hence can be eliminated. The remaining genes were all

upregulated in W762 after Bgt invasion, suggesting these genes

may play important roles in responding Bgt invasion.

Plant resistance is a complex process in the course of host-

pathogen interaction (Hikichi, 2016). To respond to the invasion of

pathogen, a lot of genes will be activated in plants. Invasion of the

pathogens could be prevented at different layers, such as cell wall,

plasma membrane, and various enzymes in cytoplasm (Braeken

et al., 2008; Soto et al., 2011; Siddiqui et al., 2012). In this study,

following Bgt inoculation, a large number of DEGs, including the

targeted genes in the candidate intervals, which are important for
Frontiers in Plant Science 11
defense against Bgt invasion, were identified and analyzed using

GO, COG, and KEGG enrichment. And three types of genes

accounted for the greater proportions, including those involved in

biological process, cellar component and molecular function. This

result is consistent with the model of signal transduction and

activation of defense mechanisms: when pathogens invade, signal

transduction mechanisms are activated to transduce the stress

signal; then, defense mechanisms are expected to be mobilized to

fight the Bgt invasion; both these processes need the support of

biosynthesis and metabolism.
Conclusion

W762 is a durum wheat accession that shows high resistance to

powdery mildew. We clarified the genetic pattern of powdery

mildew resistance, identified DEGs at the whole-genome scale

and profiled the expression of several key genes associated with

resistance to powdery mildew using qRT-PCR. Our study could lay

a foundation for analysis of the molecular mechanism and also

provide potential targets for the improvement of durable resistance

against powdery mildew.
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