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Adapting to climate change:
responses of fine root traits and
C exudation in five tree species
with different light-use strategy
Marili Sell*, Gristin Rohula-Okunev, Priit Kupper †

and Ivika Ostonen †

Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
Trees that are categorised by their light requirements have similarities in their growth

strategies and adaptation mechanisms. We aimed to understand the complex

responses of elevated air humidity on whole tree fine root carbon (C) exudation

(ExC) and respiration rate, morphology, and functional distribution in species with

different light requirements. Three light-demanding (LD) species, Populus ×

wettsteinii, Betula pendula, and Pinus sylvestris, and two shade-tolerant species,

Picea abies and Tilia cordata saplings were grown in growth chambers under

moderate and elevated air relative humidity (eRH) at two different inorganic

nitrogen sources with constant air temperature and light availability. The

proportion of assimilated carbon released by ExC, and respiration decreased at

eRH; up to about 3 and 27%, respectively. There was an indication of a trade-off

between fine root released C and biomass allocation. The elevated air humidity

changed the tree biomass allocation and fine root morphology, and the responses

were species-specific. The specific fine root area and absorptive root proportion

were positively related to canopy net photosynthesis and leaf nitrogen concentration

across tree species. The variation in ExCwas explained by the trees’ light-use strategy

(p < 0.05), showing higher exudation rates in LD species. The LD species had a higher

proportion of pioneer root tips, which related to the enhanced ExC. Our findings

highlight the significant role of fine root functional distribution and morphological

adaptation in determining rhizosphere C fluxes in changing environmental

conditions such as the predicted increase of air humidity in higher latitudes.
KEYWORDS

growth strategy, belowground, exudation, respiration, pioneer root, climate change
1 Introduction

Global warming promotes geographical variability in climate, whereas trends are

different for lower and higher latitudes of the Northern Hemisphere (Diffenbaugh and

Field, 2013; IPCC, 2021). The air temperature increase in northern latitudes is accompanied

by precipitation, which is predicted to increase by 10–20% by the end of this century
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2024.1389569/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1389569/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1389569/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1389569/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2024.1389569&domain=pdf&date_stamp=2024-07-16
mailto:marili.sell@ut.ee
https://doi.org/10.3389/fpls.2024.1389569
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2024.1389569
https://www.frontiersin.org/journals/plant-science


Sell et al. 10.3389/fpls.2024.1389569
(Jaagus and Mändla, 2014; Kjellström et al., 2018). The higher

frequency of rainfall is tightly coupled with foliage wetting in tree

canopies and increases air relative humidity (RH) because of the

evaporation of intercepted water (Von Arx et al., 2012; Betts et al.,

2014). Moreover, RH in a warm season has risen to 10% per decade

in northern Europe, Asia, and some regions of Canada from 1979 to

2014 (Vicente-Serrano et al., 2018). Recent findings indicate that

RH is a more important driver of terrestrial evapotranspiration than

temperature (Xiao et al., 2020).

Elevated RH combined with high soil water content may have a

negative effect on leaf transpiration rate, net photosynthesis, and

nutrient content (Tullus et al., 2012a; Sellin et al., 2013, 2017).

Decreased transpiration rate can diminish nutrient uptake from the

rhizosphere and further accrete the retardation of tree growth

(Sellin et al., 2013, 2017, Cramer et al., 2009). Several studies

focus on the effects of elevated RH on trees’ aboveground

physiology and growth, yet only few studies show the changes in

belowground. Parts et al. (2013) and Rosenvald et al. (2014) have

found that silver birch trees acclimatize to elevated air humidity by

allocating more carbon to fine root biomass and increasing the

number of root tips to provide a sufficient level of nutrient

acquisition. The acclimation range seems to be species-specific,

while silver birch had a better acclimation capacity to higher air

humidity than hybrid aspen (Sellin et al., 2017). Studies about the

effects of elevated RH on the above- and belowground physiology of

coniferous tree species, which dominate the northern latitudes, are

lacking. Research concerning young trees with different light

strategy could provide us crucial insights into forest regeneration

in future climate scenarios.

Tree species can be categorised into two groups by their light

requirements: light demanding (LD), those which emerge first after

disturbances and cope well with high light conditions, and shade

tolerant (ST), those which thrive in shaded conditions, especially at

the beginning of growth and start to dominate at the later phase of

the stand (Strauss-Debenedetti and Bazzaz, 1991; dos Santos et al.,

2019). Selaya and Anten (2010) have shown that both early and late

successional species can achieve similar lifetime carbon gain per

unit leaf mass in natural secondary forests. Whereas the shade-

tolerant late-successional species have specific life history

adaptations such as producing shade leaves with high specific

absorbance in low light conditions to achieve the net carbon gain

similar to the light leaves (Hagemeier and Leuschner, 2019).

Compared to shade-tolerant species, the light-demanding species

usually have a higher net photosynthesis rate and leaf nutrient

content per unit leaf area (Bazzaz, 1979; Walters and Reich, 1996;

Reich et al., 1998). Although there might be a photosynthesis rate

driven effect on belowground physiology, including C flux into the

rhizosphere, little is known about the relationships between

aboveground and belowground physiology and functioning under

elevated air humidity conditions.

The most limiting mineral nutrient for plant growth is nitrogen

(N), which is taken up by the roots in organic (such as amino acids

and urea) or inorganic forms (nitrate, NO3
- or ammonium, NH4

+)

(Miller and Cramer, 2005; Bhatla and Lal, 2018). The plants’ uptake

preference for a particular nitrogen ion in soil depends on different

physiological and environmental factors (Britto and Kronzucker,
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2013). Ammonium is more efficiently used in the synthesis of

essential organic compounds and reducing NO3
- to NH4

+ inside

plant requires a considerable amount offixed carbon (Bhatla and Lal,

2018). In order to increase the accumulation of necessary nutrients

and water, the LD species have a fine root system that expands fast

into new areas in soil with higher specific root length (SRL) and low

root tissue density (RTD) compared to slow-growing shade-tolerant

species (Reich et al., 1998; Comas et al., 2002). Fast-growing LD

species have also shown to increase the volume of soil explored with

smaller root diameters and more root tips (Comas and

Eissenstat, 2004).

Fine roots are short-living and phenotypically plastic and are

expected to reflect environmental changes by adapting their traits

accordingly (Lõhmus et al., 1989; Ostonen et al., 2007). Fine roots

consist of absorptive root tips with primary structure and nutrient-

transporting roots which are characterized by secondary growth. In

addition, woody roots form anatomically and functionally different

primary-growth root tips, characterised by heterorhizy (Kubikova,

1967; Sutton and Tinus, 1983). Absorptive root tips are exploitative

and active in the uptake of water and nutrients and are mostly

mycorrhizal (Guo et al., 2008; Ostonen et al., 2017), whereas

pioneer root tips are exploratory and spreading the root system

and becoming transport roots in their basal part (Sutton and Tinus,

1983; Bagniewska-Zadworna et al., 2012; Freschet et al., 2021). Plant

fine roots exude primary or secondary metabolites either passively

or actively and with those exudates, plants can change soil chemical

or physical conditions, mediate nutrient availability, or influence

rhizosphere microbial communities (Jones et al., 2004; Haichar

et al., 2014). The composition and rate of exudates change in

response to environmental stimuli, many studies show an

increase in root exudation rate in drought or nutrient deficiency

conditions (Preece et al., 2018; Meier et al., 2020) and microbial

activity is higher near plant root tips (Ostonen et al., 2017). Fine

root C exudation rate can be predicted by fine root morphological

traits, such as root tissue density and SRL (Sun et al., 2021), whereas

the fine root functional proportions are highly important in

understanding fine root traits and functioning. Fast-growing

species have higher fine root respiration compared to slow-

growing species (Comas et al., 2002), which indicates active root

maintenance and new root growth (Lambers et al., 2008).

We studied three light-demanding tree species Populus ×

wettsteinii, Betula pendula, Pinus sylvestris, and two shade-

tolerant species Picea abies and Tilia cordata. Hybrid aspen

(Populus×wettsteinii Hämet-Ahti) is a fast-growing deciduous tree

species favoured in short-rotation plantations in Northern Europe

(Tullus et al., 2012b). Silver birch (Betula pendula Roth.) is a

deciduous pioneer tree species widely distributed in boreal

climate zone. Scots pine (Pinus sylvestris L.) is one of the

northern hemisphere’s most widely distributed coniferous tree

species because of its wide ecological amplitude (Hytteborn et al.,

2005). Both silver birch and Scots pine are the dominant tree species

in terms of growth stock and forest area in Estonia, covering 29%

and 31% of the total forest land area, respectively (Estonian

Environment Agency, 2022). Norway spruce (Picea abies (L.) H.

Karst.) is a widely distributed species in Eurasia and, with its

shallow root system, rather vulnerable to changing topsoil
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conditions (Seppä et al., 2009). The small-leaved linden (Tilia

cordata Mill.) can grow vigorously under a closed overstorey

(Radoglou et al., 2009). With climate warming, the growth area of

T. cordata has been predicted to be distributed from the current

most northern area in south Finland even further north (Hemery

et al., 2010; Eaton et al., 2016).

This study aimed to investigate the fine root carbon exudation

rates and related morphological and functional fine root traits in

shade-tolerant and light-demanding tree species at moderate and

elevated air humidity growing on soils with different initial

inorganic nitrogen sources (NO3
– and NH4

+). Furthermore, there

is a limited understanding of rhizosphere C fluxes and their

potential dependence on tree species’ light demand and trees’

physiological characteristics such as photosynthesis rate,

transpiration, and leaf nutrient concentrations. Finding patterns

in rhizosphere C fluxes, such as fine root carbon exudation and

respiration, as well as fine root morphology and functional

distribution for functionally similar groups of trees would allow

us to improve predictions of the environmental change effects on

forest soil C fluxes and adapt forest management in the future. A

conceptual framework of our study is shown in the Supplementary

Data (Supplementary Figure 1).

We hypothesised that: 1) to meet the increased need for mineral

nutrients, light-demanding species exhibit a higher rate of carbon

exudation, allocating freshly assimilated carbon belowground; 2)

the elevated air humidity increases the fine root exudation and

respiration rates, which is mediated by the changed soil nitrogen

source, changes in fine roots morphology and shifts in functional

distribution; 3) increase in fine root exudation and respiration

declines biomass allocation of tree saplings.
2 Methods

2.1 Experimental design

Altogether 20 Populus × wettsteinii (one-year-old), 20 Betula

pendula (two-year-old), 32 Pinus sylvestris (five-year-old), 24 Picea

abies (three-year-old), and 12 Tilia cordata (four-year-old) saplings

were grown in Percival AR-95 HIL (Percival Scientific Inc. USA)

growth chambers. Throughout the experiments, the growth

chambers were held at constant temperature (∼21.6 °C) and light

intensity (∼600–800 mmol m−2s−1 at the top of the saplings). The

length of night and day in the chambers were 8 h and 16 h,

respectively. The air humidity treatment consisted of moderate

(mRH), where chamber air relative humidity (RH) values were set

at 80% and 65% during night and day, respectively, and elevated

(eRH), where the chamber RH values were set at 80% during both

night and day. The chamber characteristics (air flow, spectrum of

the lamps/light source) were identical between mRH and eRH

chambers. To ensure independent verification of the set values of

the air humidity and temperature in the chambers, the chambers

were provided with additional air temperature and RH sensors

(HMP45A, Vaisala) and data was recorded with a DL2e data logger

(Delta-T Devices). The daily variations of air temperature and RH

between chambers is shown in Supplementary Data
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(Supplementary Figure 2). Each tree sapling was growing in a

separate 10 L box filled with sphagnum peat mixed with gravel

and milled limestone. The growth substrate for the trees grown

under nitrate treatment contained 1.12 g NO3
− -N, 0.1 g NH4

+-N,

and 1.45 g Ca (calcium ammonium nitrate), whereas the growth

substrate of the trees with the ammonium treatment contained

1.10 g NH4
+-N, 0.1 g NO3

− -N (ammonium sulphate and

ammonium nitrate), and 1.14 g S (ammonium sulphate).

Additionally, the mineral elements added to the growth substrate

per box were 0.33 g P (P2O5), 1.24 g K (K2O), 0.27 g Ca (CaO),

0.27 g Mg (MgO, MgOSO3), and 0.56 g S (SO3, MgOSO3). The

saplings were fertilised with 2 mL Agrimix-Micro Profi

(INTERMAG, Poland), to provide microelements (B, Cu, Fe, Mn,

Mo, Zn). The trees were weighed and watered every day to restore

the soil water reserve and to maintain the upper limit of the soil

water content at 60% of the field capacity. The soil surface of the

pots was covered with aluminium foil, to prevent soil evaporation.

From the pot weighting data, the daily water loss (g) of each sapling

was calculated. To calculate the whole tree transpiration rate at the

end of the study, the average water loss was expressed per unit leaf

area (g m-2 h-1).
2.2 Measurements

The fine root carbon exudates were collected based on the

culture-based cuvette method (Phillips et al., 2008) at the end of

the experiment. Each sapling was removed from the growth box and

the soil surrounding the roots was wrapped in cling film. After

cutting a window into the cling film, an intact root was selected for

measurement of root exudation and later analysis. The saplings of

Picea abies could not be removed from the growth box without

damaging the roots because they were more brittle than other

species’ roots. Therefore, for P. abies, the box was placed on its

side, and a suitable fine root segment was washed out with flowing

tap water, cleaned carefully, and incubated inside the growth box.

The chosen root segment was placed inside a cuvette (30 or 50 mL)

which was filled with ∼20 mL of sterile glass beads (∅ 0.5–1.25 mm)

to imitate mechanical support and soil porosity for the root

segment. The cuvette was sealed with rubber cork covered with

parafilm with a wedge cut for the root. The cuvette was then filled

with carbon-free solution (0.5 mM NH4NO3, 0.1 mM KH2PO4, 0.2

mM K2SO4, 0.2 mM MgSO4, and 0.3 mM CaCl2), and the cuvette

was sealed with parafilm. After 24h of stabilisation, the root

segments were flushed three times with a clean carbon-free

solution and incubated for 24h with a fresh solution. The

exudated solution was collected, and total organic carbon (TOC,

mg C l−1) was determined by a TOC analyser (Elementar GmbH,

Germany). The total fine root dry weight was measured to calculate

the fine root carbon exudation per tree (ExC, mg C day−1).

The WinRHIZO™ Pro (Regent Instruments Inc. 2003) was

used to measure sample root length (cm), root surface area (cm2),

average root diameter (AD, mm), root volume (cm3), and the

number of root tips. From these fine root characteristics, different

parameters were calculated: the specific root area (SRA = surface

area/mass, m2 kg−1), specific root length (SRL = length/mass,
frontiersin.org

https://doi.org/10.3389/fpls.2024.1389569
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sell et al. 10.3389/fpls.2024.1389569
m g−1), root tissue density (RTD = mass/volume, kg m−3),

and branching intensity (BI = tips/mass, mg−1) (Ostonen et al.,

1999). In addition, the exudation root samples were separated

according to their primary function into absorptive (first and

second-order roots), pioneer (long root tips with primary

structure as early-stage transport roots), and transport roots (long

woody roots) and measured separately with WinRHIZO™ Pro.

Absorptive (absorb), pioneer (pioneer), and transport (transp) root

proportion (%) of total fine root dry weight (DW) were calculated.

All (sub)samples were dried at 65°C for 48h and weighed.

Fine root respiration was measured on root samples separate

from exudation root samples with a CIRAS-2 portable

photosynthesis system (PP Systems, Amesbury, MA, USA)

equipped with a conifer cuvette. The chosen root sample was

cleaned from soil particles, and the respiration values were

recorded after excision ~5 min when the readings were stabilised.

The parameters of the cuvette were: temperature 22°C, external CO2

concentration ~400 ppm, and humidity >90% to avoid drying the

root sample during measurement. Total fine root dry weight was

measured to calculate the whole tree fine root respiration rate (R-

DW, mmol CO2 s
−1).

The net photosynthesis rate (Pn) of deciduous leaves was

measured with a CIRAS-2 leaf cuvette at constant irradiance (800

mmol m−2 s−1). P. wettsteinii and T. cordata sample leaves were

randomly selected from the upper canopy and in B. pendula,

similarly from the top of the upper canopy, but the third, fifth,

and seventh leaves were measured for photosynthesis. In the case of

P. sylvestris and P. abies, the conifer cuvette was used to measure the

Pn of shoots. In P. sylvestris one previous and two current year

shoots were selected and for P. abies two current-year shoots were

selected for measurement (each bearing ~60 needles). The daytime

gas exchange was measured at PAR of 400 mmol m−2 s−1 using the

external light unit of the cuvette. The gas exchange measurements

were conducted at constant temperature (22°C), external CO2

concentration (~400 ppm), and ambient RH (≤70% inside the

cuvette). The leaf area of deciduous trees was measured with LI-

3100C (LI-COR Biosciences, USA) at the end of the experiment. For

coniferous species, a subsample of 100 needles projection area was

measured with WinRHIZO™ Pro. The total needle area was

calculated based on the sample needle area and dry mass, and the

total needle dry mass. The biomass of each tree part (leaves/needles,

stem, coarse roots, fine roots) was dried separately at 65 °C for at

least 48 h and the dry mass was weighed. The N concentration of

leaves and needles was determined using a Kjeltec Auto 1030

analyser (FOSS Tecator AB, Höganäs, Sweden); the P and K

concentrations were determined spectrophotometrically from the

Kjeldahl digest using a FIAstar 5000 analyser (FOSS Tecator AB).
2.3 Statistical analysis

Statistical analysis was conducted in Statistica 7.1 (StatSoft Inc.

USA), and RStudio Version 1.3.1093 (RStudio, PBC, MA, USA),

whereas some figures were made by using Microsoft Office

Professional Plus 2019 version 1808. First, we used the factorial

ANOVA to determine any effects of tree species, air relative
Frontiers in Plant Science 04
humidity or nitrogen source on the canopy net photosynthesis,

transpiration rate, whole tree fine root carbon exudation rate and

whole tree fine root respiration rate (Supplementary Data,

Supplementary Table 1). While the soil nitrogen source did not

affect any of the mentioned parameters, the data of both N

treatments were pooled together for further analysis. Tukey HSD

test was used to determine the effects of elevated air humidity on the

forementioned parameters. Non-parametrical tests were used when

data was not normally distributed. The ratios of whole tree fine root

exudation and respiration to canopy net photosynthesis were

analysed with non-parametrical Kruskal-Wallis ANOVA test.

Both parametrical (Pearson) and a non-parametrical correlation

(Spearman) was used to analyse the relationship between fine root

exudation and respiration rate.

Tukey HSD test was used to determine the effects of elevated air

humidity on fine root morphological traits, leaf nutrient

concentrations and biomass within and between tree light-use

strategy groups. The coefficient of variation (cv = 100×(SD/

mean)) was checked for absorptive, pioneer, and transport root

proportions (dry weight, %) for all tree species (Ostonen et al.,

2007). The correlations between fine root proportions and fine root

morphological traits were determined.

Redundancy analysis (RDA, Canoco, ter Braak and Šmilauer,

2002) was used to explain the variation of fine root morphological

traits (AD, SRA, SRL, RTD, BI), including fine root carbon

exudation rates (per dry mass) by following datasets 1) plant

physiological variables and 2) proportions of functionally different

roots within fine roots as explanatory variables. The plant

physiological variables were net photosynthesis rate, transpiration

rate, leaf to fine root dry mass ratio, leaf N, P, K concentration, and

fine root respiration rate. The functional distribution indicating

variables were absorptive, pioneer, and transport root proportions

(DW%) within the fine root sample. To assess the effect of each

explanatory dataset on each tree species partial canonical analysis

(forward selection) was performed at P < 0.05 level. The significance

of the RDA results was tested with a permutation test (Monte Carlo

test (999); P < 0.01).
3 Results

3.1 Trees aboveground and
belowground traits

The canopy net photosynthesis rate was, on average, 9.7 ± 0.5,

16.5 ± 0.7, and 5.2 ± 0.7 mmol s−1 for P. × wettsteinii, B. pendula and

T. cordata, respectively, and 2.0 ± 0.1 and 1.1 ± 0.1 mmol s−1 for P.

sylvestris and P. abies, respectively (Figure 1A). Among all tree

species, P. sylvestris and T. cordata showed an increased canopy

photosynthesis rate at eRH compared to mRH (P < 0.05). The

average transpiration rate of P. × wettsteinii, B. pendula and T.

cordata was 29 ± 2, 26 ± 1 and 17 ± 1 g m−2 h−1, respectively

(Figure 1A). The average transpiration rate of P. sylvestris and P.

abies were 33 ± 1 and 21 ± 2 g m−2 h−1, respectively (Figure 1B). The

transpiration rate decreased in all species at elevated air humidity

treatment (P < 0.05), except for T. cordata.
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There was no significant effect of elevated air humidity treatment

on the whole tree C exudation rates within tree species (Figure 1C).

The average C exudation rate per whole tree fine root DW of light-

demanding species (P. × wettsteinii, B. pendula, and P. sylvestris) was

21.7 ± 2.5 mg C day-¹, whereas the C exudation rate per whole tree

fine root DW of shade-tolerant species (T. cordata and P. abies) was,

on average, 7.3 ± 1.8 mg C day-¹ (Figure 1C). The light-demanding

tree species had significantly higher average fine root carbon

exudation rate per whole tree fine root dry weight than the shade-

tolerant tree species (P < 0.05), irrespective of the humidity treatment.

The whole tree fine root respiration was affected by the elevated

humidity in P. × wettsteinii and P. sylvestris (Figure 1D). P. ×

wettsteinii trees growing on eRH had lower whole tree fine root

respiration rates, compared to control mRH conditions (P < 0.05).
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P. sylvestris which were growing on eRH had a higher whole tree

fine root respiration rate than growing under mRH. The fine root C

exudation correlated positively with the fine root respiration rate

only in P. abies (R2 = 0.45, P < 0.05).

The proportion of exuded carbon of assimilated carbon from

whole tree net photosynthesis (ExC/Pn) was highest in P. sylvestris,

about 5% (Table 1). The ExC/Pn decreased in P. sylvestris and T.

cordata at elevated air humidity compared to control conditions. The

ExC/Pn was lowest in P. wettsteinii, and B. pendula, about 0.3%, with

no difference between air humidity treatments. The proportion of

carbon respired of assimilated carbon from whole tree net

photosynthesis (RDW/Pn) was highest in P. abies, about 90%

(Table 1). At elevated air humidity, the RDW/Pn decreased in

deciduous species P. wettsteinii, B. pendula, and T. cordata (P < 0.05).
TABLE 1 The proportion (%, standard error in brackets) of fine root exudation (ExC, mmol C/day) and respiration (RDW, mmol C/day) of assimilated
carbon from whole tree net photosynthesis (Pn, mmol C/day) across five tree species.

Populus ×
wettsteinii

Betula
pendula

Pinus
sylvestris

Picea
abies

Tilia
cordata

mRH eRH mRH eRH mRH eRH mRH eRH mRH eRH

ExC/Pn 0.3
(0.1)

0.4
(0.1)

0.3
(0.1)

0.4
(0.1)

6
(1)a

3
(1)b

2
(1)

1.5
(0.5)

1.3
(0.5)a

0.3
(0.1)b

RDW/Pn 3
(0.2)a

2
(0.2)b

13
(3)a

7
(1)b

46
(3)

40
(3)

107
(28)

78
(17)

46
(6)a

19
(3)b
fr
The letters indicate a significant difference between moderate (mRH) and elevated air humidity (eRH) treatments within one species (P < 0.05).
B

C D

A

FIGURE 1

Average ± standard error of whole canopy net photosynthesis rate (A); transpiration rate (B); fine root carbon exudation per tree root system (C),
and fine root respiration per tree root system (D) of Populus × wettsteinii, Betula pendula, Pinus sylvestris, Picea abies, and Tilia cordata. The letters
indicate the significant differences between moderate (mRH) and elevated air relative humidity (eRH) treatments within one species (P < 0.05). The
data of P. × wettsteinii, B. pendula, and P. sylvestris are from Sell et al. (2022).
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The foliar N, P, and K concentrations in leaves/needles were

highest in LD species, 2.48, 0.21, and 0.98, respectively, compared to

ST species, 2.04, 0.16, and 0.72, respectively. The average total

biomass and the biomass allocations of P. × wettsteinii, B. pendula,

P. sylvestris, P. abies, and T. cordata at different air humidity

treatments are presented in Figure 2. The total biomass increased

at eRH only in P. sylvestris, compared to control conditions (P <

0.05). The foliar biomass was significantly higher in LD species, 35.9

± 1.4 g compared to ST species, 22.8 ± 1.2 g. The stem biomass was

significantly higher under elevated air humidity for P. sylvestris and

T. cordata. The fine root biomass for P. sylvestris was higher under

elevated air humidity but for P. abies and P. wettsteinii the fine root

biomass was lower under eRH compared to mRH (P < 0.05).
3.2 Fine root traits

The specific fine root area for B. pendula increased at eRH,

while RTD decreased. The AD increased at eRH for P. sylvestris,

while SRA, SRL, and BI decreased, compared to fine roots in mRH

(Sell et al., 2022). P. abies had lower RTD in eRH, compared to

mRH (Supplementary Data, Supplementary Table 2). There was no

significant difference in fine root traits of P. × wettsteinii or Tilia

cordata in response to air humidity treatment.

The fine root functional distribution into absorptive, pioneer,

and transport roots of each tree species is shown in Figure 3. The

variation in absorptive root DW% of fine roots DW was highest in

P. × wettsteinii followed by P. sylvestris and P. abies (70–100%),

lowest for B. pendula and T. cordata (~50%). The highest variation

in pioneer root DW% offine roots was for B. pendula and T. cordata
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(102–108%), lowest for conifer species (50%). Higher air humidity

decreased the absorptive and transport root proportions in P.

sylvestris and at moderate air humidity, the proportion of pioneer

roots was higher in the NO3
- source, compared to the NH4

+

treatment (Sell et al., 2022). The N source and RH treatment did

not affect other species’ fine root proportions (Figure 3).

The values of fine root morphological traits depend on fine root

functional proportioning, which, however, is dependent on the tree

species (Figure 4). Absorptive root proportion (%) of fine roots was

negatively correlated with the average fine root diameter in P.

sylvestris and positively with SRA, SRL, and BI in most species. The

proportion of pioneer root of fine root DW was positively correlated

with AD and negatively correlated with SRA, SRL, and BI in P.

sylvestris. The share of transport roots correlated positively with fine

root AD but negatively with SRA, SRL, and BI. None of the fine root

functional group proportions correlated with fine root RTD.
3.3 Combined analysis

About 43% of the root morphological variation was explained by

the difference between deciduous and coniferous species, including by

the net photosynthesis rate, N and K concentration in leaves, and

functional distribution of fine roots (Figure 4). Higher fine root SRA,

SRL, and BI along the first axis were related to the higher

photosynthesis and nitrogen content in leaves, that was mostly

driven by P. × wettsteinii and B. pendula. Furthermore, the

increase of SRA correlated positively with the proportion of

absorptive roots within fine roots. Average fine root diameter

increased towards coniferous tree species. The light-demanding
FIGURE 2

Biomass (leaves/neeldes, stem+stump, coarse roots, and fine roots) allocation (% of total) and total biomass (g) of Populus × wettsteinii, Betula
pendula, Pinus sylvestris, Picea abies, and Tilia cordata at either moderate (mRH) or elevated (eRH) humidity treatments. The letters indicate the
difference in biomass distribution (absolute values) within one species between air humidity treatments (P < 0.05).
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species were located along the second axis, which explained

approximately 15% of the variation in fine root traits and

correlated positively with fine root RTD and negatively with the C

exudation rate. Fine root C exudation rate increased towards light-

demanding tree species and was related to transpiration rate and a

higher proportion of pioneer roots within fine roots. An increase in

fine root RTD towards shade-tolerant tree species correlated with the

higher share of transport roots and the P concentration in leaves.
4 Discussion

4.1 Trees’ nutrient demand under elevated
air humidity

The light-demanding species showed higher whole tree net

photosynthesis rate compared to shade-tolerant species which has

shown before in earlier studies (Bazzaz, 1979; Walters and Reich,

1996; Reich et al., 1998). Unexpectedly, the elevated RH increased the

Pn in P. sylvestris and T. cordata. (Figure 1A). Lower water pressure

deficit gradient between leaf and surrounding air at eRH supports

stomatal opening and therefore facilitates carbon assimilation via

photosynthesis (Oksanen et al., 2019). The average leaf nutrient

concentrations (nitrogen, phosphorous, potassium) of each tree

species was in the optimum range (according to data comparison

with Ingestad, 1962; Pigott, 1991; Tullus et al., 2007), proving the

availability of necessary nutrients. The initial soil nitrogen source did

not affect the canopy photosynthesis nor the transpiration rate;

however, most of the studied tree species had a lower transpiration

rate at elevated RH compared to control conditions (Figure 1B). Due

to the decreased transpiration rate, the mass flow of water and soluble

nutrients reaching fine roots in soil may decrease (Cramer et al.,
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2009) and therefore initiate belowground physiological processes

for compensation.

Plants mediate nutrient availability in soil by releasing different

metabolites, and the fine root exudation rate could depend on the

plant nutrient demand (Phillips et al., 2011). The rapid release of

exudates has been expressed in species with an acquisitive strategy

to enhance plant N uptake (Guyonnet et al., 2018; Sun et al., 2021).

Low P availability may initiate a higher fine root exudation rate

(Jiang et al., 2022) which supports the fact that lower P

concentration in leaves promotes a higher fine root exudation

rate (Figure 5). The increase in air humidity did not change the

total fine root C exudation rates of five different tree species, nor did

the initial dominant nitrogen forms (NO3
-, NH4

+) in the soil.

Therefore, we assume that the nutrient availability was not

limited for all the studied tree species, and the change in fine root

morphology and functional distribution compensated the effect of

environmental change on the C exudation rate at the tree level.
4.2 Trees’ acclimation under elevated
air humidity

The increase in fine root biomass at elevated RH was suggested

as an acclimation mechanism for roots to increase the acquisition of

water and nutrients (Rosenvald et al., 2014). The change in biomass

allocation under elevated air humidity was not consistent over

different tree species (Figure 2). However, the tree species with

increased stem biomass showed a tendency of decreased fine root C

exudation rate at eRH, and the proportion of exudation to

assimilated carbon via photosynthesis was significantly lower in

more humid conditions (Table 1). Considering the carbon-

nutrients trade-off theory (Franklin et al., 2012), and that P.
FIGURE 3

The pie chart shows the proportion of absorptive (yellow), pioneer (orange), and transport (brown) root dry weight within the fine root sample
Populus × wettsteinii, Betula pendula, Pinus Sylvestris (Sell et al., 2022), Picea abies, Tilia cordata. Moderate (mRH) and elevated air relative humidity
(eRH) conditions, and soil nitrogen sources (NO3

- - nitrate, NH4
+ - ammonium, separately shown for P. sylvestris.
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sylvestris and T. cordata in this study were not limited by mineral

nutrients under elevated air humidity, the assimilated carbon was

rather used for growth than for improving nutrient acquisition.

Fine root exudation rate has been shown to correlate positively

with fine root respiration rate (Sun et al., 2021), which in our study

applied only for P. abies. The respiration rates were not distinctively

different between phylogenetically different species (Figure 1D),

although studies have suggested that deciduous species have higher

photosynthetic capacity and higher N content per leaf compared to

coniferous species, which also advance the higher respiration rate in

deciduous forests (Reich et al., 1998; Raich and Tufekciogul, 2000;

Takashima et al., 2004; Sun et al., 2017, 2021; Han and Zhu, 2020).

A field study with B. pendula showed decreased soil respiration at

elevated air humidity, as acclimation of long-time changes in

atmospheric humidity by regulating carbon-cycle processes

(Kukumägi et al., 2014), similarly P. × wettsteinii and B. pendula

had proportionally less photosynthetic carbon respired via roots at

elevated RH (Table 1). P. sylvestris, however, had an opposite
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reaction, increased root respiration at eRH, which was likely

driven by the fresh assimilates from increased photosynthesis,

seen similarly by Ekblad and Högberg (2002). Autotrophic

respiration is divided into growth respiration, including the

carbon used for the production of new tissues, and maintenance

respiration to maintain the new tissues (Lambers et al., 2002), which

fits with the increased proportion of fine roots in P. sylvestris at eRH

(Figure 2). However, since the effect of elevated air humidity on fine

root respiration was species-specific, further studies based on tree

functional groups are needed.
4.3 Fine root morphology and
functional distribution

Fine root morphological traits variation seems not to be

explained by the elevated air humidity, nor the initial soil

nitrogen source, but by the phylogenetic origin, while the
B

C D

A

FIGURE 4

The correlation between the proportions (%) of absorptive (abs), pioneer, transport (transp) roots of fine roots (on dry weight (DW) basis) and fine
root morphological traits (AD, average diameter, mm; SRA, specific root area, m2 kg−1; SRL, specific root length, m g−1; RTD, root tissue density, kg
m−3; BI, branching intensity, mg−1) of Betula pendula (A) Tilia cordata (B), Pinus sylvestris (C), and Picea abies (D). Populus × wettsteinii had no
significant correlations. Only significant correlations are presented. Asterix indicates Pearson correlation.
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distances observed between coniferous species were smaller

compared to the distances between coniferous and deciduous

trees (Figure 5). The variation in traits among phylogenetically

distinct groups can be attributed to the species’ evolutionary history

and their adaptation to natural habitats. Evolutionally older taxa

have, on average, thicker roots and are more dependent on

mycorrhizal symbiosis to forage nutrients than younger taxa (Ma

et al., 2018). In our study, the coniferous tree species’ fine roots were

thicker (Supplementary Data, Supplementary Table 2). Deciduous

species fine roots SRA and SRL were higher compared to the studied

coniferous species (Supplementary Data, Supplementary Table 2).

Comas et al. (2012) suggest that some fast-growing species with

high plasticity are better adapted to nutrient-poor conditions, while

thinner roots with longer SRL facilitate nutrient foraging for a fast-

growth strategy. In our study, differences occurred even within

phylogenetically related groups, such as light-demanding B.

pendula having higher SRA and SRL than shade-tolerant tree

species T. cordata (Supplementary Data, Supplementary Table 2).

Betula species can grow in nutrient-poor soils, while thin and long

fine roots enhance nutrient acquisition, whereas T. cordata trees

prefer nutrient-rich soils (Radoglou et al., 2009; Hynynen et al.,

2010). T. cordata had higher RTD than B. pendula, and within

coniferous species also P. abies (ST) had higher RTD compared to

P. sylvestris (LD) (Supplementary Data, Supplementary Table 2).

Zangaro et al. (2016) showed that early-successional light-

demanding woody species were positively associated with higher

SRL, whereas late successional shade-tolerant species with RTD.

Higher RTD characterises tissues with high dry mass content, which
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might slow down the flow of metabolites and nutrients, thus, root

tissue density is often considered to reflect root functioning

(Ostonen et al., 2013; Freschet et al., 2021).

High SRA and SRL of fine roots were positively correlated with

the share of absorptive roots within fine roots (Figure 4). These

traits show that plant roots explore a greater volume of soil with

increased contact and are associated with the most active water and

nutrient uptake by absorptive root tips (Ostonen et al., 1999; Sun

et al., 2021). A study by Ostonen et al. (2011) showed the share of

absorptive roots within fine roots of Picea abies to increase in higher

latitudes to adapt to climate conditions. Deciduous species had on

average higher proportion of absorptive roots compared to

coniferous species (Figure 3). Interestingly, the variation of

absorptive root proportion was higher in coniferous species,

compared to B. pendula and T. cordata. Correspondingly, we

determined positive correlations between the fine root and

absorptive root morphological traits in coniferous species,

indicating that fine root morphological traits may also reflect

functional plasticity at the fine root system level (data not shown).

The share of pioneer roots had a significant impact on AD of fine

roots determining the value of SRL and SRA in conifers but had no

impact on fine root AD in deciduous trees (Figures 4, 5). The apical

part of pioneer root tips is with primary structure, and the basal part

of the pioneer root has a transition zone to secondary growth and

faster secondary vascular tissue development than absorptive root

tips (Bagniewska-Zadworna et al., 2012). According to Bagniewska-

Zadworna et al. (2012), pioneer roots have a larger diameter of

tracheary elements, facilitating water and nutrient transport. The
FIGURE 5

The ordination biplot based on redundancy analysis (RDA) of the fine root morphological traits and carbon exudation rates in relation to the
proportion per dry weight (DW%) of the absorptive, pioneer, and transport roots of the fine root sample, R-DW – fine root respiration per whole tree
fine root DW (mmol CO2 s-1), Pn – canopy photosynthesis rate (μmol s-1), E – transpiration rate (g m-2 h-1), leaf nitrogen (N) potassium (K),
phosphorous (P) concentration, and leaf/fine root ratio (red arrows) and the tree species (blue triangles). The relative eigenvalues of axis one and axis
two were 42.9% and 15.1%, respectively. The model described 64.8% of the variation in fine root traits (999 Monte Carlo permutation test, P =
0.001). Abbreviations for dependent variables: AD, mean fine root diameter (mm); SRA, specific root area (m2 kg−1); SRL, specific root length (m g−1);
RTD, root tissue density (kg m−3); BI, branching intensity (mg−1); ExC, whole tree fine root carbon exudation (mg C day−¹).
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high proportion of pioneer roots decreased the average RTD of fine

roots in deciduous tree species and was in positive correlation with

fine root SRA (Figure 4). High branching intensity characterises the

distribution of roots in soil (Freschet et al., 2021). The BI increased

with a higher share of absorptive roots indicating facilitated nutrient

acquisition, whereas a higher proportion of pioneer and transport

roots correlated with lower branching intensity (Figure 4). The

functional distribution within fine roots has an impact on the

morphological traits of fine roots, whereas both morphology and

functional proportions depend on tree species. The functional

distribution seems to be connected to the phylogenetical origin,

rather than the light-use strategy of tree species.
4.4 Fine root carbon exudation and trees’
light use strategy

In our study, P. sylvestris had the overall highest fine root C

exudation rate followed by deciduous species. Wang et al. (2021)

showed higher fine root C exudation rates in deciduous species than

in conifers. The fine root C exudation rate has been considered a

competitive fine root functional trait that can be predicted by fine

root morphological traits (Sun et al., 2021). Both the fine root

carbon exudation rates and RTD are associated with trees’ light

demand. Light-demanding tree species had higher fine root C

exudation rate, and the fine root C exudation rate correlated

negatively with RTD (Figure 5). Light-demanding trees had a

higher share of pioneer roots compared to the shade-tolerant tree

species and fine root C exudation rate depends on the share of

pioneer roots within fine roots (Herron et al., 2013; Sell et al., 2022,

Figure 5). Compared to adult trees, young tree roots form more

pioneer roots and have a significant contribution to the entire root

system, and similar future experiments should take the pioneer root

effect into consideration. Pioneer root tips are important in

spreading root systems, where also absorptive root tips start to

form (Freschet et al., 2021).

The proportion of carbon assimilation allocated to total fine

root exudation of P. abies saplings in control conditions of the

current study was 2%, higher, compared to the 0.7% as seen in

Brunn et al. (2022) in 70-year-old spruce forest. Young trees are

metabolically more active and have fast active growth compared to

older trees and therefore, we expect that these tree saplings growing

in controlled conditions exhibit higher exudation rates. Brunn et al.

(2022) showed that in a 70-year-old late successional deciduous

species, Fagus sylvatica the exuded C of assimilated C was 0.5%,

compared to our T. cordata, 1.5%. In P. sylvestris saplings, the share

of exuded C of assimilated C was ~5%, while for fast-growing light-

demanding deciduous tree species only about 0.3%. P. wettsteinii

and B. pendula maintained continuous leaf growth throughout the

entire experiment and the carbon assimilated was probably used for

active growth and biomass increment, and therefore assimilated

carbon was likely less directed into fine root exudation and

respiration. Furthermore, initiated by air humidity changes, there

was a trade-off between fine root carbon release (via exudation and

respiration) and C allocation into stem biomass in P. sylvestris and

T. cordata. Overall, the coniferous species had a high proportion of
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exuded and respired C of assimilated C. Therefore, the increase or

decrease in fine root exudation and respiration affect the biomass

allocation of the saplings. Mäkelä et al. (2022) showed a significant

priming effect of root exudates, which led to a decrease in the

carbon residence time in the soil. Thus, the response of fine root C

exudation in various tree species might need to be considered in the

selection of species used for afforestation in the Nordic countries.
5 Conclusion

Climate change such as increasing air humidity altered the fine

root morphology and functional proportions, although the impact

of the environmental change varied between tree species. While the

modifications in fine root traits related to the fine root C exudation,

the total fine root carbon exudation per tree did not change at

elevated air humidity, indicating to an inherent acclimation

mechanism of the tree fine root system. The carbon exudation

rate of fine roots might also be related to the species’ light-use

strategy. Light-demanding species had a higher share of pioneer

roots within fine roots which affected the increase in fine root C

exudation rate compared to shade-tolerant ones. Based on our

results, we can emphasize a potential shift in C fluxes in response to

increased air humidity. The proportion of C released through

exudation in relation to C assimilated in photosynthesis decreased

for two out of the five studied tree species, and this decrease may be

related to the increase in stem biomass. This is an essential

consideration for tree species selection in future forests under

changing climate conditions.
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