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1Engineering Research Center for Forestry Equipment of Hunan Province, Central South University of
Forestry and Technology, Changsha, China, 2Engineering Research Center for Smart Agricultural
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Automotive Engineering Vocational University, Zhuzhou, China
Introduction: In the field of agriculture, automated harvesting of Camellia

oleifera fruit has become an important research area. However, accurately

detecting Camellia oleifera fruit in a natural environment is a challenging task.

The task of accurately detecting Camellia oleifera fruit in natural environments is

complex due to factors such as shadows, which can impede the performance of

traditional detection techniques, highlighting the need for more robust methods.

Methods: To overcome these challenges, we propose an efficient deep learning

method called YOLO-CFruit, which is specifically designed to accurately detect

Camellia oleifera fruits in challenging natural environments. First, we collected

images of Camellia oleifera fruits and created a dataset, and then used a data

enhancement method to further enhance the diversity of the dataset. Our

YOLO-CFruit model combines a CBAM module for identifying regions of

interest in landscapes with Camellia oleifera fruit and a CSP module with

Transformer for capturing global information. In addition, we improve

YOLOCFruit by replacing the CIoU Loss with the EIoU Loss in the

original YOLOv5.

Results: By testing the training network, we find that the method performs well,

achieving an average precision of 98.2%, a recall of 94.5%, an accuracy of 98%, an

F1 score of 96.2, and a frame rate of 19.02ms. The experimental results show that

our method improves the average precision by 1.2% and achieves the highest

accuracy and higher F1 score among all state-of-the-art networks compared to

the conventional YOLOv5s network.

Discussion: The robust performance of YOLO-CFruit under different real-world

conditions, including different light and shading scenarios, signifies its high

reliability and lays a solid foundation for the development of automated

picking devices.
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1 Introduction

Camellia oleifera is a unique oil tree species in China that

produces a healthy to eat oil recognized by the World Food and

Agriculture Organization (FAO) (Zhang and Wang, 2022). The

picking season for Camellia oleifera fruit occurs in October each

year, with a short harvesting period (Yan et al., 2020). Consequently,

timely picking is crucial to ensure optimal fruit quality and quantity

for maximum profitability. However, the complex and labor-

intensive growth environment necessitates the use of localized

picking robots to achieve high efficiency (Wang et al., 2019). These

robots need to accurately identify the target crops in their natural

environment to optimize the harvesting process. Therefore, timely

and accurate identification of ripe Camellia oleifera fruit is critical for

improving overall picking efficiency.

The growth environment of Camellia oleifera presents several

technical challenges that hinder the efficiency and accuracy of

machine vision systems. The primary issues include uneven

lighting conditions, which can distort the color and texture

features of the fruit, making it difficult for detection algorithms to

differentiate between the fruit and the background. Additionally,

occlusions caused by dense foliage and overlapping branches

obscure the fruit from the view of picking robots, leading to a

significant reduction in detection rates. These occlusions not only

impede the visual access to the fruit but also create a dynamic and

unpredictable environment that current machine vision systems

struggle to adapt to in real-time (Zhou et al., 2022). To address these

challenges, traditional image processing methods leveraging fruit

color, contour, and texture features have been widely employed for

detection (Chen and Wang, 2020). In scenarios where there are

variations in fruit colors and backgrounds, extraction algorithms

based on color and shape features have commonly been used,

resulting in successful fruit segmentation (Nguyen et al., 2016; Yu

et al., 2021). Despite the prevalence of traditional image processing

methods that leverage fruit color, contour, and texture features, they

exhibit notable limitations when the coloration of the fruit and the

surrounding leaves are similar. This similarity in coloration

hampers the system’s ability to accurately segment the fruit from

the background, thereby limiting the overall recognition capability

and leading to increased false negatives in detection (Wang et al.,

2016). Consequently, some researchers have proposed a more

effective detection method that combines fruit texture with color

features to enhance target identification (Kurtulmus et al., 2011;

Rakun et al., 2011). These studies have demonstrated that

incorporating both color and texture/shape features can

significantly improve fruit recognition accuracy. While traditional

image processing methods offer certain benefits, they are not

without their drawbacks, particularly in complex and variable

scenes typical of Camellia oleifera cultivation. These methods

often exhibit reduced robustness due to their sensitivity to

environmental changes and the need for frequent recalibration to

maintain optimal performance. The requirement for specialized

calibration conditions further limits their practicality in real-world

scenarios, where conditions are rarely controlled and can fluctuate

widely (Gongal et al., 2015; Koirala et al., 2019).
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With the rapid development of deep learning, it has emerged as

a widely used tool in image processing tasks. Among the various

types of deep neural networks used for visual recognition,

convolutional neural networks (CNN) have shown promising

outcomes (Gu et al., 2018). Currently, CNN-based object

detectors can be categorized into two types: one-stage detectors

and two-stage detectors. Two-stage detectors have garnered

preference among researchers due to their higher accuracy and

robustness. For instance, Yu et al. (Yu et al., 2019) proposed aMask-

RCNN-based model capable of detecting ripe fruit in non-

structured environments, achieving an average detection precision

rate of 0.957 and a recall rate of 0.954. In another study, Inkyu et al.

(Sa et al., 2016) employed the Faster-RCNN model that used both

RGB (red, green, and blue) and near-infrared images to detect sweet

pepper. This model also demonstrated the ability to identify several

other fruits, such as oranges and melons. Despite the higher

accuracy and robustness of two-stage detectors, their application

in the development of picking robots is significantly hindered by the

substantial computational resources they require for region

selection. The relatively long inference time of these detectors is a

critical limitation, as it impedes real-time performance, a crucial

requirement for robotic picking systems operating in dynamic and

time-sensitive agricultural environments. (Fu et al., 2020)

Consequently, one-stage detectors, especially the YOLO. series

(Redmon et al., 2016; Redmon and Farhadi, 2017, 2018;

Bochkovskiy et al., 2020; Jocher et al., 2022; Li et al., 2022; Wang

et al., 2022), are becoming increasingly popular for object

recognition in orchards due to their real-time detection capability

and strong robustness under complex field conditions.

Tang et al. (Tang et al., 2023) proposed an improved version of

the YOLOv4-tiny model for detecting Camellia oleifera. They

utilized the k-means++ clustering algorithm to determine the

bounding box prior and optimized the network structure to

reduce computational complexity. The performance of this model

surpassed that of both YOLOv3-tiny and YOLOv4-tiny models,

achieving faster processing speed and higher average precision (AP)

value. Similarly, Lu et al. (Lu et al., 2022) developed the Swim-

transformer-YOLOv5 model for detecting premium grape bunches.

They combined the Swim-transformer and YOLOv5 models to

enhance performance. The results demonstrated that Swim-

transformer-YOLOv5 outperformed Fast-er R-CNN, YOLOv3,

YOLOv4, and YOLOv5 models, achieving higher average

precision (AP). Wang et al. (Wang et al., 2023) used an improved

YOLOv5s model to recognize and localize apples, which improved

apple detection accuracy.

Vision transformers (Dosovitskiy et al., 2020), a relatively new

approach in image processing, have shown promise in addressing

some of the limitations of CNNs. Unlike CNNs, transformers are

adept at capturing global contextual information and establishing

feature dependencies through multi-head self-attention

mechanisms, which can be advantageous in scenarios with

occlusions and perturbations. However, the integration of

transformers into practical picking robots is still in its infancy,

and there are technical gaps to be bridged, such as the need for

further research into how to effectively combine the strengths of
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transformers with the real-time requirements of robotic systems.

Unlike CNNs, transformers excel in capturing global contextual

information and establishing dependencies among image feature

blocks using multi-head self-attentions while preserving spatial

information. Several studies (Rosenfeld and Tsotsos, 2019; Huang

et al., 2023) are shown that visual transformers exhibit enhanced

robustness to challenges such as occlusions and perturbations

compared to CNNs. Sun et al. (Sun et al., 2023) proposed the

FBoT-Net model specifically for detecting small green apples. They

modified the transformer layer by replacing it with a 3 × 3

convolutional layer in the last three bottleneck structures of the

ResNet-50 architecture. The experimental results demonstrated

impressive performance, with high average precision scores for

small and large-scale apple detection on the Small Apple and Pascal

VOC datasets.

To address the challenges of detecting Camellia oleifera fruits in

natural environments, we propose an approach called YOLO-

CFruit. Our approach incorporates the following strategies:
Fron
(1) Data augmentation and extension: We apply data

augmentation techniques to enhance the robustness of the

target detection model by augmenting the acquired image

data of Camellia oleifera fruits.

(2) CSP bottleneck transformer (CBT) module: To enable the

interaction of local and global information, we integrate the

CSP structure with a transformer. This CBT module is

introduced into the network backbone.

(3) CBAM integration: We incorporate the CBAMmodule into

YOLOv5, which aids the network in recognizing regions of

interest in images with large spatial coverage.

(4) EIoU loss replacement: To improve the accuracy of bounding

box detection, we replace the original CIoU loss in YOLOv5

with an EIoU loss, allowing for more accurate measurement of

similarity between detected bounding boxes.
In “Section 2 Materials and Methods”, we will focus on the

construction of the dataset and the structural principles of the

algorithm. In “Section 3 Results and Discussion”, we will verify

the correctness of the structural theory analysis through

experiments and evaluate the performance and discussion of our

algorithm. In “Section 4 Conclusions”, we summarize the

conclusions drawn from our experiments.
2 Materials and methods

2.1 Camellia oleifera image acquisition

The image dataset utilized in this study was obtained from a

Camellia oleifera orchard located in Liuyang City, Hunan Province,

China. The orchard follows standardized planting arrangements,

with approximately 2 meters of row spacing and 1 meter of plant

spacing. The Camellia oleifera fruit trees have a height ranging from

1 to 3 meters. During the growth period, the color of the Camellia

oleifera fruit transitions from green to reddish brown.
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On October 12, 2022, image data of Camellia oleifera fruit were

captured using iPhone 12 and saved in JPEG format with pixel

resolutions of 4302 x 2268 (16:9), 3024 x 3024 (1:1).The images

were captured at angles ranging from 0° to 45° with respect to the

vertical line perpendicular to the tree trunk. The shooting height

and distance were adjusted based on the tree’s height, ranging from

0.9 meters to 1.8 meters and 0.6 meters to 1.8 meters, respectively.

Camera position in relation to tree is shown in Figure 1.

To enhance the recovery capability and generalization

performance of the visual recognition module, the data collection

process took into account the working time (from morning to

evening) and weather conditions (sunny and cloudy) of the

Camellia fruit robot. This approach ensured the inclusion of

images captured under different lighting conditions, such as

natural light, exposure variations, and backlight caused by the

camera’s orientation relative to the sun’s direction. Additionally,

factors like occlusion were considered.
2.2 Image preprocessing

The unprocessed images underwent manual annotation using the

“LabelImg” software dedicated to image data annotation. Each

annotated image was then stored as a txt file, containing essential

information such as the object’s category, normalized central

coordinates, and normalized width and height of the bounding box

outlining the target. Once the entire set of original images had been

meticulously annotated, the dataset has been underwent enrichment

via data augmentation methodologies. These techniques include

horizontal flip, vertical flip, adding noise, random rotation and

intensity adjustment, or a combination of each. The original image
FIGURE 1

The method of image acquisition.
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is enhanced with different enhancement techniques, and different

enhancement results are produced to augment the original data set.

An example of data enhancement is shown in Figure 2. This

augmented dataset was designed to significantly enhance the target

detection model’s capacity for generalization and resilience, as

outlined in reference (Liu et al., 2023).

The dataset encompasses 4,780 images of Camellia oleifera fruit.

A stratified random sample of 3,824 images (80%) constitutes the

training set, while the remaining 956 images (20%) form the

validation set. This division ensures that the corresponding

original and enhanced images are consistently assigned to either

the training or validation set.
2.3 YOLOv5 model

The YOLOv5 (Jocher et al., 2022), specifically the YOLOv5s

variant, stands out as an efficient target detection model with a

relatively modest parameter count. This characteristic renders it

particularly well-suited for real-time applications, such as those

involving picking robots. The YOLOv5 model is organized into

four fundamental constituents: Input, Backbone, Neck,

and Head.

The Input phase involves resizing and normalization of the

image to match the network’s input dimensions. The Mosaic Data

Enhancement Algorithm is a variant of CutMix (CutMix) (Yun

et al., 2019) that is applied to improve model training speed and

network accuracy.

The backbone network comprises three central structures: the

Convolution block (Conv block), the Cross Stage Partial (CSP) unit

(comprising the C3 1 and C3 2 blocks), and the Spatial Pyramid

Pooling-Fast (SPPF). The CSP architecture serves to amplify

network depth and perceptual scope, thereby augmenting feature

extraction capabilities. SPPF constitutes an upgraded iteration of

the Spatial Pyramid Pooling (SPP) technique (He et al., 2015),

amalgamating diverse features possessing varying resolutions to

yield a more comprehensive information substrate for input into

the network’s neck.

The neck networks, including FPN (Feature Pyramid Network)

and PAN (Pixel Aggregation Network), fuse image features. FPN

conveys semantic features from top to bottom, while PAN transmits

localization features from bottom to top. The fusion of FPN and

PAN enhances feature extraction in the network.
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The main part of the head is three detection layers, including

several components such as convolutional, pooling and fully

connected layers. The detection head module uses grid-based

anchor points to predict objects on feature maps from different

scales of the neck.
2.4 Model improvements

2.4.1 YOLO-CFruit network architecture
The original version of YOLOv5 adopted a pure CNN

architecture, with a primary emphasis on capturing localized

details. However, to account for the need for global modeling

capabilities, the introduction of a transformer element becomes

pertinent. Thus, a novel approach, the CSP Bottleneck Transformer

module (CBT), has been devised. This module sophisticated

convolution mixture and transformer structures, resulting in

improved accuracy and precision in identifying Camellia oleifera

fruit. It’s important to highlight that incorporating a vision

transformer might be constrained by the quadratic computational

complexity during image processing. Additionally, in cases where

the network is shallow and feature mapping is extensive, an early

application of the transformer layer to enforce regression

boundaries could inadvertently lead to the loss of crucial

contextual information, as underscored in reference (Zhang et al.,

2021). In YOLOv5s, this module exclusively replaces the C3 module

in layers 8 and 26.

Moreover, for enhancing the CNN’s adaptability to focus on the

target and extract nuanced features, the neck network integrates the

Convolutional Block Attention Module (CBAM).

The structural depiction of YOLO-CFruit is illustrated in

Figure 3. Notably, this configuration boasts a low computational

burden, rendering it ideally suited for the detection of Camellia

oleifera fruit within natural environments.

2.4.2 CSP Bottleneck Transformer module
In contrast to the original C3 module, the CSP Bottleneck

Transformer (CBT) demonstrates the ability to encompass both

global and contextual information regarding Camellia oleifera fruit

features. Refer to Figure 4A for an illustrative representation of

its structure.

Traditional CNN-based models primarily aggregate local

information and often struggle to capture comprehensive global
A B D E FC

FIGURE 2

Data augmentation in the Camellia oleifera fruit dataset. (A) horizontal flip; (B) vertical flip; (C) adding noise; (D) random rotation; (E) intensity
adjustment; (F) combination of two technologies.
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insights. Conversely, Transformer-based models inherently excel at

acquiring global context. The Bottleneck Transformers (BoT) block

(Srinivas et al., 2021), as depicted in Figure 4B, harmoniously

merges ResNet bottleneck components with transformer

architecture, with spatial 3x3 convolutions replaced by a Multi-

Head Self Attention (MHSA) layer.

Within the MHSA framework, for the self-attention pertaining

to the hth instance, the identical input undergoes three separate 1x1

convolutions to yield the vectors q, k and v. Acknowledging that

feature maps entail two-dimensional data, the position encodings r

employed in self-attention mechanisms are also two-dimensional,

as opposed to one-dimensional. The query qh, key kh, value vh, and

position encoding rh for the hth head are shown in Equation 1.

qh = XWh
q , k

h = XWh
k , v

h = XWh
v , r

h = Rh
H + Rh

W (1)
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where X is the input vector, Wh
q , Wh

k , Wh
v is the linear

transformation from X to the vector q, k, v of hth head. Rh
H and

Rh
W respectively represent relative positional information in the

vertical and horizontal directions. Oh represents the hth result of

self-attention, which is computed using scaled dot-product

attention. The process of calculating Oh is shown in Equation 2.

Oh = Softmax(qh(kh)T + qh(Rh
H + Rh

W)T)vh (2)
2.4.3 Convolutional Block Attention Module
To address the issue of foliage obscuring fruits and improve

the model’s sensitivity to fruit features, this study incorporates

the Convolutional Block Attention Module (CBAM) (Woo et al.,

2018) within the Neck network. CBAM is an effective attention

module designed for convolutional neural networks (CNNs). Its

lightweight design allows seamless integration into existing CNN
FIGURE 3

Architecture of YOLO-CFruit network.
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architectures with minimal overhead. It can be jointly trained

with the base CNN, enabling end-to-end learning. The CBAM

module consists of two sub-modules: the channel attention

module and the spatial attention module. The process begins

with the feature map traversing the channel attention module,

which generates a weighted outcome. It then proceeds to the

spatial attention module, further refining the weighting process.

Figure 5 provides a conceptual illustration of the CBAM module.

In the channel attention module, the input feature map F is

transformed into two one-dimensional vectors using global max

pooling (“MaxPool”) and global average pooling (“AvgPool”).

These two vectors, with different dimensions, are passed through

a multi-layer perceptron (MLP) consisting of dimensionality

reduction and expansion layers. This MLP generates weight

factors W0 and W1. The two one-dimensional vectors are then

added element-wise, resulting in the channel attention feature map

Mc, which is activated using a sigmoid function.

The channel attention-adjusted feature map F
0
is obtained by

element-wise multiplication between the original feature map F and

the channel attention mapMc. This modified feature map F
0
is then

fed into the spatial attention module to further enhance the model’s

ability to focus on relevant details.

In the spatial attention module, the channel attention-

adjusted feature map F
0
undergoes global max pooling and

global average pooling operations along the channel dimension,

resulting in two two-dimensional vectors. These vectors are
Frontiers in Plant Science 06
concatenated based on the channel dimension and passed

through a standard convolutional layer for dimensionality

reduction, resulting in a single-channel two-dimensional spatial

attention map Ms. To ensure valid values, a sigmoid activation

function is applied to generate the spatial attention map Ms.

Finally, the spatial attention map Ms and the channel attention-

adjusted feature map F
0
are multiplied element-wise to obtain the

final refined output F
00
. In summary, the process of CBAM is

shown in Equation 3–6.

F
0
= Mc(F)⊗ F (3)

F
00
= Ms(F

0
)⊗ F

0
(4)

Mc(F) = s (MLP(AvgPool(F)) +MLP(MaxPool(F)))

= s (W1(W0(F
c
avg)) +W1(W0(F

c
max)))

(5)

Ms(F) = s(f 7�7(½AvgPool(F);MaxPool(F)�))
= s(f 7�7(½Fs

avg ; F
s
max�))

(6)

where c denotes channel attention module and s is spatial attention

module. ⊗ denotes element-wise multiplication, and s denotes the

sigmoid function. Fx
avg and F

x
max represent average-pooled features and

max-pooled features. Respectively, where x can take c or s. f(7×7) denotes

the convolution operation where the kernel is 7 × 7.
A B

FIGURE 4

Architecture of CSP bottleneck transformer and bottleneck transformer. (A) Architecture of CSP Bottleneck Transformer; (B) Architecture of
Bottleneck Transformer.
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The introduction of the Convolutional Block Attention Module

(CBAM) does not alter the original spatial dimensions of the feature

map. Instead, it assigns weights to each feature channel and utilizes

these weights to filter out important features. This emphasis on fine-

grained features allows the network to obtain improved feature

mappings, leading to enhanced accuracy.

2.4.4 Bounding box regression loss function
The bounding box regression loss function is a crucial method

for evaluating the accuracy of model predictions and is commonly

used in conjunction with Intersection over Union (IoU) (Yu et al.,

2016).The IoU is calculated by dividing the intersection between the

predicted box (A) and the ground truth box (B) by their union. IoU

is defined as Equation 7.

IoU =
A ∩  B
A ∪  B

(7)

The Complete Intersection over Union Loss (CIoU Loss)

algorithm (Zheng et al., 2020) introduced in YOLOv5 addresses

the limitations of the traditional IoU Loss by considering the

distance and aspect ratio discrepancies between the candidate

bounding box and the ground truth bounding box. This provides

a more comprehensive assessment of the model’s detection

performance and enhances its ability to accurately locate objects.

The CIoU loss is shown in Equations 8, 9, where r is the Euclidean

distance, b and bgt denote the central points of B and Bgt, c is the

diagonal length of the smallest enclosing box covering the two

boxes, w is the width of the prediction box, h is the height of the

prediction box, wgt is the width of the ground truth box, and hgt is
Frontiers in Plant Science 07
the height of the ground truth box.

LCIoU = 1 − IoU +
r2(b, bgt)

c2
+ av

a =
v

(1 − IoU) + v

(8)

v =
4
p2 (arctan

wgt

hgt
− arctan

w
h
)2 (9)

The v in CIoU used in YOLOv5 reflects the difference in aspect

ratio rather than the difference between the width and height of the

bounding box and its confidence, which can sometimes hinder the

model’s effective optimization of similarity.

The EIoU (Zhang et al., 2022), derived from the CIoU penalty

term, divides the aspect ratio impact factor into separate

calculations for the target box’s length and width as well as the

anchor box. The loss function is composed of three essential

elements: overlap loss, center-distance loss, and width-height

loss. The initial two components adopt the CIoU approach,

while the width-height loss actively reduces the difference in

width and height between the target box and the anchor box. This

results in a more rapid convergence. EIoU is defined as Equation

10.

LEIoU = 1 − IoU +
r2(b, bgt)

c2
+
r2(w,wgt)

wc +
r2(h, hgt)

hc
(10)

where wc and hc are the width and height of the minimum

bounding box that covers both boxes. The schematic of CIoU and

EIoU is presented in Figure 6.
FIGURE 5

Schematic of CBAM and each attention sub-module in CBAM. ⊗ denotes element-wise multiplication.
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2.5 Evaluation indicators of network model

The performance evaluation of Camellia oleifera fruit detection

in this study utilized four indicators: Precision, Recall, F1 score, and

Average Precision (AP). These parameters are commonly used in

object detection tasks to assess the accuracy and effectiveness of the

detection model. These parameters are defined as shown in

Equations 11–14:

Precision =
TP

(TP + FP)
� 100% (11)

Recall =
TP

(TP + FN)
� 100% (12)

F1 = 2� Precision ·
Recall

Precision + Recall
(13)

AP =
Z 1

0
(Precision · Recall)dRecall (14)

where TP represents the number of true positives (i.e., positive

samples predicted as positive), FN represents the number of false

negatives (i.e., negative samples predicted as negative), and FP

denotes the number of false positives (i.e., negative samples

predicted as positive). The intersection set IoU indicates the

overlap ratio between the predicted bounding box and the true

bounding box. Typically, the IoU threshold is set to 0.5, where

samples with an IoU greater than 0.5 are considered true positives,

while those with an IoU less than 0.5 are considered false positives.

Higher values of Precision, Recall, F1 score, and AP indicate

better performance in Camellia oleifera fruit detection. Precision

reflects the accuracy of fruit recognition by the network, while

Recall indicates the ability to correctly detect all instances of
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Camellia oleifera fruits. The F1 score combines Precision and

Recall into a single metric, providing a balance between the two.

Average Precision (AP) measures the overall detection performance

across different recall levels.
2.6 Training platform

Training was conducted on a computer equipped with Intel

XeonW-2223 CPU processor with 128GB RAM, and NVIDIA RTX

A4000 GPU. The software tools used include CUDA 11.1, CUDNN

7.6.5, OpenCV3.4.1, and Visual Studio 2017.

The detection model for Camellia oleifera fruit was established

through the finetuning of the YOLOv5s model using the self-made

Camellia oleifera fruit dataset and transfer learning. The YOLOv5s

model was utilized to initialize the configuration parameters.

YOLO-CFruit receives input images of 640 × 640 pixels, 32 batch

size, 0.01 learning rate and 150 epochs for training.
3 Results and discussion

3.1 Ablation experiment with
different modifications

The proposed method aims to improve the accuracy of object

detection in the YOLO-CFruit model by integrating the CBT

module, CBAM attention module to improve the network

structure of YOLOv5s and improving the loss function. To

evaluate the effectiveness of this method, ablation experiments

were conducted by removing each of the improved modules one

at a time and training the model to measure the impact of the

modifications. The goal was to identify specific substructures of the
FIGURE 6

Schematic of CIoU and EIoU.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1389961
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Luo et al. 10.3389/fpls.2024.1389961
model and optimize them for better performance. To ensure the

validity of the experiments, the model was trained using consistent

hyperparameters and operating environment.

Table 1 shows the results of the ablation experiments, with

mean average precision and F1 score used as the evaluation metrics.

The modifications made to different parts of the model had a

positive impact on its accuracy. Notably, compared to the original

YOLOv5, the EIoU module has the most significant impact. The

EIoU module accelerates the convergence of predicted boxes,

enhances the regression accuracy of predicted boxes, and

increases the F1-score to 95.9%, AP@0.5 to 98.1%, and AP@

[0.5:0.95] to 76.5% compared to the original YOLOv5s.

The addition of CBT and CBAMmodules improves the model’s

ability to acquire global information and accurately capture the

regions of interest. Performance is also enhanced compared to the

baseline. These results show that the EIoU module, the CBT

module, and the CBAM module are all effective in improving the

accuracy of the detection model.

Then the YOLO-CFruit algorithm implemented by combining

the sub-modules, compared with the original YOLOv5, AP@0.5
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improved 1.2% relative to the first group, AP@[0.5:0.95] improved

7.6%, and F1-score improved 3.7%, which is higher than that of the

sub-modules alone, which demonstrates that YOLO-CFruit

performs very well in the detection of Camellia oleifera fruit in

complex environments.

Figure 7 shows the comparison of the P-R curves of the

elimination of each sub-module in the ablation experiments, in

which the P-R curve of YOLO-CFruit is closest to the upper right

corner, which indicates that the better the model performance of

YOLO-CFruit.

To qualitatively analyze the impact of CBAM, the Grad-CAM

(Gradient-weighted Class Activation Mapping) technique

(Selvaraju et al., 2017) was employed to compare different

networks. Grad-CAM is a gradient-based visualization method

that identifies the significance of spatial locations within

convolutional layers, effectively highlighting regions of interest.

Figure 8 illustrates the Grad-CAM masks obtained from

YOLOv5 combined with CBAM and YOLOv5 alone. The Grad-

CAM masks of YOLOv5 with CBAM more accurately cover the

regions of the target objects compared to YOLOv5 alone. This
FIGURE 7

P-R curves for improved YOLOv5 model based on different model.
TABLE 1 Results of the ablation experiments.

ID EIoU CBT CBAM AP@0.5(%) AP@[0.5:0.95] (%) F1(%)

1 97 69.5 92.5

2 ✓ 98.1 76.5 95.9

3 ✓ 97.8 75.8 95.8

4 ✓ 97.6 74.3 95.5

5 ✓ ✓ 98 75.3 95.5

6 ✓ ✓ 97.7 75.7 95.9

7 ✓ ✓ 97.6 74.7 95.1

8 ✓ ✓ ✓ 98.2 77.1 96.2
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indicates that the combination of YOLOv5 with CBAM enables the

network to effectively learn and consolidate features from the

regions of interest, resulting in improved localization accuracy.
3.2 Performance of YOLO-CFruit model

To evaluate the detection capabilities of the YOLO-CFruit model

specifically for Camellia oleifera fruit, we applied YOLO-CFruit to the

self-made Camellia oleifera fruit test set. The precision-recall curve

and the loss during training curve is shown in Figure 9. The

validation loss of YOLO-CFruit decreases from 0.091 to 0.023

during training. The precision (P), recall (R), average precision

(AP), and F1 score of YOLO-CFruit are 98%, 94.5%, 98.2%, and

96.2%, respectively. Therefore the model can maintain a high

detection performance in the detection of Camellia oleifera fruits.

To further assess the model’s robustness across various lighting

angles, we handpicked 120 images from the test set, encompassing three

distinct lighting environments: natural light, backlight, and exposure.

These images were categorized into three groups based on these lighting

conditions. Within each group, we tallied the total count of Camellia

oleifera fruits, along with the number of missed detections and false

detections. The statistical findings are presented in the Table 2. The

results demonstrate that the YOLO-Cfruit model adeptly identifies the

majority of oleander fruits across diverse lighting scenarios, exhibiting a

low rate of false detections and missed detections.

As shown in Figure 10, most of the Camellia oleifera fruits that

were missed in the three different lighting scenarios were either

heavily occluded or in an exposed environment. This is because

there are few features that can be effectively extracted, so the

probability of missed detection is relatively high.

When detecting Camellia oleifera fruit in practical application

scenarios, the captured images often contain numerous fruits with

varying sizes, severe occlusions, and disordered densities. These

factors make it challenging to detect and leads to low detection

accuracy. By YOLO-CFruit to effectively detect Camellia oleifera
Frontiers in Plant Science 10
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FIGURE 9

P-R curve and loss curve of YOLO-CFruit model. (A) P-R curve of
YOLO-CFruit model; (B) loss curve of YOLO-CFruit model.
A B C

FIGURE 8

Grad-CAM visualization results. (A) original; (B) YOLOv5s; (C) CBAM.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1389961
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Luo et al. 10.3389/fpls.2024.1389961
fruit, it can provide a feasible solution for deep neural networks

in agriculture.
3.3 Comparison of results with other
detection models

For a comprehensive assessment of YOLO-CFruit, we conducted

a comparative assessment with contemporary models, including

Faster-RCNN, YOLOv4, YOLOv7, YOLOv8s and the original

YOLOv5s. Employing an identical test dataset and experimental

conditions, we scrutinized their prediction outcomes. Table 3 and

Figure 11 encapsulate the specific outcomes.

As detailed in Table 3, among diverse detection metrics,

YOLO-CFruit achieves a ap@0.5 reaches 98.2%, outperforming

Faster-RCNN, YOLOv4, the original YOLOv5, YOLOv7 and

YOLOv8s by 15.3%, 9.6%, 1.2%, 0.4% and 0.6%, respectively.

The F1-score attains 96.2%, demonstrating superiority over

Faster-RCNN, YOLOv4, the original YOLOv5, YOLOv7 and
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YOLOv8 by margins of 16.3%, 16.2%, 3.7%, 1.5% and 2.0%,

correspondingly. Both of these pivotal metrics stand above those

of the other models. The discernible trend portrayed in Figure 11

highlights YOLO-CFruit’s P-R curve converging towards the

upper right corner more closely compared to alternative models.

Collectively, these findings conclusively affirm that YOLO-CFruit

excels in terms of detection accuracy, surpassing its counterparts

in the realm of target detection models.

As for the model size, the model size of YOLO-CFruit is 11.77

Mb, which is 370.41Mb, 50 Mb, 1.95 Mb, 9.69Mb, and 59.55 Mb

smaller than Faster-RCNN, YOLOv4, the original YOLOv5s,

YOLOv7, and YOLOv8s, respectively, indicating that YOLO-

CFruit can be better adapted to the recognition system of the

harvesting robots, which is conducive to model deployment

and migration.

Although slightly lower than the original YOLOv5s in terms of

inference speed, it performs well in all other detection metrics, so

YOLO-CFruit can be used for Camellia oleifera fruit recognition in

complex environments.
A B C

FIGURE 10

YOLO-CFruit detection results under different light environments. (A) natural light; (B) back light; (C) sidelight.
TABLE 2 Detection results under different lighting conditions.

Scenario Detected Undetected False Undetection
rate(%)

False detection
rate (%)

natural light 172 12 1 6.5 0.54

backlight 276 26 2 8.6 0.66

exposure 270 34 4 11.2 1.3
frontiersin.org

https://doi.org/10.3389/fpls.2024.1389961
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Luo et al. 10.3389/fpls.2024.1389961
Figure 12 compares the detection results of YOLO-CFruit over

other target detection algorithms in complex scenes under different

lighting conditions. It can be seen that the YOLO-CFruit model can

detect Camellia oleifera fruits missed by other models in different

scenes. This shows that YOLO-CFruit can be more suitable for

Camellia oleifera fruit detection than other models in

complex scenes.

Overall, YOLO-CFruit can detect all Camellia oleifera fruit with

the highest localization accuracy. It has enormous potential

applications for collecting and detecting on mobile devices with

limited computing capabilities.

Our improved YOLO-CFruit model achieves an impressive

average precision(AP) of 98.2% with a FPS of 19.02, surpassing

the performance of YOLOv4, YOLOv5S, YOLOv7, YOLOv8

models, and Faster-RCNN. This model shows significant potential

for detecting and harvesting Camellia oleifera fruit using mobile

devices with limited computational power. Implementing

automatic harvesting based on this model could lead to cost

reduction, improved efficiency, and benefit the Camellia oleifera

fruit industry and local economy.

Cultivating Camellia oleifera fruit trees within an intricate and

open environment presents inherent challenges to achieving
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accurate fruit detection. In response, we introduce YOLO-CFruit,

a deep learning-based model meticulously designed for the purpose

of detecting Camellia oleifera fruit.

However, we observed in our experiments that the model has a

higher probability of missed detection and low precision localization

when severe occlusion is present. Therefore, further optimization and

improvement of the proposed method are necessary. In the future

research we plan to collect more images using different methods and

tools and build a larger dataset for detecting Camellia oleifera fruit. In

particular, adding images of heavily occluded oleander fruits

improves the ability to extract features of Camellia oleifera fruits in

occluded situations. In addition, we aim to further optimize the

network model to reduce the computational cost while maintaining

high detection accuracy and improving the inference speed of YOLO-

CFruit. And the model will be further applied to the detection of

ripeness of Camellia oleifera fruit.
4 Conclusions

In this study, the proposed YOLO-Cfruit network model is used

for the recognition of Camellia oleifera fruits in natural

environments. The necessity for this research is driven by the

critical need for accurate and efficient fruit detection to facilitate

automated harvesting processes, which can substantially enhance

productivity and reduce labor costs in the agricultural sector.

The YOLO-CFruit model has proven its effectiveness through

rigorous evaluation, showcasing a mean average precision of 98.2%,

a recall of 94.5%, precision of 98.0%, and an impressive F1 score of

0.962. These exemplary metrics, aligned with well-known objective

evaluation standards, underscore the model’s high accuracy and

reliability in fruit detection under diverse conditions.

Moreover, the model’s efficiency is evidenced by a FPS of 19.02,

positioning YOLO-CFruit as a viable candidate for real-time
FIGURE 11

P-R curves for different detection models.
TABLE 3 Comparison of results with other detection models.

Model AP(%) F1(%) FPS(%) Weight(MB)

Faster-RCNN 82.9 79.9 7.6 382.18

YOLOv4 88.6 80.0 9.1 61.77

YOLOv5s 97 92.5 20.88 13.72

YOLOv7 97.8 94.7 9.16 71.32

YOLOv8s 97.6 94.2 9.04 21.46

YOLO-CFruit 98.2 96.2 19.02 11.77
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applications. This swift performance, coupled with its superior

accuracy, sets YOLO-CFruit apart from its counterparts, such as

Faster-RCNN, YOLOv4, YOLOv5s, YOLOv7 and YOLOv8, in both

average accuracy and overall performance.

In conclusion, the YOLO-CFruit model not only meets but

exceeds the current benchmarks for object detection models,

offering a compelling solution for the automated harvesting of

Camellia oleifera fruits. The contributions of this study are

multifaceted, including the development of a high-performing

detection model and the potential to revolutionize agricultural

practices. Future work will focus on further refining the model

and exploring its applicability to other agricultural products,

thereby expanding the impact of our research.
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