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Balancing the biomass requirements of different functions for the purpose of

population reproduction and persistence can be challenging for alpine plants

due to extreme environmental stresses from both above- and below-ground

sources. The presence of ecosystem engineers in alpine ecosystems

effectively alleviates microenvironmental stresses, hence promoting the

survival and growth of other less stress-tolerant species. However, the

influence of ecosystem engineers on plant resource allocation strategies

remains highly unexplored. In this study, we compared resource allocation

strategies, including biomass accumulation, reproductive effort (RE), root

fraction (RF), as well as relationships between different functions, among

four alpine plant species belonging to Gentianaceae across bare ground,

tussock grass-, cushion-, and shrub-engineered microhabitats. Shrub-

engineered microhabitats exerted the strongest effects on regulating plant

resource allocation patterns, followed by tussock grass- and cushion-

engineered microhabitats. Addit ionally, apart from microhabitats,

population background and plant life history also significantly influenced

resource allocation strategies. Generally, plants established within

engineered microhabitats exhibited higher biomass accumulation, as well as

increased flower, leaf and stem production. Furthermore, individuals within

engineered microhabitats commonly displayed lower RF, indicating a greater

allocation of resources to above-ground functions while reducing allocation

to root development. RE of annual plants was significantly higher than that of

perennial plants. However, individuals of annual plants within engineered

microhabitats showed lower RE compared to their counterparts in bare

ground habitats; whereas perennial species demonstrated similar RE

between microhabitat types. Moreover, RE was generally independent of

plant size in bare-ground habitats but exhibited size-dependency in certain

populations for some species within specific engineered microhabitat types.

However, size-dependency did exist for absolute reproductive and root

biomass allocation in most of the cases examined here. No trade-offs were

observed between flower mass and flower number, nor between leaf mass

and leaf number. The capacity of ecosystem engineers to regulate resource

allocation strategies in associated plants was confirmed. However, the

resource allocation patterns resulted synergistically from the ecosystem
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engineering effects, population environmental backgrounds, and plant life

history strategies. In general, such regulations can improve individual survival

and reproductive potential, potentially promoting population persistence in

challenging alpine environments.
KEYWORDS

alpine ecosystem, facilitation, reproductive effort, resource allocation, root fraction,
trade-off
1 Introduction

In alpine ecosystems, environmental conditions, encompassing

air and soil temperature oscillation, soil moisture and nutrient

supply, sunlight exposure, and wind speed, generally impose

stress on plant establishment and/or survival (Körner, 2003; Nagy

and Grabherr, 2009). However, various types of ecosystem

engineers (Jones et al., 1994), such as shrubs, cushions, and

tussock plants in alpine ecosystems, effectively mitigate the

severity of these environmental challenges (referred to as

‘ecosystem engineering effects’) for other less stress-tolerant

species (Perelman et al., 2003; Badano and Cavieres, 2006a;

Cavieres et al., 2007, 2006b; Anthelme et al., 2014; Ballantyne and

Pickering, 2015; Chen et al., 2015b, 2019, 2020b; Ramıŕez et al.,

2015; Zhang et al., 2018). The microhabitats created by these

ecosystem engineers, hereafter referred to as ‘engineered

microhabitats’, are typically characterized by benign conditions

with abundant resources that provide a safer and more suitable

environment for other species. Consequently, such engineered

microhabitats can exert significant influences on various aspects

of plant communities (Badano and Cavieres, 2006a, 2006b; Cavieres

et al., 2007; Brooker et al., 2008; Ballantyne and Pickering, 2015;

Chen et al., 2015b; Vega-Alvarez et al., 2019).

The accumulation and allocation of resources into different

functional organs in plants have significant implications for

ecological and evolutionary processes (Weiner, 1988, 2004; Reekie

and Bazzaz, 2005; Bonser and Aarssen, 2009; Salguero-Gómez et al.,

2016). Plants can adjust their resource allocation strategies in

response to environmental changes to ensure an optimal

development of each function, as suggested by the optimal

partitioning theory (OPT) (Bloom et al., 1985; Chapin et al.,

1987). Various factors, including abiotic factors such as water,

nutrient, and light availability, as well as biotic factors like sexual

morphs, individual size, and competition, can affect plant resource

absorption and allocation strategies (Méndez and Karlsson, 2004;

Poorter et al., 2012; Chen et al., 2016, 2017; Oram et al., 2023; Wang

et al., 2023). According to the OPT, plants allocate more resources

gained from the surrounding environment to organs that

experience stronger constraints (Bloom et al., 1985; Chapin et al.,

1987). For example, under soil water or nutrient stress conditions,

plants may allocate more resources toward developing robust root
02
systems for accessing deep soil water/nutrients (Ma et al., 2021;

Feng et al., 2023). On the contrary, under strong light stress caused

by competition with neighboring plants or shading from

surrounding objects, plants can allocate more resources toward

above-ground components, such as taller stems and/or increased

leaf production (Poorter et al., 2012; Chen et al., 2020a).

Considering the inherent limitations of available resources,

particularly in challenging environments, allocating additional

resources to certain organs inevitably results in a reduction of

resources available for other organs. Trade-offs between different

functional organs are thus an integral part of plant resource

allocation processes (Forbis and Doak, 2004; Du and Qi, 2010;

Buckley and Avila-Sakar, 2013; Rosa-Schleich et al., 2019; Umaña

et al., 2021). Given the constraints imposed by extreme

environments on alpine plants (Körner, 2003; Nagy and

Grabherr, 2009), certain species have evolved to allocate

additional resources toward the development of specialized

organs that can effectively withstand local harsh conditions (Sun

et al., 2014 and references therein). For example, Saussurea medusa

(Asteraceae) exhibits dense trichomes, while Rheum nobile

(Polygonaceae) possesses large bracts, both of which serve to

elevate temperatures within inflorescences/infructescences, thus

safeguarding flowers against external damages and promoting

seed development (Yang et al., 2008; Yang and Sun, 2009; Song

et al., 2013). Additionally, many alpine plants develop robust root

systems to ensure stability in unstable substrates or facilitate

nutrient and water absorption from deep soils (Hodge, 2010). In

accordance with trade-off theory, such additional costs may lead to

reduced allocation towards reproductive functions (Reekie and

Bazzaz, 2005).

However, as mentioned above, ecosystem engineers can create

microhabitats that provide less stressful conditions and richer

resources compared to bare-ground habitats, which act as refuges

for other less stress-tolerant plants (Badano and Cavieres, 2006a,

2006b; Cavieres et al., 2007; Chen et al., 2015a, 2015b, 2019, 2020b;

Ramıŕez et al., 2015). Theoretically, plants established within these

engineered microhabitats may not need to allocate extra resources

to resist severe environments like their counterparts in bare-ground

habitats do. According to the OPT (Bloom et al., 1985; Chapin et al.,

1987), it is reasonable to predict that the saved resources could be

reallocated towards other functions, either vegetative or
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reproductive. This reallocation is particularly crucial for annual

plants, which have a limited growing season and need to complete

their life cycles quickly without investing heavily in resistance

mechanisms. Consequently, if they are relieved from the necessity

of allocating additional resources towards resistance against harsh

environments, they can reallocate these saved resources towards

reproductive functions instead. In contrast, perennial species, which

have multiple years to complete their life cycles, may accumulate

sufficient resources before reproduction becomes a priority.

In this study, we investigated how four alpine plant species

belonging to Gentianaceae allocate resources across different

microhabitats—bare-ground, shrub-, tussock grass-, and cushion-

engineered microhabitats. These life forms, including shrubs,

cushions, and tussock grasses, are recognized globally as

ecosystem engineers that modify microenvironmental conditions,

thus benefiting other plant species (Badano and Cavieres, 2006a,

2006b; Cavieres et al., 2007; Anthelme et al., 2014; Ballantyne and

Pickering, 2015; Chen et al., 2015a, 2015b, 2019, 2020b). Our study

area, similar to other alpine regions, features shrub and cushion

plants that significantly alter the local microclimate (Yang et al.,

2010; Chen et al., 2015a, 2015b, 2019, 2020b). Here, we considered

‘sedge aggregations’ (hereafter referred to as ‘sedge grass’ or ‘grass’),

which are small patches primarily composed of sedge plants

(Figure 1), as another form of engineered microhabitat. Sedge

species, known for forming dense tussocks through vegetative

reproduction, can ameliorate environmental conditions at a

microscale level (Peach and Zedler, 2006).

Specifically, we address three main questions and relevant

hypotheses as follows: і) Do ecosystem engineers enhance the

growth of target plants? Given that engineered microhabitats

provide a less severe environmental condition (Figure 1), we
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hypothesize that plant individuals established within these habitats

will exhibit better performances compared to their counterparts in

bare-ground habitats where they are exposed to more severe

environments. ii) How do ecosystem engineers influence plant

resource allocation strategies? Plant individuals established within

engineered microhabitats may allocate fewer resources to stress

resistance and instead invest more into reproductive functions.

Therefore, we hypothesize that individuals established within

engineered microhabitats will display higher reproductive efforts

(i.e., a greater fraction of total resources allocated to reproduction,

as defined by Williams 1966; Figure 1). Furthermore, since different

ecosystem engineers can modify microenvironments in distinct ways

(Chen et al., 2015a, 2019), resulting in varying types and magnitudes

of stresses experienced by associated plants, we propose that the

modulation of plant resource allocation strategies by ecosystem

engineers differs among different types of engineered microhabitats.

iii) Do trade-offs exist between different functions of target plants,

and how does the presence of ecosystem engineers influence these

trade-off patterns? Ecosystem engineers can enhance soil nutrient and

moisture levels (Cavieres et al., 2007; Yang et al., 2010; Chen et al.,

2015b, 2020b; Figure 1), potentially reducing stresses from below-

ground conditions within engineered microhabitats. Consequently,

we hypothesize that target plants will allocate more resources towards

above-ground functions, especially in annual plants, resulting in a

lower root fraction (proportion of resources allocated to roots)

compared to bare ground habitats (Figure 1). Given the inherently

poor development of alpine soils (Körner, 2003), which implies

limited total resource availability in alpine ecosystems, trade-offs

may indeed occur between various functions of the target plants.

However, since engineered microhabitats can modify resource

availability, they may also influence the trade-off patterns.
FIGURE 1

Scientific principle and hypotheses presented in this study. Compared to bare-ground habitats, engineered microhabitats mitigate specific
environmental stresses, particularly those occurring below-ground, for associated plant species. Consequently, the allocation of additional resources
by these plants to combat relevant stresses may not be necessary or reduced, resulting in a lower root fraction. The saved resources are thus
hypothesized to be reallocated towards other functions, resulting in an enhanced reproductive effort.
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2 Materials and methods

2.1 Study species and populations

Four species of Gentianaceae were selected for this study: two

species of Comastoma (C. falcatum and C. traillianum) are annual,

while the other two species of Lomatogonium (L. longifolium and L.

perenne) are perennial. In China, there are approximately 417

species of Gentianaceae belonging to 20 genera, which are

commonly distributed in high-elevation ecosystems in

southwestern China, including the Qinghai-Xizang plateau and its

neighboring regions (Flora of China; http://www.iplant.cn/foc). As

a prominent family in mountain ecosystems, Gentianaceae has long

captivated botanists, ecologists, and plant enthusiasts who

appreciate their vibrant flowers.

During a scientific expedition in late September 2023, seven

populations were selected from the alpine ecosystems of the high

Hengduan Mountains in southwestern China (Supplementary

Figure S1). By chance, three populations of C. traillianum, two

populations of L. longifolium, one population each of C. falcatum

and L. perenne were specifically chosen (Supplementary Table S1).

In each population, we endeavored to collect individuals of the

target species from four distinct microhabitats, namely under shrub

plants (referred to as shrub-engineered microhabitat), within

cushion canopies (referred to as cushion-engineered

microhabitat), within sedge grass patches (referred to as tussock

grass-engineered microhabitat), and in bare ground screes

(vegetation cover less than 5%) (Figure 1). In total, we collected

data for all species in bare ground, shrub- and tussock grass-

engineered microhabitats across most populations, while only

collected data on cushion-engineered microhabitats for C.

traillianum in the ZDS population (Supplementary Table S1).

Like many species in the Gentianaceae family, all target species

for this study exhibit late flowering and were in bloom when

collected in the field. However, most of the other plants present

in our study populations were already at fruiting stage or even

beginning to wither, including those engineering plants found in

each type of microhabitat. Consequently, it was challenging for us to

specifically identify all the engineering plants within shrub- and

grass-engineered micro-habitats; we thus only classified them at a

genus level. However, all engineering species observed within shrub

habitats belonged to Rhododendron species, while those within

grass habitats were exclusively sedge plants (Figure 1).
2.2 Sampling and data collection

In each study population, we conducted random walks and

collected 12 individuals of the target species from different

microhabitat types, respectively. To excavate the individuals, a

pick-mattock was used to carefully remove a ca. 10 cm × 10 cm ×

15 cm soil block with the stem base of the target individual as the

center of its diagonal lines. The surrounding soils around the root

systems were then meticulously removed, and any soils adhering to

the fine roots were gently brushed off. After complete removal of all

soils, we recorded the number of flowers and leaves for each
Frontiers in Plant Science 04
individual and measured their height (from caudex to apex).

Subsequently, each individual was placed in a paper envelope and

labeled with relevant information. All envelopes from one

microhabitat type in each population were consolidated into a

large plastic zip-lock bag containing sufficient silica gel desiccants

to facilitate rapid drying. On returning to the laboratory, all samples

were further dried at 70°C for 48 h.

After drying, each sampled individual was divided into the

following four functional groups: reproductive organs (flowers),

photosynthetic organs (leaves), supportive structures (stems) and

water and nutrient absorptive systems (roots). The weights were

measured at an accuracy of 0.1 mg. The combined mass of flowers,

leaves, and stems was considered as the above-ground mass, while

the root mass was designated as the below-ground mass.

Furthermore, the total mass of leaves, stems, and roots was

referred to as vegetative mass. Reproductive effort (RE) was

calculated as the ratio between the total mass of the flowers and

the total individual mass expressed as a percentage. The root

fraction (RF) represented the proportion of the root mass in

relation to the total individual mass, also expressed as a

percentage. The average flower/leaf mass denotes the division

between the total flower or leaf masses by their respective counts.
2.3 Data analysis

It was suggested that when using linear mixed-effect models, for

practical purposes, there must be a reasonable number of random-

effects levels – more than 5 or 6 at a minimum (Bolker, 2023), a

criterion that our data did not satisfy. More importantly, our main

objective in this study was to detect the influences of ecosystem

engineers on resource allocation strategies in associated plants.

Accordingly, we only adopted one-way ANOVAs to examine the

impact of microhabitat on individual height, individual mass,

flower/leaf number, average flower/leaf mass, stem mass,

reproductive effort (RE), and root fraction (RF) for populations in

which three distinct microhabitat types were sampled. The

microhabitat was treated as an independent variable. For

populations where individuals were only collected from two

microhabitats, we employed independent-sample t tests to

compare the relevant differences in the aforementioned

parameters between microhabitats. Additionally, to assess whether

resource allocation strategies differ among populations of the same

species (i.e., across different environmental backgrounds), data

specifically related to C. traillianum and L. longifolium were

extracted separately. And two-way ANOVAs were then

performed with microhabitat and population as factors to test

their effects on the above-mentioned parameters, which served as

dependent variables. Shapiro-Wilk test and Q-Q plot were

simultaneously employed to check the normality of the dataset.

The data was subjected to a log10 transformation if they did not

meet the assumptions of parametric statistics.

To detect the potential impact of individual size (total mass) on

the resource allocation strategy, we employed linear regression

analyses to determine the relationships between RE, RF, and

individual size. Furthermore, in order to explore potential trade-
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offs among different functional organs, we conducted correlation

analyses to examine the bivariate relationships involving:

reproductive and vegetative masses; average flower mass and

flower number; average leaf mass and leaf number; below-ground

(root) mass and above-ground mass. We fitted the regressions on a

log-log scale as proposed by the allometric biomass partitioning

theory and model (Weiner, 2004; Weiner et al., 2009) that log Y1 =

log b + a log Y2, where b is the allometric constant, a the scaling

exponent, and Y1 and Y2 the interdependent variables for

allocations in certain plant parts.

All the above analyzes were performed using R 4.3.2 software (R

Core Team, 2023).
3 Results

3.1 Impacts of ecosystem engineers on the
growth of associated plants

The microhabitat type had significant effects (marginally

significant for L. longifolium in the DML population; P = 0.054)

on both individual height and mass for all study species in all

populations, except for L. perenne mass parameters in the YLS

population (Table 1; Figure 2). Specifically, individuals established

within shrub-engineered microhabitats exhibited the highest

individual height, followed by those in tussock grass-engineered

microhabitats, while individuals in bare ground habitats showed the

shortest height [Figure 2 (1–7)]. Similarly, individuals within

engineered microhabitats generally displayed higher biomass

accumulations, either in terms of total individual mass [Figure 2

(8–14)] or stem mass [Supplementary Figure S2 (1–7)], compared

to their counterparts in bare ground habitats (Table 1). Overall,

shrub -engineered microhabitats exerted the strongest positive

effects on plant height and biomass accumulation, followed by

sedge grass- and cushion-engineered microhabitats, both of which

showed similar effects (Figure 2, Supplementary Figure S2).

However, the results of two-way ANOVAs conducted separately

on C. traillianum and L. Longifolium indicated that apart from

microhabitats, population also significantly influences resource

allocation strategies (Supplementary Table S2).

Overall, there were no significant differences in average flower

mass between individuals of different microhabitats; however,

individuals of C. falcatum in the JZW population produced larger

flowers in shrub-engineered and bare ground microhabitats

compared to those of the sedge grass microhabitat; and

individuals of L. perenne produced larger flowers in the shrub-

engineered microhabitat compared to those in the sedge grass

microhabitat [Table 1; Supplementary Figure S2 (8–14)].

Furthermore, all species had a similar average leaf mass, except

for individuals of C. falcatum in the DXS population, which

produced larger leaves within the shrub-engineered microhabitat

compared to those in the grass and bare ground microhabitats

[Table 1; Supplementary Figure S2 (15–21)]. Engineered

microhabitats generally resulted in higher flower and/or leaf

production compared to bare ground habitats. However, there

was no significant difference in the number of flowers or leaves
Frontiers in Plant Science 05
produced between grass- and shrub-engineered microhabitats

[Figure 2 (15–28)]. Only individuals of L. longifolium in the BWS

population showed significantly higher flower production within

the shrub-engineered microhabitat compared to the grass-

engineered microhabitat; similarly, individuals of C. falcatum in

the ZDS population exhibited significantly higher leaf production

within the cushion- and shrub-engineered microhabitats than

within the grass-engineered microhabitat [Figure 2 (15–28)].
3.2 Impacts of ecosystem engineers on
reproductive effort of associated plants

The reproductive efforts (RE) of the two annual plants were

significantly higher than those of the two perennial plants, except

for C. traillianum, which exhibited the lowest RE in the ZDS

population (two-way ANOVA result for species effect: df = 3, F =

39.78, P < 0.001). Furthermore, the two annual species (C. falcatum

and C. traillianum) generally exhibited higher RE in bare ground

microhabitats compared to their counterparts within engineered

micro-habitats; meanwhile, the two perennial species (L.

Longifolium and L. perenne) demonstrated similar RE between

microhabitats [Table 1; Figure 2 (29–35)]. Similarly, individuals

of all target species exhibited reduced root fractions within

engineered microhabitats compared to their counterparts in bare

ground microhabitat, although not all differences reached statistical

significance [Table 1; Figure 2 (36–42)].

Generally, a negative relationship between RE and individual

size was observed. However, significant relationships (P < 0.05)

were only observed for C. falcatum individuals within shrub-

engineered microhabitats in the DXS population and for C.

traillianum individuals within grass-engineered microhabitats in

the ZDS population [Figure 3 (1–7)]. Marginally significant results

were observed for L. longifoliumin within the shrub-engineered

microhabitat (P = 0.07) in the BWS population, as well as within

both the shrub-engineered microhabitats (P = 0.05) and bare

ground habitat (P = 0.06) in the DML population [Figure 3 (1–

7)]. Furthermore, although there was variation in the relationship

between root fraction and individual size among species,

microhabitats, and populations, it was generally non-significant

(P > 0.05). Significantly negative relationships were only observed

for C. falcatum in the DXS population within grass-engineered

microhabitats; whereas positive relationships were found for C.

traillianum in the ZDS population also within grass-engineered

microhabitats (Figure 3 (8–15)].
3.3 Impacts of ecosystem engineers on
trade-off patterns of associated plants

The correlations between reproductive and vegetative

allocations [Figure 3 (15–21)] and between above-ground and

below-ground allocations [Figure 3 (22–28)] were consistently

positive, implying no trade-offs between these functions.

However, it is important to note that these correlations may be

influenced by species-specific, population-specific, and
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TABLE 1 Results from one-way ANOVAs or independent-sample t -tests examining the impact of microhabitats on the resource allocation strategies of target species.

Study population/Species

WMS/
C. traillianum

DML/L. longifolium
JZW/

C. traillianum
ZDS/

C. traillianum
YLS/L. perenne

One-way anova
Independent-sample

t text
One-way anova One-way anova

Independent-sample
t text

df F P df t P df F P df F P df t P

2 4.20 0.024 18.76 -2.06 0.054 2 5.76 0.007 2 7.70 0.002 20.26 -0.05 0.963

2 27.30 < 0.001 21.08 -2.99 0.007 2 39.01 < 0.001 2 4.00 0.028 21.34 -2.56 0.018

2 8.52 0.001 13.43 -2.93 0.011 2 10.99 < 0.001 2 5.18 0.011 21.99 -0.49 0.627

2 3.86 0.031 18.38 -3.30 0.004 2 4.76 0.015 2 0.49 0.619 17.95 0.74 0.468

2 7.24 0.002 17.50 -2.57 0.019 2 2.34 0.112 2 19.86 < 0.001 16.51 0.44 0.667

2 1.23 0.306 17.60 0.66 0.515 2 3.52 0.041 2 0.79 0.461 19.81 -2.19 0.041

2 1.63 0.212 21.69 -0.16 0.871 2 3.03 0.062 2 2.45 0.102 20.75 -0.38 0.707

2 5.75 0.007 21.63 -0.20 0.842 2 21.61 <0.001 2 7.13 0.003 17.97 1.57 0.135

2 26.94 < 0.001 21.03 3.50 0.002 2 6.80 0.003 2 0.38 0.685 17.54 1.75 0.097

XS (Daxueshan snow mountains), BWS (Bowashan snow mountains), WMS (Wumingshan snow mountains), DML (Demula snow mountains), JZW (Jianziwan snow
significance with P < 0.05 was highlighted by bold values.
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Tested parameter

DXS/
C. falcatum

BWS/L. longifolium

One-way anova
Independent-sample

t text

df F P df t P

Individual mass 2 5.69 0.008 14.87 -2.70 0.017

Individual height 2 46.37 < 0.001 20.82 -7.83 < 0.001

Stem mass 2 9.62 < 0.001 21.87 -5.69 < 0.001

Flower number 2 3.07 0.060 16.07 -2.60 0.019

Leaf number 2 6.69 0.004 17.43 -1.38 0.186

Average flower mass 2 2.23 0.124 21.84 -1.32 0.202

Average leaf mass 2 6.63 0.004 16.02 -1.08 0.297

Reproductive effort (RE) 2 4.06 0.027 17.02 -0.33 0.746

Root fraction (RF) 2 0.60 0.558 21.74 4.60 < 0.001

Study populations are abbreviated as follows and remain consistent across all figures and tables: D
mountains), ZDS (Zheduoshan snow mountains), and YLS (Yelashan snow mountains). Statistica
l
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microhabitat-specific attributes. Specifically, for C. falcatum, a

significantly positive correlation between reproductive and

vegetative allocations was only observed in the bare ground

microhabitat; whereas significantly positive correlations between

above-ground mass and below-ground mass were found in both the

shrub-engineered microhabitat and the bare ground habitat

(Figure 3). For C. traillianum, significant positive correlations

between reproductive and vegetative mass were observed in all

microhabitats of WMS and ZDS populations; however, these

correlations were not significant for all microhabitats within the

ZDS population (Figure 3). However, the correlation between

below-ground and above-ground mass remained consistently

positive across all microhabitats except for the shrub-engineered

microhabitat within the JZW population (Figure 3). In the case of L.

longifolium, the correlations between reproductive and vegetative

mass, as well as those between belowground mass and aboveground

mass, were significantly positive across all habitats except for grass-

engineered microhabitat within BWS population [Figure 3 (15–

28)]. Finally, in the case of L. perenne, significant positive
Frontiers in Plant Science 07
correlations existed between reproductive and vegetative traits, as

well as between below-ground and above-ground biomass across all

microhabitats [Figure 3 (15–28)].

The correlations between average flower mass and flower

number [Figure 3 (29–35)], as well as between average leaf mass

and leaf number [Figure 3 (36–42)] exhibited a generally negative

trend within engineered microhabitats but a positive trend in bare

ground habitats. However, these correlations are also contingent

upon species, population, and microhabitat types. For instance,

individuals of C. falcatum within shrub- and grass-engineered

microhabitats in the DXS population showed negative

correlations between flower mass and number, whereas a positive

correlation was observed in the bare ground habitat [Figure 3 (29)].

Furthermore, C. traillianum individuals within engineered

microhabitats displayed a negative correlation between leaf mass

and leaf number; however, a positive correlation was found in the

bare ground habitat in the JZW population [Figure 3 (40)]. All these

results collectively suggest that trade-offs may contextually exist in

our target species.
FIGURE 2

Individual height (1–7), total individual dry biomass (8–14), flower number (15–21), leaf number (22–28), reproductive effort (29–35) and root fraction
(36–42) of target species established within specific microhabitats in the indicated populations. Statistical significance was indicated by *, ** and ***
for P < 0.05, P < 0.01, and P < 0.001, respectively; while NS indicated no significance. Similar notation was used in other figures.
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4 Discussion

Our key findings demonstrate that ecosystem engineers

possess the ability to modulate resource allocation strategies of

other associated plants, albeit with potential influence from

environmental backgrounds of populations. Importantly, these

modulations are contingent upon both the type of engineered

microhabitat and the life history strategies of plants (i.e., annuals

and perennials). These findings not only enhance our

comprehension of plant adaptation to local environments but also

provide insights into the persistence mechanisms of plant

populations in alpine ecosystems.
4.1 Impacts of ecosystem engineers on the
growth of associated plants

Engineered microhabitats can significantly enhance plant

growth by either increasing individual height or promoting dry

biomass accumulation (Figure 2, Supplementary Figure S2). This

suggests that individuals established within engineered

microhabitats exhibit faster growth rates compared to their

conspecific counterparts in bare ground habitats. These findings
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support our first hypothesis and align with previous studies that

demonstrate the facilitative role of ecosystem engineers (Badano

and Cavieres, 2006a, 2006b; Cavieres et al., 2007; Anthelme et al.,

2014; Ballantyne and Pickering, 2015; Chen et al., 2015b, 2020b;

Ramıŕez et al., 2015). Such facilitation may be particularly crucial

for annual plants like the Comastoma species studied here, as they

need to complete their life cycles within a short growing season in

alpine ecosystems where enhanced growth and resource

accumulation confer advantages for successful reproductive

outcomes. Additionally, the successful establishment, survival,

and subsequent reproduction of seedlings may significantly

influence the persistence and distribution of plant populations

(Harper, 1977; Fortini et al., 2022). The underlying mechanisms

behind this facilitation involve ecosystem engineers directly or

indirectly modulating resource availability and ameliorating

climatic factors for other species, thereby providing relatively

safer microhabitats with abundant resources for other plants

(Jones et al., 1994). Unfortunately, this study did not investigate

how different ecosystem engineers modify microenvironments, thus

preventing a direct correlation between microenvironmental

attributes and target plant performance. However, previous

studies have repeatedly confirmed the ecosystem engineering

effects of ecosystem engineers in our study region (Yang et al.,
FIGURE 3

Standardized coefficient of regressions between reproductive effort, root fraction, and individual size (1–14), and Pearson’s correlation coefficient
between each pair of functions for target plants in specific microhabitats in indicated populations (15-42).
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2010; Chen et al., 2015a, 2015b, 2019, 2020b), including on the high

Qinghai-Xizang plateau (Li et al., 2011; Pugnaire et al., 2015; Jiang

et al., 2018; Zhao, 2023; Liu et al., 2023). Based on these facts, we

believe that the involved engineered microhabitats indeed provide

suitable living conditions for our target species.

We observed a general decrease in the root fraction (RF) within

engineered microhabitats compared to bare ground habitats

[Figure 2 (36–42)], supporting our third hypothesis. According to

the optimal partitioning hypothesis (Bloom et al., 1985; Chapin

et al., 1987), plants allocate more resources to leaves in high-

nutrient or moisture environments and shift biomass toward

roots under low-nutrient or moisture conditions (McConnaughay

and Coleman, 1999). As evidenced by previous studies, engineered

microhabitats exhibit higher nutrient and/or moisture levels than

bare ground habitats (Cavieres et al., 2007; Ramıŕez et al., 2015;

Chen et al., 2015b), thus alleviating below-ground stressors.

Consequently, plants established within these engineered

microhabitats do not require additional resource investment to

withstand below-ground stresses, allowing reallocation of saved

resources towards above-ground functions. This reallocation may

result in increased flower and/or leaf production, as indicated by

our results [Figure 2 (15–28)]. Although the average flower or leaf

mass did not differ significantly among microhabitats

[Supplementary Figure S2 (8–21)], both engineered microhabitats

exhibited higher numbers of flowers or leaves compared to bare

ground habitats [Figure 2 (15–28)]. Furthermore, stem mass was

also greater within engineered microhabitats [Figure 2 (1–7)]. The

presence of more flowers/leaves or stronger stems can have

important implications for plant reproduction and persistence.

On the one hand, more flowers imply higher reproductive

potentials (e.g., seed production) assuming a consistent seed set

among flowers within the same population. On the other hand, a

greater number of leaves may imply enhanced photosynthetic

productivity given similar photosynthetic efficiency across leaves.

Additionally, frequent strong winds in alpine environments can

also exert pressures on plant survival (Körner, 2003; Nagy and

Grabherr, 2009); therefore, possessing sturdy stems could

enhance their resistance to such winds and subsequently increase

individual survival rate. Collectively, these findings suggest that

individuals established within engineered microhabitats possess

advantages compared to their counterparts in bare ground

habitats, either in terms of reproductions (by means of flowers) or

individual persistence.
4.2 Impacts of ecosystem engineers on
reproductive effort of associated plants

Surprisingly, the reproductive effort (RE) of the two annual

plants within engineered microhabitats was significantly lower

compared to that in bare ground habitats; however, the RE of the

two perennial plants exhibited similar patterns between

microhabitats [Figure 2 (29–35)]. These findings contradict our

second hypothesis and indicate that the saved resources from earlier

root investment were not reallocated prior to reproduction.

Furthermore, irrespective of the effect of microhabitats, the REs
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of the two annual plants were significantly higher than those of the

two perennial plants, except for C. traillianum which displayed the

lowest RE in the ZDS population (two-way ANOVA result for

species effect: df = 3, F = 39.78, P < 0.001). This result aligns with

previous studies confirming that annual plants allocate a higher

proportion of energy/biomass to reproduction compared to

perennial plants (Brock, 1983; Iwasa and Cohen, 1989; Vico et al.,

2016). Possible explanations include that annual plants reproduce

only once within a single growing season and therefore may allocate

more resources to reproduction to maximize fitness since there is no

need to conserve resources for future use (Harper, 1977; Reekie and

Bazzaz, 2005). On the other hand, due to their prolonged life cycle

allowing multiple reproductions over several seasons, perennial

plants may prioritize resource allocation toward stress-resistant

functions before allocating them toward reproduction later on or

in subsequent year (s) (Reekie and Bazzaz, 2005). Perennial plants

allocate resources to storage structures such as roots, rhizomes, and

stems for extended survival under adverse conditions (Bloom et al.,

1985; Bazzaz et al., 1987). The trade-off between life history stages in

perennial plants (Reekie and Bazzaz, 2005) might result in a

decreased average reproductive investment per year, thereby

providing an explanation for the higher RE observed in annual

species compared to perennial species in this study. Consequently,

the reduced RE of annual plants within engineered microhabitats, as

opposed to their counterparts in bare ground habitats, suggests

that while they benefit from certain aspects facilitated by ecosystem

engineers, they may concurrently experience additional stresses

that require resource allocation for resistance purposes as

discussed subsequently.

One question that arises is why the resources saved from root

investment are not proportionally allocated to reproductive

function, particularly for annual plants. It is widely acknowledged

that plant growth in natural communities is limited by multiple

resources, leading to intricate resource allocation strategies

(McCarthy and Enquist, 2007; Umaña et al., 2021). For example,

Umaña et al. (2021) observed an increase in leaf allocation under

soil nitrogen limitation at the expense of nonphotosynthetic tissues

and a greater allocation to stems when both above-ground and

below-ground resources (light and soil phosphorus) were co-limited

at the cost of roots. In our study on plants established within

engineered microhabitats, particularly shrub-engineered

microhabitats, it should be noted that while ecosystem

engineering effects may alleviate soil nutrient- or moisture-related

stresses, light stress can still be significant due to shading by shrub

canopies (Lei et al., 2006). Light availability plays a crucial role in

plant resource allocation strategies (Xie et al., 2014; Umaña et al.,

2021). Individuals experiencing light stress under shrub or tussock

canopies may allocate more resources towards taller stems and/or

increased leaf production in order to enhance light competition,

resulting in reduced reproductive effort. Therefore, we propose that

light stress significantly influences the resource allocation patterns

of our focal species within engineered microhabitats. Collectively, it

seems that the impact of ecosystem engineers on plant resource

allocation strategies is contingent upon both below-ground

(nutrient and moisture) and above-ground (light) resources. The

interactive effects of these two components likely give rise to
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contrasting responses in terms of above-ground versus below-

ground biomass allocations, as well as reproductive versus

vegetative biomass allocations.

Size-dependent reproductive allocations are commonly

observed in plants, with RE either increasing or decreasing with

individual size (Hemborg and Karlsson, 1998; Pino et al., 2002;

Méndez and Karlsson, 2004). However, these size-dependent effects

are often influenced by various environmental factors that exhibit

temporal and spatial variability (Schmid and Weiner, 1993;

Hemborg and Karlsson, 1998; Guo et al., 2012). For example,

Hemborg and Karlsson (1998) found a decrease in the RE of

Trollius europaeus (Ranunculaceae) with increasing individual

size at lower elevations but no size-dependency was observed at

higher elevations. Our results indicate a general negative

relationship between REs of our target species and individual size;

however, only a few engineered microhabitats showed (marginally)

significant relationships as described in the results section [also see

Figure 3 (1–7)]. These findings suggest that as plant individuals

become larger, their REs may decrease while ecosystem engineers

might amplify this negative effect. Given the available data in this

study, elucidating the precise underlying mechanisms and processes

remains challenging. Nonetheless, it is worth noting that while

engineered microhabitats may provide favorable living conditions,

such as enriched nutrients and moisture, for promoting individual

biomass accumulation (i.e., larger size), the shading effect caused by

ecosystem engineers’ canopies might necessitate additional

resources to enhance stem strength and/or leaf production,

consequently leading to reduced reproductive efforts .

Consequently, negative relationships between reproductive effort

and individual size could potentially be observed within engineered

microhabitats. Further studies should be conducted to explore how

such patterns are influenced by surrounding environments in

particular populations.
4.3 Impacts of ecosystem engineers on
trade-off patterns of associated plants

Empirical studies have consistently demonstrate trade-offs in

plant resource allocation processes (Forbis and Doak, 2004; Vilela

et al., 2008; Du and Qi, 2010; Buckley and Avila-Sakar, 2013; Rosa-

Schleich et al., 2019). For example, increased investment in root

systems can lead to decreased investment in above-ground modular

organs (Umaña et al., 2021). Our findings indicate a generally

positive correlation between vegetative and reproductive

allocations, as well as between underground (root system) and

above- ground allocations [Figure 3 (15–28)]. Furthermore, the

correlations between average flower/leaf mass and flower/leaf

number were predominantly neutral with only a few exceptions

observed within engineered microhabitats (Supplementary Figure

S2). These results indicate that trade-offs among these different

functions may be context- and species-specific-dependent, further

supporting our argument that interactive effects of below-ground

resources such as nutrients and moisture, along with above-ground
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resources such as light intensity, contribute to complex resource

allocation patterns exhibited by our target plants within

engineered microhabitats.
5 Summary and perspective

In conclusion, this study provides evidence that ecosystem

engineers can regulate the resource allocation strategies of other

associated plants, possibly by creating favorable microhabitats

characterized by reduced environmental severity and increased

resource availability. Generally, plants established within

engineered microhabitats allocate more resources to above-

ground functions while reducing allocation to below-ground

function (i.e., roots). Although reproductive efforts are lower

within engineered microhabitats, individuals exhibit larger size

and higher flower, leaf, and stem production. These modulations

may enhance individual survival and reproductive potential, thus

favoring population persistence in severe alpine environments.

Consistent with previous studies (Gomez-Aparicio, 2009;

Anthelme et al., 2014), the findings of this study have potential

implications for conservation, management and restoration

practices in alpine ecosystems. For instance, ecosystem engineers

can alleviate harsh micro-environments and thereby enhance the

growth rate and survival of other associated plants. Consequently,

they hold promise for accelerating vegetation recovery by

facilitating new seedling establishment and population

recruitment in damaged or degraded alpine ecosystems. However,

since this study did not determine the specific mechanisms through

which ecosystem engineers regulate resource allocation strategies of

associated plants’, further research is required to elucidate how

different stresses from below- and above- ground sources influence

resource allocation strategies and comprehensively evaluate the

contributions of ecosystem engineers to population dynamics of

alpine plants.
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