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Food security, a critical concern amid global population growth, faces challenges

in sustainable agricultural production due to significant yield losses caused by

plant diseases, with a multitude of them caused by seedborne plant pathogen.

With the expansion of the international seedmarket with global movement of this

propagative plant material, and considering that about 90% of economically

important crops grown from seeds, seed pathology emerged as an important

discipline. Seed health testing is presently part of quality analysis and carried out

by seed enterprises and governmental institutions looking forward to exclude a

new pathogen in a country or site. The development of seedborne pathogens

detection methods has been following the plant pathogen detection and

diagnosis advances, from the use of cultivation on semi-selective media, to

antibodies and DNA-based techniques. Hyperspectral imaging (HSI) associated

with artificial intelligence can be considered the new frontier for seedborne

pathogen detection with high accuracy in discriminating infected from healthy

seeds. The development of the process consists of standardization of methods

and protocols with the validation of spectral signatures for presence and

incidence of contamined seeds. Concurrently, epidemiological studies

correlating this information with disease outbreaks would help in determining

the acceptable thresholds of seed contamination. Despite the high costs of

equipment and the necessity for interdisciplinary collaboration, it is anticipated

that health seed certifying programs and seed suppliers will benefit from the

adoption of HSI techniques in the near future.
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Introduction

Food security is currently the focus of agricultural studies in

search for sustainable production solutions that keep up with

population growth. It is estimated that by 2050 the world will

have approximately 10 billion inhabitants (Godfray et al., 2010;

Tilman et al., 2011), which makes the demand for food a current

challenge. One of the most important limitation for food

production are plant diseases which can cause significant losses in

productivity and food quality around the world (Savary et al., 2019).

Fungal and bacterial pathogens can reduce crop yields by around

15% and plant viruses by a range of 3% to 7%, under favorable

conditions such microorganisms can cause losses of up to 100%

(Oerke and Dehne, 2004).

Around 90% of crops of economic and food importance are

grown by seeds (Maude, 1996), therefore, the seed health is

fundamental for agricultural production. Seeds are a primary

source of plant pathogen contamination in crop fields and

specific tools for identification and early diagnosis of pathogens

in seeds are essential to mediate disease management in crops and

avoid losses caused by them (Gitaitis andWalcott, 2007; Dutta et al.,

2014). Some requirements are desired in the selection of seed health

diagnosis methods, such as specificity; sensitivity; efficiency/speed;

simplicity; a satisfactory cost-effectiveness; and reliability

(Marcinkowska, 2002).

The application of molecular and serological detection

methods, despite presenting specificity and sensitivity, are

destructive, mostly limited to laboratory application, requiring

qualified labor (Kumar and Gupta, 2020). In addition, it does not

make it possible to monitor the progress of the disease in the plant

or even the action of compounds applied to the crop to control the

spread of the pathogen (Mishra et al., 2020). The step forward for a

more efficient detection of plant pathogens, focused on

quantification and distribution would be the use of hyperspectral

images, which could be associated with artificial intelligence, for a

faster and more reliable streategy. This article is a state-of-the-art

review on the detection of plant pathogens in seeds, emphasizing

the recent advances with the use of hyperspectral images as a

resource in the diagnosis of phytopathogens disseminated by seeds.
Conventional methods for detecting
plant pathogens in seeds

Initially, the detection of pathogens in seeds was carried out

using visual diagnosis methods. Some pathogens, mainly fungi,

cause external symptoms in seeds that can be naked-eye visualized

or with the aid of a microscope (Gaur et al., 2020). The presence of

certain symptoms in seeds may be common among plant pathogens

or even the signs may not be visible in the seed tissues (Kumar et al.,

2020). Furthermore, the symptoms in seeds may also be of abiotic

origins, such as environmental stresses and nutrition to the seed

crops or mechanical injuries during the seed harvesting and

processing (Bala, 2020).

Directed detection by pathogen cultivation by plaquing the seed

on semi-selective or enriched culture media is one of the most used
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techniques for detecting plant pathogens in seeds (Mancini et al.,

2016). Although efficient, they are restricted to the detection of only

cultivable microorganisms. After the pathogen growth,

identification can be performed by morphology, biochemical and/

or molecular tests (Kumar et al., 2020).

ELISA (Enzyme-linked immunosorbent assays), a sorologial

method which demands species-specific antibodies in order not to

cause cross-reactions between related and unrelated species which

could lead to false negative results (Dewey et al., 1997; Mancini

et al., 2016). Moreover, these tests often yield false positives by

detecting non-viable microorganisms. This impacts analysis

interpretation and directly affects diagnostic accuracy (Walcott,

2003; Afouda et al., 2009).

Molecular techniques, such as nucleic acid amplification using

DNA and RNA, offer enhanced sensitivity and specificity in

pathogen detection. PCR (Polymerase chain reaction), a pivotal

advancement in molecular biology by Mullis et al. (1986), has

evolved into various forms, including Nested PCR, BIO-PCR,

qPCR (Quantitative Polymerase Chain Reaction), RT-qPCR

(Reverse Transcription Quantitative Polymerase Chain Reaction),

and LAMP (Loop-mediated isothermal amplification) (Massung

et al., 1998; Notomi et al., 2000; Nazarenko et al., 2002; Bookout

et al., 2006).

Conventional PCR is applied in several studies involving the

detection of plant pathogens transmitted by seeds. However, these

reproductive units are often infected by pathogens at a very low

concentrations, which makes detection by PCR unfeasible due to

insufficient amount of the target DNA. Based on this problem, BIO-

PCR, proven to be effective for bacteria and fungi detection in seeds

(Munkvold, 2009) as it allows the pathogen growth by incubation

with semi-selective media followed by PCR (Schaad et al., 1995).

Compared to conventional PCR, BIO-PCR is more advantageous

due to the greater sensitivity, absence of PCR inhibitors (from plant

or seed tissues), and detection of only viable cells, eliminating false

positives (Marcinkowska, 2002). However, it may have higher costs

due to the use of semi-selective media with expensive antibiotics,

and delays from pathogen growth in the culture medium (Walcott,

2003; Schena et al., 2004).

Nested PCR is a very sensitive PCR modification, which can be

completed in a 24-hour period (Chen et al., 2007). However, it

demands additional time and reagents due the two rounds of PCR,

and is more prone to contamination than conventional PCR

(McCartney et al., 2003; Atkins and Clark, 2004). qPCR and

RT-qPCR are other types of PCR which have been used for

detecting seed-transmitted plant pathogens due to their

sensitivity and speed. While effective, this technique may yield

false positives from occasional spikes in background fluorescence

or minimal DNA cross-contamination (Robène et al., 2015).

Additionally, PCR-based analyses demand specialized and

trained technical personnel and expensive equipment, usually

being restricted to laboratory settings (Kaur et al., 2020). PCR

techniques, including PCR, Nested-PCR, BIO-PCR, qPCR, RT-

qPCR and others may be used as a multiplex, capable of detecting

simultaneously more than one seed-borne pathogens with greater

sensitivity than conventional and individual PCR (Ha et al., 2009;

Robène-Soustrade et al., 2010).
frontiersin.org

https://doi.org/10.3389/fpls.2024.1387925
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ferreira et al. 10.3389/fpls.2024.1387925
Derived from PCR, Loop-mediated isothermal amplification

(LAMP) based technique efficiently detects plant pathogens in seeds

(Choudhary et al., 2022), offering several advantages such as: it operates

under isothermal conditions, allows direct visualization of

amplification results, and can be applied in the field (Notomi et al.,

2000). The LAMP assay is more sensitive and specific than PCR,

mainly due to the addition of loop primers (Nagamine et al., 2002).

However, the handling of samples when adding interleaved dyes, which

allow visualization of the result, can influence the occurrence of false

positives, due to the release of aerosols of target nucleic acid fragments

into the environment (Hardinge and Murray, 2019). Also, as other

molecular tests, it may detect not only the living microrganisms but

also any remaining pathogen DNA within the sample.
Hyperspectral imaging and
artificial intelligence

The human eye can detect only a small portion of the

electromagnetic spectrum, distinguishing the spectral responses of

images/objects in a restricted range of the visible spectrum between

400 nm and 700 nm (Zwinkels, 2015). To overcome this limitation,

optical remote sensing has emerged as a technique capable of

obtaining representative data in ranges beyond infrared, typically

between 400 nm and 2500 nm (Oliveira et al., 2020). The possibility

of capturing the spectral signal in a larger range allows the

structuring of reflectance profiles and the detection of patterns

that differentiate features between different targets far beyond the

visual range (Shanmugapriya et al., 2019).

In recent decades, several studies have involved the application

of remote sensing in agriculture both in field and laboratory. The

use of optical remote sensing through hyperspectral images is an

example (Demattê et al., 2010; Feng et al., 2019; Abdulridha et al.,

2020b). These sensors measure the reflectance of an object, such as

plant leaves, and identify any changes, such as those caused by a

plant pathogen, as any disturbance to the leaf region would alter the

reflectance and direction of the light (Xie et al., 2008).

A HSI (hyperspectral imaging) combines conventional imaging

system with spectroscopy. Unlike the RGB (red, green and blue)

color system, HSI corresponds to a set of techniques capable of

capturing wavelengths beyond red, green and blue (Li et al., 2014).

HSI consists of a spectrograph capable of capturing reflectance in a

wide range of the spectrum, such as visible (VIS), ultraviolet (UV),

near-infrared (NIR), and short-wave infrared (SWIR) (Bock et al.,

2010). Such images are three-dimensional (3D), formed by two

spatial dimensions (x and y) and one spectral dimension (z). By

combining conventional imaging with spectroscopy, HSI obtains

complementary information from both fields (Mishra et al., 2017).

An example of such a combination is that while spectroscopy

collects data about plant physiology, conventional imaging system

gathers information on plant structural dynamics (Montes et al.,

2007; Bucksch et al., 2014).

Hyperspectral images have hundreds of wavelength bands close

together in a spectral range, producing a dense colorfull cube of

information, with spatial resolution capable of obtaining several

pixels per target (Lowe et al., 2017). The spectral portion generally
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applied to the study of hyperspectral images of plants ranges from

UV starting at ~250 nm to SWIR up to ~2500 nm. The most useful

spectral band for plant analysis are the visible and near infrared

(Lowe et al., 2017). In the range of 400-700 nm, it is possible to

capture changes in leaf pigmentation, whereas at 700-1300 nm

range, changes in the cellular structure of the mesophyll. Wider

spectral ranges (1300-2500 nm) are needed, for example, for water

content in a plant (Peñuelas and Filella, 1998).

The greatest advantage of the application of HSI is that they are

techniques capable of detecting and differentiating a disease even in

an asymptomatic plant (Martinelli et al., 2015; Whetton et al.,

2018). The possibility of early detection through the use of

hyperspectral sensors can contribute to the early and efficient

management of diseases, preventing spread in the field

(Abdulridha et al., 2020a). Furthermore, hyperspectral imaging

technology is non-invasive/destructive, which is advantageous

when compared to molecular analysis, where the sample cannot

be reused (Sankaran et al., 2010; Golhani et al., 2018).

The data generated is quite collinear and requires different

statistical tools to extract information and model patterns (Mishra

et al., 2017), such as for artificial intelligence. The application of

artificial intelligence using machine learning and deep learning

combined with hyperspectral images has been promising in

several areas of agricultural management (Demattê et al., 2010;

El-Mesery et al., 2019; Feng et al., 2019; Abdulridha et al., 2020b).

Artificial intelligence has different definitions, succinctly, it refers to

the ability of a machine to perform a function in a similar way to the

human mind for “learning” and “problem solving”. Machine

learning consists of computational algorithms that learn from

input data and can perform classification or clustering tasks,

which are ideal for finding patterns and trends in hyperspectral

data (Dhakal et al., 2023).

Machine learning is a subfield of artificial intelligence and deep

machine learning is a subset that integrates machine learning

(Nguyen et al., 2019). Deep learning is excellent for analyzing and

extracting useful data in large quantities or collected from different

sources (Zhang et al., 2020). The analysis of hyperspectral images

using deep learning with convolutional neural networks has

emerged as a favorable methodology for evaluating and managing

various conditions in agricultural crops, mainly aimed at disease

diagnostics. Neural networks are designed to learn the spatial

features that best classify or quantify a target/object, in the case of

plant diseases, classifying and distinguishing, for example, healthy

leaves from those infected by pathogens (Kattenborn et al., 2021).

In addition to deep learning, other algorithmic models based on

machine learning are applied in hyperspectral data processing.

Examples are: PCA (Principal Component Analysis) and LDA

(Linear Discriminant Analysis) used for extracting features of

interest, similarities, and dissimilarities in the data (Dua et al.,

2020; Hsieh and Kiang, 2020), and SVM (Support Vector Machine),

for solving linear classification problems, which are widely

employed for HSI data classification due to their ability to

effectively separate heterogeneous samples on the mapped plane

(Kale et al., 2017). Although SVM was designed to decipher linear

datasets, its usage can be extended to non-linear data when

combined with kernel methods (Melgani and Bruzzone, 2004).
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Segmentation, an important step before delivering the data cube

to test a model, is applied for noise removal from the images,

extraction of useful and non-redundant features and establishing

the relationship between similar data points in the sample.

Therefore, enabling the selection of regions of interest (ROIs),

thereby allowing for more accurate data classification. However,

segmentation requires the use of methods that demonstrate

satisfactory performance for ROI selection. There are algorithms

that can assist in this aspect, each with its own peculiarities.

Furthermore, some studies clarify which algorithms exhibit better

performance according to the type of HSI data to be addressed

(Grewal et al., 2023). For seeds, few publications describe the issues

associated to those plant material, as the variance of reflectance on

each seed, due surface deformities and specular reflection,

increasing the difficulties of segmentation (Barbedo et al., 2015).

Another importante step is the fusion of spectral and spatial

data, which allows for the enhancement of spatial resolution in HSI

images, while preserving spectral quality. However, the fusion

process is complex, as there is typically a trade-off between

preserving spatial data and spectral quality (Mookambiga and

Gomathi, 2016). It is from this perspective that artificial

intelligence has proven to be efficient in solving problems related

to HSI data fusion, such as deep learning, which is ideal for

extracting characteristics from complex and abundant data (Li

et al., 2022). Additionally, there is commercial software available

that can integrate these steps, simplifying the process.
Detection of plant pathogens in seeds
by hyperspectral imaging

The detection of plant pathogens in seeds using hyperspectral

images associated with artificial intelligence mechanisms is

described for different pathosystems (Table 1). A limited number

of studies have been published specifically focusing on the detection

of plant pathogens on seeds. The majority of these studies utilize

prediction models for data processing, given that alterations on

these organs may not be as visually discernible as those on fully

grown plants, such as symptoms of necrosis or others. The low

number of publications (22) and erratic distribution along the years

reveals that it is still an open field to be explored, which probably

concerns to the necessity of deep knowledge on the machine and

algorithmic possibilities and their high costs.

The variables tested in these studies include sample size, the

method for producing infected seed samples, the reference method

for confirming the infection, as well as the wavelengths applied and

algorithms utilized. The number of sample size among the

publications is variable, from not informing the number of seeds

applied in the study up to 47 thousand seeds (Figure 1A). The low

number of seeds used to train and test the algorithm can

superestimate the accuracy. Several publications utilize artificially

inoculated seeds (40,9%), often through the infiltration of propagule

suspensions, as positive controls for image generation (Figure 1B),

while 54,5% used naturally infected seeds, including those for the

detection of mycotoxin-producing fungi. Artificially inoculated or

infiltrated seeds are commonly utilized to generate contaminated
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inaccuracies in the data, as the concentration of the pathogen

could surpass levels typically observed in natural conditions. Wu

et al. (2020) states that laboratory-inoculated seeds reflects

accurately the detection of field-infected kernels. Nevertheless,

such inoculated seeds might not express the impact of infection

on the physiology, chemistry, and other compositions of the seed,

which could be detected by hyperspectral imaging (HSI), as it can

happen to soy seeds infected with Fusarium verticillioides, which

may change flavonoids content (Pedrozo and Little, 2017). Further

studies are required to validate this data. Additionally, the

knowledge regarding the threshold limit of propagules on a seed

for disease transmission, from germination to seedlings, potentially

resulting in disease outbreaks, is crucial. This knowledge impairs

the use of the method in properly detecting potentially harmful

infected seeds (those that lead to disease transmission). For

reference method, which is a method for confirmation of the

pathogen presence within the seed, some publications (22.77%)

did not use any kind of evaluation, while 54,5% assessed it visually

(Figure 1C) and three publications (13,6%) used molecular

methods. Concerning the wavelenghs applied, VIS, NIR, VNIR,

SWIR bands (ranging from 400 to 2500 nm) were used in several

studies, with a predominancy of NIR, occasionally in

combination (Figure 1D).

Most studies focused on the detection of fungi, particularly

those associated with the production of mycotoxins, such as

Fusarium and Aspergillus species (Table 1). Mycotoxin

accumulation renders grains unfit for human and animal

consumption. Few studies address the dispersion of fungi by

seeds, which could introduce the pathogen and/or cause an

outbreak on production fields. Notably, groups of pathogens such

as bacteria and viruses received limited attention, despite the fact

that several important diseases transmitted by seeds fall within these

categories. In the case of bacterial pathogens, Lee et al. (2017b)

applied hyperspectral imaging in the near-infrared range with two

models to classify healthy watermelon seeds and those infected with

Acidovorax avenae subsp. citrulli. The accuracy of both PLS-DA

and LS-SVM models was of 91.7% and 90.5%, respectively. Using

the Raman hyperspectral imaging technique, they achieved 75% of

classification accuracy (Lee et al., 2017a). On its turn, for viruses,

using the PLS-DA model, Lee et al. (2016a) distinguished

watermelon seeds infected by Cucumber green mottle mosaic

virus (CGMMV) with an accuracy of 83.3% while Seo et al.

(2019) obtained 92% accuracy using the LS-SVM (Least squares

support vector machine) model.

For plant pathogenic fungi, numerous studies have investigated

seed detection using hyperspectral images. Notably, some have

demonstrated high accuracy in classification. For instance, Chu

et al. (2020) achieved 100% accuracy using PCA and SVM models

to classify hyperspectral data from both healthy and Aspergillus spp.

infected corn seeds. Wu et al. (2022) utilized hyperspectral images

in the NIR range to identify peanut seeds naturally infected with

Aspergillus flavus, reaching an accuracy exceeding 97% with three

distinct classification models. In Wu et al. (2024) study, the

combination of hyperspectral data acquisition and sample

classification using convolutional neural networks yielded an
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TABLE 1 Compilation of publications focusing on the utilization of hyperspectral imaging for the detection of plant pathogens in seeds.

Seeds Samples Pathogen
Inoculation
Method*

Reference
Method

Spectral
Range

Model
Classification

Accuracy Reference

Peanut – Aspergillus spp.
Naturally
infected

Visually
confirmed

970-
2570 nm

PCA 98.73%
(Jiang

et al., 2016)

Peanut –
Diverse

fungi species

Naturally
infected,
favorable
conditions

Visually
confirmed

967-
2499 nm

SVM >94%
(Qiao

et al., 2017)

Peanut 600 Aspergillus flavus

Naturally
infected,
favorable
conditions

Visually
confirmed

400-
1000 nm

CatBoost, GBDT,
XGBoost, LightGBM

>97.42%
(Wu

et al., 2022)

Rice 926 Villosiclava virens

Artifically
inoculated/
Naturally
infected

PCR
874.41-

1734.91 nm
PLS-DA, SVM, ELM >94%

(Wu
et al., 2020)

Rice 210 Aspergillus oryzae
Artifically
inoculated

Visually
confirmed

400-
1000 nm

PLSR –

(Siripatrawan
and

Makino, 2015)

Rice 47570 Fusarium spp.
Artifically
inoculated

Visually
confirmed

874.41 -
1734.91 nm

Convolution Neural
Networks (CNNs),
PLS-DA, SVM

>90%
(Wu

et al., 2024)

Oat – Fusarium spp.
Naturally
infected

Visually
confirmed

1000-
2500 nm

PLSR, PLS-LDA –
(Tekle

et al., 2015)

Canola 900 Aspergillus glaucus
Artifically
inoculated

–
1000-

1600 nm
LDA, QDA, MDA >90%

(Senthilkumar
et al., 2015)

Choy Sum 1630
Penicillium
decumbens

Artifically
inoculated

Visually
confirmed

400-
1000 nm

SMOTE-
siPLS-stacking

>99%
(Xie

et al., 2024)

Corn 892 Aspergillus spp.
Naturally
infected

Culture media
935-

1700 nm
PW-PCA-SVM 100,00%

(Chu
et al., 2020)

Barley 3000
Aspergillus glaucus,
Penicillium spp.

Artifically
inoculated

–
1000-

1600 nm
LDA, QDA, MDA >80%

(Senthilkumar
et al., 2016)

Pea, Bean,
Chickpea,
Lentil

1500
Aspergillus flavus,

Penicillium
commune

Artifically
inoculated

–
900-

1700 nm
LDA, QDA >96%

(Karuppiah
et al., 2016)

Watermelon 96
Cucumber green

mottle mosaic virus
Naturally
infected

RT-qPCR
948-

2016 nm
PLS-DA 83.30%

(Lee
et al., 2016a)

Watermelon 405
Cucumber green

mottle mosaic virus
Naturally
infected

RT-qPCR
950-

2500 nm
LS-SVM 92%

(Seo
et al., 2019)

Watermelon 336 Acidovorax citrulli
Artifically
inoculated

Culture media
400-

1000 nm
PLS-DA/LS-SVM > 90%

(Lee
et al., 2017b)

Watermelon 48 Acidovorax citrulli
Artifically
inoculated

–
400-

1800 nm
ANOVA 75%

(Lee
et al., 2017a)

Corn 36
Fusarium

verticillioides
Naturally
infected

Visually
confirmed

960-
1662 nm

PLS-DA 77%
(Williams
et al., 2010)

Wheat 120 Fusarium sp.
Naturally
infected

Visually
confirmed

1000-
1700 nm

PLS-DA 100%
(Serranti

et al., 2013)

Wheat 803

Fusarium
graminearum,
Fusarium
meridionale

Naturally
infected

Visually
confirmed

528-
1785 nm

LDA 91%
(Barbedo

et al., 2015)

Wheat 21376
Fusarium

graminearum
Naturally
infected

Visually
confirmed

938–
1654 nm

LDA, PLS-DA >92%
(Delwiche
et al., 2019)

(Continued)
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accuracy of over 98% in identifying rice seeds infected with

Fusarium spp. Additionally, employing other learning models like

PLS-DA and SVM resulted in accuracies surpassing 90%.

The detection of nematodes in seeds involving hyperspectral is

still an open area, as no publication has been found, probably due to

the fact that most plant nematode are transmited by vegetative

materials, such as potato tubers, with few species capable of

infecting botanic seeds. Žibrat et al. (2021) and Lapajne et al.

(2022) evaluated the use of hyperspectral imaging and the

application of different algorithmic models and obtained an
Frontiers in Plant Science 06
accuracy of around 100% in the classification of infected seed

potato tubers with Meloidogyne luci.
Final comments and perspectives

Due to its non-destructive nature, hyperspectral imaging might

be applied to 100% of seeds without the need for sampling or

destruction, as the case of molecular methods. Moreover, the

utilization of hyperspectral imaging for detection does not
TABLE 1 Continued

Seeds Samples Pathogen
Inoculation
Method*

Reference
Method

Spectral
Range

Model
Classification

Accuracy Reference

Wheat 1200
Penicillium spp.,

Aspergillus glaucus,
Aspergillus niger

Artifically
inoculated

–
1000-

1600 nm
LDA, QDA, MDA >95%

(Singh
et al., 2007)

Wheat 800
Fusarium

graminearum
Naturally
infected

Visually
confirmed

400-
1000 nm

LDA 92%
(Shahin and

Symons, 2011)
CNN (Convolutional neural network).
ELM (Extreme learning machine).
FDA (Factorial discriminant analysis).
LDA (Linear discriminant analysis).
LS-SVM (Least-squares support vector machines).
MDA (Multiple discriminant analysis).
PCA (Principal component analysis).
PLS-DA (Partial least squares-discriminant analysis).
PLSR (Partial least squares regression).
QDA (Qualitative data analysis).
SVM (Support vector machine).
SVR (Support vector regression).
“-” Information not provided.
*Naturally infected seeds also includes inoculated plants at flower of fruit development stages.
A B

C D

FIGURE 1

Compilation of cited publications on hyperspectral imaging for the detection of plant pathogens in seeds. (A) Sample size used in each publication.
(B) Method of inoculation for the production of infested/infect seeds. (C) Used methods for the confirmation or quantification of the pathogen
within seeds. (D) The intervals of wavelenght used for the hyperspectral image production, 400-1000 (VNIR), 700-2500 nm (NIR), 1000-2500
nm (SWIR).
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preclude the use of molecular diagnosis as shown byWu et al., 2020;

instead, the integration of these methods enhances reliability and

specificity in pathogen detection. The application of hyperspectral

imaging diagnostics in seeds can expedite the detection of

microorganisms, thereby lowering the chances of the introduction

of new plant pathogens or variants in a site. However, much

remains to be studied in order to enhance the reliability of this

technology, aligning it with the standards observed in other

scientific domains that already uses hyperspectral imaging.

Several difficulties in this area serve as deterrents for the

adoption of this technology, including the high costs of

equipment, complex software and methods. Furthermore, the

involvement of a multidisciplinary team including plant

pathologists, along with electronic engineers, physicists, and

software engineers, is strongly recommended to deal with this

new research frontier. Unfortunately, it can be observed in the

recent published publications that plant pathologists are not present

as part of their research teams. With the knowledge of epidemics,

agricultural producing systems and seed-borne pathogen infection

and detection, such especialist could shorten the period for

technology application and adoption by the producing

chaim authors.

Concerning the generation of contaminated seed lots for the

studies, prior to the development of the hyperspectral imaging

protocol, assays should be carried out to simulate the most natural

conditions of an infected seed. Alternatively, naturally infected

seeds obtained through either natural or artificial infection of

plants could be utilized. However, this alternative approach

introduces a different challenge: determining the method to

validate the presence of the plant pathogen on a specific seed.

Another issue is the lack of information regarding the spectral

signature of the putative alterations caused to the seed by the

presence of the pathogen and its successful transmission to the

plant. Besides, sample standards need to be defined for each

crop species.

Despite these aspects, the analyzed publications collectively

highlighted important approaches that should be considered for

the establishment of protocols for hyperspectral imaging detection

technologies. Therefore, a seven-step scheme is proposed and

recommended here as a template for future studies (Figure 2):

obtention of contaminated seeds, preferably naturally infected;

images capture; the data cube generation; assessment of the

infection status of each seed; segmentation or extraction of the

region of interest; model selection and classification based on

sample size and accuracy; and finally, testing with a larger sample.

Hyperspectral imaging studies for seed detection are relatively

recent, but they hold significant potential for the development of

new protocols, particularly in the context of the prevailing era of

robotics and artificial intelligence. The adoption of hyperspectral

imaging detection technologies stands to offer substantial

advantages in the production of healthy seeds, particularly in

terms of enhanced reliability and practicality. This technology

holds great promise for certification authorities and has the

potential to bolster the confidence of farmers in this agricultural

inputs, if a substantial amount of them can be checked for the

presence of important seed-borne pathogens.
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FIGURE 2

Sequential stages involved in developing hyperspectral imaging for
detecting plant pathogens within seeds. 1. Production or acquisition
of seeds naturally or artificially infected by inoculating seeds,
flowers, or fruits. 2. Image capture utilizing a hyperspectral camera.
3. Data cube generation by integrating multiple wavelength
readings. 4. Validation of the infection status of each seed through
various detection methods, such as culture media or molecular
techniques. 5. Background removal and selection of the region of
interest. 6. Selection of machine learning/deep learning models
based on the seeds identified in step 4, taking into account the
accuracy of each model. 7. Testing the developed protocol and
algorithm to validate the technique efficacy.
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