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Chickpea (Cicer arietinum L.) is a vital grain legume, offering an excellent balance

of protein, carbohydrates, fats, fiber, essential micronutrients, and vitamins that

can contribute to addressing the global population’s increasing food and

nutritional demands. Chickpea protein offers a balanced source of amino acids

with high bioavailability. Moreover, due to its balanced nutrients and affordable

price, chickpea is an excellent alternative to animal protein, offering a formidable

tool for combating hidden hunger and malnutrition, particularly prevalent in low-

income countries. This review examines chickpea’s nutritional profile,

encompassing protein, amino acids, carbohydrates, fatty acids, micronutrients,

vitamins, antioxidant properties, and bioactive compounds of significance in

health and pharmaceutical domains. Emphasis is placed on incorporating

chickpeas into diets for their myriad health benefits and nutritional richness,

aimed at enhancing human protein and micronutrient nutrition. We discuss

advances in plant breeding and genomics that have facilitated the discovery of

diverse genotypes and key genomic variants/regions/quantitative trait loci

contributing to enhanced macro- and micronutrient contents and other

quality parameters. Furthermore, we explore the potential of innovative

breeding tools such as CRISPR/Cas9 in enhancing chickpea’s nutritional

profile. Envisioning chickpea as a nutritionally smart crop, we endeavor to

safeguard food security, combat hunger and malnutrition, and promote dietary

diversity within sustainable agrifood systems.
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Introduction

Chickpea (Cicer arietinum L.), a nutritionally dense pulse crop,

is widely consumed by humans and cultivated annually,

predominantly in semiarid and temperate climates under rainfed

conditions (Gao et al., 2015). Global chickpea cultivation spans

14.56 million hectares (Mha), producing approximately 15 million

tons (Mt) annually (FAOSTAT, 2021). Major producers include

India, Australia, Pakistan, Central America, and East Africa

(Knights and Hobson, 2016), with India leading production at

11.4 Mt from 9.9 Mha (FAOSTAT, 2021). Chickpea varieties are

categorized as ‘desi’ and ‘kabuli’ based on seed shape and color

(Knights and Hobson, 2016), with desi types predominant in

Australia, Central America, East Africa, and India, while kabuli

types thrive in the Mediterranean, Middle East, North Africa, and

North America (Knights and Hobson, 2016; Grasso et al., 2022).

Global climate change and burgeoning human populations

threaten food and nutritional security. Despite increased

agricultural productivity, over 820 million people globally suffer

from food insecurity, and at least 2 billion face nutritional insecurity

(Jha et al., 2024). Approximately 3 billion people in Asia, Africa, and

Latin America face micronutrient deficiencies, particularly zinc

(Zn) and iron (Fe) (Welch and Graham, 2004; Darnton-Hill

et al., 2006), crucial for optimal growth and development (Brown

et al., 2002; Welch, 2002). Chickpea, inherently abundant in these

micronutrients and vitamins, can help address ‘hidden hunger,’

particularly among infants and women of childbearing age in low-

income countries (Broughton et al., 2003; Ufaz and Galili, 2008;

Burchi et al., 2011). Moreover, chickpea contributes to human

disease prevention, including diabetes, hyperlipidemia,

kwashiorkor, and anemia (Younis et al., 2015).
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Chickpea, characterized by high dietary seed protein, abundant

non-starch polysaccharides, low calorie content, low allergenicity,

and high digestibility, offers a cost-effective protein source for low-

income individuals and vegetarians (Kaur and Prasad, 2021;

Yegrem, 2021; Begum et al., 2023). However, it lacks sulfur-

containing essential amino acids methionine and cysteine (Jukanti

et al., 2012; Grasso et al., 2022). Chickpea seeds are rich in

carbohydrates, starch, fat, fiber, vitamins, and essential

micronutrients (Heiras-Palazuelos et al., 2013; Kaur et al., 2019;

Sharma et al., 2021; Grasso et al., 2022; Roorkiwal et al., 2022;

Salaria et al., 2023) (see Figure 1). In Western countries, chickpea is

mainly consumed in the form of ‘hummus’ (Wallace et al., 2016),

with four tablespoons of chickpea-based hummus per day providing

the equivalent of 2 cups of legumes per week and approximately 25

g of dietary fiber (Wallace et al., 2016). Approximately 1/3 cup of

chickpea provides 5.4 g protein, 1.6 g fat, 16.7 g carbohydrates, 4.6 g

dietary fiber, 29.9 mg calcium, 1.8 mg iron, 29.3 mg magnesium,

177.4 mg potassium, 104.9 µg folate, 0.6 mg vitamin A, and 0.2 mg

vitamin C (Didinger and Thompson, 2021). Thus, regular chickpea

consumption can meet the recommended daily allowance of

secondary macronutrients and micronutrients (Thavarajah and

Thavarajah, 2012). Chickpea can be used to make gluten-free

bread (GFB), comprising 75% chickpea flour blended with 25%

potato or cassava starch, for individuals with gluten-related

disorders, enhancing nutritional quality, including dietary fiber

(Santos et al., 2018). Moreover, chickpea harbors bioactive

compounds like sterols, phenols, carotenoids, tannins, and

isoflavones, with antioxidant properties and potential anti-

glycemic and anti-cancer properties (Zhao et al., 2009; Tarzi et

al., 2012; Rachwa-Rosiak et al., 2015; Domıńguez et al., 2016;

Wallace et al., 2016; Domıńguez-Arispuro et al., 2018; Kaur and
FIGURE 1

Distribution of major nutritional components in chickpea.
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Prasad, 2021; Arora et al., 2023; Devi et al., 2023; Xiao et al., 2023).

Recognizing that staple cereals alone cannot meet diverse

micronutrient needs, supplementation with grain legumes like

chickpea can provide essential micronutrients, fiber, and low

glycemic index foods to combat nutritional insecurity and other

health-related problems, particularly diabetes and obesity (Rebello

et al., 2014; Ramani et al., 2021; Arya and Kumar, 2022; Gupta et al.,

2023a). This review examines chickpea’s nutritional components,

genetic determinants, and genomic regions contributing to

improved nutrition. It also explores how emerging breeding tools

and the CRISPR/Cas9 approach could enhance chickpea

biofortification to help sustain global food security, address

micronutrient deficiencies, mitigate malnutrition, and diversify

food resources while supporting modern cropping systems and

agricultural sustainability.
Harnessing genetic variability for
improving seed protein

Chickpea contains high-quality protein with exceptional

bioavailability (Sharma et al., 2016; Kaur et al., 2019; Kumar et

al., 2021), making them a potential solution for addressing protein

malnutrition in developing countries by providing a high protein

percentage (Iqbal et al., 2006). While breeders have made significant

strides in developing over 200 commercially viable chickpea

cultivars with improved yield and resistance to biotic and abiotic

stresses (Grewal et al., 2023), the focus on quality improvement,

particularly seed protein content (SPC), has been somewhat

overlooked. Consequently, information on SPC across different

chickpea cultivars remains incomplete, necessitating focused

breeding efforts and genomics research to develop superior

chickpea genotypes capable of addressing the mounting

challenges of malnutrition. Research on genetic variability has

uncovered a wide spectrum of SPC in chickpea. Singh et al.

(2010) noted SPC ranging from 15.7–31.5%, while Özer et al.

(2010) reported 17.55–23.31% in 91 kabuli chickpea genotypes,

highlighting high-protein genotypes like Hatay2 (23.3%), Hatay3

(23.9%), and Mersin 4 (23.23%). Gaur et al. (2016) explored the

genetic control of SPC in an ICC5912 × ICC17109 F2 population,

reporting substantial genetic variability in pink-flowered segregants

(12.84–26.72%), blue-flowered segregants (17.10–26.08%), and

white-flowered segregants (14.77–24.10%). Phenotypic

assessments across diverse chickpea germplasm indicated

significant genetic variability for SPC, ranging from 15.6–22.4%

(Sharma et al., 2013; Misra et al., 2016; Upadhyaya et al., 2016b),

4.6–33.9% (Bhagyawant et al., 2018), 16.56–24.64% (Roorkiwal

et al., 2022), 16.3–26.2% (Srungarapu et al., 2022a), and 20–24.8%

(Onder et al., 2023). Similarly, Samineni et al. (2022) assessed SPC

and micronutrients in 140 chickpea genotypes, revealing variability

ranging from 11.6–24.8% under non-stress conditions, 15.7–26.2%

under drought stress, and 15.9–24.7% under heat stress. A

comprehensive analysis of 402 chickpea genotypes at two

locations in India (Ludhiana and New Delhi) indicated SPC

variability ranging from 18.19–33.56%, with the highest values in

GNG 2144 (28.81%), H 82-2 (28.29%), Pusa 5023 (26.28%), and
Frontiers in Plant Science 03
Pusa 417 (26.00%) (Grewal et al., 2023). Interestingly, protein

contents among commercially cultivated varieties ranged from

18.19–30.44%, relatively lower than germplasm accessions (19.41–

33.56%) (Grewal et al., 2023). Farida Traore et al. (2022) reported

broad variability in SPC (18.9–32.4%) in 282 advanced chickpea

breeding lines in Morocco. In another study, SPC varied between

desi and kabuli types, with desi types generally lower (20.29%) than

kabuli types (24.51%) (Sharma et al., 2013; Ghribi et al., 2015).

Comparative studies have also revealed differences in SPC between

kabuli (23.15–25.97%), desi (23.19–28.0%), and wild species (23.03–

26.82%) (see Supplementary Table S1), with one study identifying

GL 12021 and GNG 2171 (desi), L552 (kabuli), and C. pinnatifidum

ILWC 261 (wild) as high-protein lines (Kaur et al., 2019).

Chickpea wild relatives are valuable reservoirs for agriculturally

significant traits, including SPC (Ocampo et al., 1998; Sharma et al.,

2021). Ocampo et al. (1998) assessed 228 chickpea accessions from

eight annual wild species, reporting significant genetic variability

for SPC, ranging from 16.8% (C. cuneatum) to 26.8% (C.

pinnatifidum). Of the wild species, C. yamashitae exhibited the

highest SPC (21.7%), while C. echinospermum had the lowest

(19.2%) (Ocampo et al., 1998) (see Supplementary Table S1). A

subsequent analysis of 41 cultivated chickpea accessions and the

eight annual wild Cicer species unveiled significant variation in SPC

(21–25.5%), with the highest in ICC17141 (C. chorassanicum),

followed by ICC17124 (C. reticulatum; 25.1%), ICC17262 and

ICC17261 (both C. reticulatum; 24.5%), and ICC20236 (C.

chorassanicum; 24.3%) (Sharma et al., 2021). Despite identifying

numerous chickpea genotypes with high protein content, it has been

found that grain yield negatively correlates with seed protein

(Srungarapu et al., 2022b), indicating a tradeoff between protein

content, seed size, and grain yield (Gaur et al., 2016). Nonetheless,

selecting transgressive segregants with high SPC and moderate

grain yield holds promise for developing chickpea cultivars with

improved SPC (Gaur et al., 2016). Commercially released cultivars

with high SPC, viz., GNG 2144, H-82-2, L 144, Pusa 112, and Pusa

5023 (Grewal et al., 2023), could be potential donors in future

chickpea breeding programs aimed at enhancing SPC content

and yield.

Chickpea proteins mainly comprise albumin (8–12%), globulin

(53–60%), prolamin (3–7%), and glutelin (19–25%) (Day, 2013;

Grasso et al., 2022), with significant variability observed between

desi and kabuli types. Chickpea flour exhibits elevated levels of

essential amino acids (39.89 g 100 g–1 protein) compared to wheat

flour (32.20 g 100 g–1 protein), including arginine, aspartic acid, and

glutamic acid, with a combined 36.85 g 100 g–1 protein for kabuli and

34.53 g 100 g–1 protein for desi varieties (Singh et al., 2010; Begum

et al., 2023). Notably, chickpea contains essential amino acids above

the recommended amounts by the WHO, including lysine (6.2–6.7 g

16 g–1 N; recommended 1.8), isoleucine (3.1–4.0 g 16 g–1 N;

recommended 1.5), leucine (6.5–7.1 g 16 g–1 N; recommended 2.1),

phenylalanine (5.1–5.8 g 16 g–1 N; recommended 2.1), threonine

(3.1–3.4 g 16 g–1 N; recommended 1.1), valine (3.5–4.1 g 16 g–1 N;

recommended 1.5), and histidine (2.3–2.8 g 16 g–1 N; recommended

1.5) (Onder et al., 2023). Moreover, selected commercially released

chickpea cultivars exhibited higher essential amino acid contents than

the WHO recommendations (see Table 1) (Grewal et al., 2023). Desi
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types have higher methionine (1.4%) than kabuli types (1.1%) (see

Supplementary Table S1), with notable differences also reported for

leucine, lysine, and serine (Ghribi et al., 2015; Ramani et al., 2021).

Grewal et al. (2023) reported significant positive associations between

SPC and aspartic acid, isoleucine, and phenylalanine but negative

associations with methionine and cysteine. Therefore, cultivars with

high amino acid content could be used to develop future biofortified

chickpea cultivars to combat protein deficiency malnutrition. Among

the major chickpea proteins, albumins (water-soluble proteins) are

rich in sulfur-containing amino acids like methionine and cysteine

(Bhatty, 1982), while globulins are salt-soluble proteins (Osborne,

1924), with legumin and vicilin the major globulins in chickpea (Boye

et al., 2010; Day, 2013). Legumin contains higher methionine and
Frontiers in Plant Science 04
cysteine levels than vicilin (Shevkani et al., 2019). Glutelins are

soluble in dilute acid or alkali and contain methionine and cysteine

(Singh and Jambunathan, 1982). Prolamins (alcohol-soluble) feature

a high proportion of proline and glutamine (Osborne, 1924; Rachwa-

Rosiak et al., 2015).
Carbohydrate composition

Chickpea seed typically contains 50–58% carbohydrates

(Jukanti et al., 2012), with starch being the primary component

(41–50.8%) (Singh, 1985). Additionally, chickpea seed contains

cellulose (4–13%), hemicellulose (3.5–8.8%), and pectin (1.5–
TABLE 1 Genetic variability for seed protein/lipid/carbohydrate content in chickpea from different countries.

Nutrition Number of genotypes used Quantity Country
reported from

Reference

Protein 228 16.8–26.8% Syria Ocampo
et al. (1998)

91 kabuli 17.55% and 23.31% Turkey Özer et al. (2010)

187 (desi and kabuli) 13.25–26.77% India Jadhav et al. (2015)

336 15.6–22.4% India Upadhyaya
et al. (2016b)

215 4.60–33.90% India Bhagyawant
et al. (2018)

15 cultivated and 15 wild types 23–26% India Kaur et al. (2019)

41 cultivated and 8 wild types 21–25.5% India Sharma
et al. (2021)

258 16.56–24.64% India Roorkiwal
et al. (2022)

280 16.3–26.2% India Srungarapu
et al. (2022a)

140 11.6–24.8% India Samineni
et al. (2022)

402 18.19–33.56% India Grewal
et al. (2023)

282 advanced breeding lines 18.9–32.4% Morocco

Lipid/fat 91 kabuli 4.45–6.11% Turkey Özer et al. (2010)

14 genotypes 5.68–9.01% Argentina Marioli Nobile
et al. (2013)

256 accessions Palmitic acid (451–912 mg 100 g–1) Canada Salaria et al. (2023)

Linoleic acid (1605–3459 mg 100 g–1)

Alpha-linolenic acid (416–864 mg 100
g–1)

Oleic acid (1035–1907 mg 100 g–1)

Carbohydrates 30 genotypes Total starch (26.49–39.27%) India Kaur et al. (2019)

Total sugars (27.34–54.6%)

211 genotypes Sucrose (3.57–54.12 mg g–1) India Elango et al. (2022)

Stachyose (2.77–59.43 mg g–1)

Raffinose (0.16–15.13 mg g–1)
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3.8%) (Wood and Grusak, 2007). Kabuli and desi chickpea varieties

contain amylose and amylopectin, with both types containing more

amylopectin than amylose (Singh et al., 2004) and kabuli types

typically exhibiting higher amylose contents than desi types (Grasso

et al., 2022). Thus, chickpea starch has a low glycemic index,

making it suitable for diabetic individuals (Kaur and Prasad,

2021). The characteristics of chickpea starch depend on factors

like amylose content, swelling power, solubility, and water-binding

capacity (Miao et al., 2009). Desi chickpea types typically exhibit

total and apparent amylose contents of 35.24% and 31.11%,

respectively, while kabuli types have 31.80% and 29.93%,

respectively (Miao et al., 2009). Kabuli starch has a higher Mw

(5.382×107 g mol–1) than desi starch (3.536×107 g mol–1)

(Miao et al., 2009). Genetic variability in starch content among 91

kabuli chickpea landraces from Turkey ranged from 40.07–41.76%

(Özer et al., 2010). An assessment of four selected chickpea

genotypes revealed significant genetic variability for starch (30.6–

49.9%), glucose (3.4–4.7%), fructose (4.4–5.5%), and sucrose (2.4–

4.1%) (Ereifej et al., 2001). In addition to starch, chickpea

carbohydrates comprise dietary fiber (18–22%), insoluble sugars

(10–18% crude fiber), and soluble sugars (4–8%) (Tosh and Yada,

2010), with desi types exhibiting higher insoluble dietary fiber than

kabuli types due to thicker seed coats (Rincon et al., 1998). Sánchez-

Mata et al. (1998) reported various monosaccharide concentrations

in chickpea, including ribose (0.11 g 100 g–1), galactose (0.7 g 100

g–1), glucose (0.05 g 100 g–1), and fructose (0.25 g 100 g–1). In one

study, chickpea fiber ranged from 4.9–5.5% (Ereifej et al., 2001),

while another reported 2.88% in chickpea genotypes originating

from Sicily (Patane, 2006). In a study investigating soluble sugars,

fructose content ranged from 3.66–4.33 mg g–1 in kabuli types, 2.0–

5.33 mg g–1 in desi types, and 5.0–10.33 mg g–1 in wild chickpea

species (Kaur et al., 2019). They also noted positive association of

soluble sugar with starch content.

Sucrose, raffinose, verbascose, and stachyose form the primary

soluble sugars present in chickpea seeds (Chibbar et al., 2010).

Raffinose and stachyose are galactosyl derivatives of sucrose, with

raffinose having one galactose moiety and stachyose having two

galactose moieties attached to sucrose via a (1-6) glycosidic linkage

(Chibbar et al., 2010; Kaur et al., 2019). These compounds are classified

as raffinose family oligosaccharides (RFOs), which are non-digestible

by humans and animals, often causing flatulence (Elango et al., 2022).

Chickpea oligosaccharide levels varied among different cultivars,

ranging from 5.54–8.82%, including 0.25–0.73% verbascose, 1.54–

3.18% stachyose, 2.04–5.26% ciceritol, and 0.42–0.86% raffinose

(Tosh and Yada, 2010; Singh and Kumari, 2011). Genetic variability

for RFOs in chickpea has been noted, ranging from 10.33 mg g–1 in

wild chickpea (accession EC 366342) to 0.66 mg g–1 in kabuli chickpea

(GLK 14313) (Kaur et al., 2019). Taking into account the association of

RFO with other sugars, RFO revealed a positive and significant

correlation with raffinose, stachyose, and verbascose in both desi and

kabuli types. Similarly, sucrose also exhibited a positive and significant

correlation with raffinose, stachyose, and verbascose in both desi and

kabuli types (Gangola et al., 2013).
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Lipid/fat/oil composition

Fatty acids are classified into saturated fatty acids,

monounsaturated fatty acids (MUFAs), and polyunsaturated fatty

acids (PUFAs). Chickpea oil predominantly comprises unsaturated

fatty acids (Gul and Egesel, 2008). Among grain legumes, chickpea

has the highest fat (6.04%) (Allen et al., 2006). The lipid profile of

chickpea includes storage lipids, primarily triacylglycerols, and

membrane lipids like phospholipids, sphingolipids, glycolipids,

and phytosterols (Madurapperumage et al., 2021). Both

triacylglycerols and membrane lipids contribute to chickpea’s

overall fat content (Zia-Ul-Haq et al., 2007; Madurapperumage

et al., 2021). Chickpea seeds typically contain 56–67%

triacylglycerols and 17–20% phospholipids (Zia-Ul-Haq et al.,

2007). The recommended daily dietary allowance for infants and

adults is 13.5 g palmitic acid, 7.5 g linoleic acid, 1.2 g alpha-linolenic

acid, and 24 g oleic acid (Ervin et al., 2004). Daily consumption of

chickpeas can provide 19.5 g of unsaturated fatty acids (Wallace

et al., 2016). Interestingly, uncooked chickpeas contain more

polyunsaturated fatty acids (2.73 g 100 g–1) than cooked

chickpeas (1.15 g 100 g–1). Additionally, chickpea consumption

contributes to lowering the intake of saturated fatty acids (22.4 g

day–1), total fats (76.4 g day–1), and cholesterol (227 mg day–1)

(Wallace et al., 2016). Various studies have reported significant

variation in grain fat, ranging from 4.45–7.1% (Jood et al., 1998;

Ereifej et al., 2001; Ravi and Harte, 2009; Shad et al., 2009; Özer

et al., 2010). For instance, Özer et al. (2010) reported 4.45–6.11%

grain fat in 91 Turkish kabuli chickpea samples, while Jood et al.

(1998) reported 6–6.33% grain fat in Indian chickpea genotypes.

Chickpea oil content ranges from 3.8–10% (Gul and Egesel,

2008; Jukanti et al., 2012). The prominent fatty acids in chickpea oil

are linolenic, oleic, and palmitic acids, with linoleic acid (18:2) the

most abundant, ranging from 52.36–57.98% (Gul and Egesel, 2008).

Omega-6 linoleic fatty acid constitutes the majority of chickpea oil

(46–62%), followed by omega-9 oleic acid (24.12–29.48%) (Wood

and Grusak, 2007; Gul and Egesel, 2008) and palmitic acid (16:0)

(10.86–12.38%) (Gul and Egesel, 2008). Analysis of 14 Argentinean

chickpea genotypes revealed oil contents ranging from 5.68–9.01%,

with genotypes G101, P39, and L9 containing the most linoleic acid

(mean 58.73%), linolenic acid (mean 3.06%), and oleic acid (18:1

omega-9) (mean 43.01%), respectively (Marioli Nobile et al., 2013).

A fatty acid composition analysis in 256 chickpea accessions

revealed wide genetic variability for palmitic acid (451–912 mg

100 g–1), linoleic acid (1605–3459 mg 100 g–1), alpha-linolenic acid

(416–864 mg 100 g–1), and oleic acid (1035–1907 mg 100 g–1)

(Salaria et al., 2023). A correlation study conducted by the same

research group revealed a significant negative correlation between

palmitic acid and linoleic acid, as well as between alphalinolenic

acid and oleic acid. Further research on fatty acid composition in

wild chickpea species could enhance our understanding and

facilitate the development of biofortified chickpea varieties with

improved fatty acid profiles to address nutritional needs among the

human population.
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Micronutrients

Chickpea seeds are a rich source of essential micronutrients like

Fe, Zn, calcium (Ca), copper (Cu), and manganese (Mn) (Ibrikci

et al., 2003; Jahan et al., 2019; Sharma et al., 2021; Roorkiwal et al.,

2022; Srungarapu et al., 2022a). Feeding studies have indicated that

daily chickpea consumption can provide 17.4 mg Fe (Wallace et al.,

2016). Uncooked chickpea contains higher Zn (2.76 mg 100 g–1)

than cooked chickpea (1.53 mg 100 g–1). Moreover, consuming 100

g of raw chickpeas can provide 160 mg Ca, 138 mg Mg, 4.1 mg Zn,

and 5.0 mg Fe (Jukanti et al., 2012; Begum et al., 2023), highlighting

the benefits of consuming uncooked chickpea for micronutrient

uptake. The average Fe content in chickpea ranges from 3.0–14.3

mg 100 g–1 (Diapari et al., 2014). A recent study reported a wide

range of genetic variability for grain Fe (0.50–8.54 mg 100 g–1) and

Zn (1.10–5.91 mg 100 g–1) in 402 chickpea accessions across two

locations, with Heera, H82-2, and H214 identified as promising

genotypes for high Zn (>4 mg 100 g–1) and L550, KGD1168, PG114,

JG74, and ICCV6 for high Fe (>6 mg 100 g–1) (Grewal et al., 2020).

Samineni et al. (2022) investigated associations between marker

traits and grain Fe and Zn contents in 140 chickpea accessions,

revealing significant genetic variation for grain Fe (47.8–83.0, 49.4–

86.2, and 41.4–77.6 mg kg–1 under non-stress, drought stress, and

heat stress, respectively) and Zn (29.5–55.0, 28.1–63.1, 29.7–55.4

mg kg–1 under non-stress, drought stress, and heat stress,

respectively). Similarly, Srungarapu et al. (2022a) noted wide

genetic variability for grain Fe (44.1–76.7 mg kg–1) and Zn (36.3–

56.2 mg kg–1) with high heritability (85–98%) in a two-year

assessment of 280 chickpea accessions. However, grain Fe

exhibited significant positive associations with Zn and 100-seed

weight but a highly negative correlation with yield under all tested

environments, consistent with findings by Samineni et al. (2022).

Similarly, grain protein content negatively correlated with grain

yield across all environments, suggesting that breeding programs

should focus on selecting genotypes with moderate yield and high

nutrient content, especially protein and micronutrients, rather than

solely increasing nutrient content (Srungarapu et al., 2022a).

Moreover, Roorkiwal et al. (2022) reported significant genetic

variation in 258 chickpea accessions for various nutritional

components: Fe (2.26–7.25 mg 100 g–1, mean: 4.36), Ca (60.7–

176.5 mg 100 g–1, mean: 108.6), Mg (64.08–134.57 mg 100 g–1,

mean: 100.35), Mn (0.67–3.73 mg 100 g–1, mean: 1.78), phytic acid

(2.07–19.38 mg g–1, mean: 10.68), and Zn (1.15–4.59 mg 100 g–1,

mean: 2.76. Similarly, Fayaz et al. (2022) reported significant genetic

variation in various micronutrients in 147 chickpea genotypes over

a two-year evaluation: Zn (1.45–20.49 and 0.936–20.58 mg 100 g–1,

Fe (7.93–19.82 and 10.36–12.72 mg 100 g–1), Cu (0.42–18.54 and

0.366–19.03 mg 100 g–1), and Mn (0.907–5.43 and 0.48–12.28 mg

100 g–1) and Farida Traore et al. (2022) reported a wide range of

genetic variability in 282 advanced chickpea breeding lines for Fe

(3.12–8.1 mg 100 g–1) and Zn (3.21–8.61 mg 100 g–1). A correlation

analysis revealed significant positive associations between grain

protein content and Ca, Mn, Zn, b-carotene, and phytic acid

contents but negative associations between b-carotene and Mn

and between phytic acid and vitamin B1 (Roorkiwal et al., 2022).

Another study reported that grain protein content negatively
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correlated with Zn content (Farida Traore et al. (2022), with Fe

and Mn content (Sharma et al., 2021). These findings suggest an

opportunity to target nutrient improvement in chickpea

breeding programs.

A comprehensive analysis of 41 cultivated chickpea accessions

and eight annual wild Cicer species revealed significant variation in

Fe (48.6–166 mg kg–1) and Zn (35.3–47 mg kg–1) in six wild Cicer

species—C. reticulatum, C. echinospermum, C. bijugum,

C. pinnatifidum, C. chorassanicum, and C. yamashitae—compared

to cultivated chickpeas (∼42 mg kg–1 for Fe and ∼28 mg kg–1 for

Zn) (Sharma et al., 2021). The wild species also had significantly

higher seed Mn (ranging from 57.9 mg kg–1 in C. chorassanicum to

162 mg kg–1 in C. pinnatifidum) than cultivated chickpea (37.1 mg

kg–1). The wild species, except for C. echinospermum (3.1 mg kg–1)

and C. bijugum (3.6 mg kg–1), also had significantly higher seed Cu,

ranging from 4.3 mg kg–1 in C. reticulatum to 7.7 mg kg–1 in

C. judaicum, than cultivated chickpea (3.4 mg kg–1). The eight wild

Cicer species had significantly higher seed Ca, ranging from 3.02 g

kg–1 in C. echinospermum to 6.09 g kg–1 in C. chorassanicum, than

cultivated chickpea (2.22 g kg−1), and five wild Cicer species—

C. bijugum, C. chorassanicum, C. judaicum, C. pinnatifidum, and

C. reticulatum—had significantly higher seed Mg (1.65–1.83 g kg–1)

than cultivated chickpea (1.41 g kg–1) (Sharma et al., 2021). The

wide range of genetic variability in micronutrients found in various

chickpea landraces and wild species presents opportunities for

developing chickpea varieties to combat micronutrient-related

‘hidden hunger’.
Vitamins

Chickpea is recognized as an important source of various

vitamins, including niacin, riboflavin, folic acid, thiamin, and b-
carotene (Cabrera et al., 2003; Abbo et al., 2005; Jha et al., 2015;

Rezaei et al., 2016).
b-carotene (precursor of vitamin A)

Chickpea contains significant amounts of b-carotene, the

precursor of vitamin A, with reported wide ranges in carotenoid

content from 22 mg g–1 (yellow cotyledon kabuli) to 44 mg g–1 (green
cotyledon desi) (Rezaei et al., 2016). Lutein and zeaxanthin are the

predominant components of carotenoids present in chickpea seeds,

with green cotyledon chickpea cultivars exhibiting the highest

provitamin A, including b-carotene and b-cryptoxanthin (Rezaei

et al., 2016). Across five chickpea cultivars, CDC Jade had the

highest lutein and b-cryptoxanthin in cotyledons at 16 days post-

anthesis, while CDC Cory had the highest zeaxanthin and b-carotene
(Rezaei et al., 2016). The same research group reported a wide range

of total carotenoids in three segregating F2 populations (CDC Jade ×

CDC Frontier, CDC Cory × CDC Jade, and ICC4475 × CDC Jade),

ranging from 10.6–40 µg g–1 in parental lines and 18.46–77.63 µg g–1

in segregating populations (Rezaei et al., 2019). Subsequently,

Roorkiwal et al. (2022) identified wide genetic variation in b-
carotene (0.003–0.104 mg 100 g–1) in 258 chickpea accessions
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using GWAS. Cooking chickpeas significantly reduces their vitamin

A content from 67 IU 100 g–1 (uncooked) to 27 IU 100 g–1 (cooked)

(Wallace et al., 2016).
Vitamin B complex

Chickpea exhibits a wide range of genetic variation for various B

vitamins, including thiamine (B1), riboflavin (B2), and niacin (B3).

They are rich sources of thiamin (453 mg) and riboflavin (173 mg)
(Hall et al., 2017). A recent GWAS assessing 258 chickpea

accessions revealed significant variability for these vitamins,

ranging from 0.055–0.502 mg 100 g–1 thiamine (average 0.189),

0.011–0.638 mg100 g–1 riboflavin (average 0.111), and 0.116–1.57

mg100 g–1 niacin [average 0.411 (Roorkiwal et al., 2022)].

Moreover, a comparative analysis of four chickpea genotypes

revealed significant variability for thiamine, ranging from 0.31–

0.36 mg 100 g–1 (Xiao et al., 2023). Moreover, one study reported

significant genetic variation in various B vitamins between desi and

kabuli types, with 1.72 and 1.22 mg 100 g–1 niacin, 0.21 and 0.26 mg

100 g–1 riboflavin, 0.29 and 0.49 mg 100 g–1 thiamin, and 0.30 and

0.38 mg 100 g–1 pyridoxine, respectively (Jukanti et al., 2012).

However, cooking chickpeas reduces the levels of these vitamins

significantly from 1.54 to 0.52 mg 100 g–1 niacin, 0.2 to 0.063 mg

100 g–1 riboflavin, and 1.58 to 0.28 mg 100 g–1 pantothenic acid

(Wallace et al., 2016).
Folic acid

Pulses are a significant source of dietary folate, with a wide range

of folate levels documented across various pulse crops, including lentil

(146–290 mg 100 g–1), yellow pea (50–202 mg 100 g–1), mung bean

(141–169 m 100 g–1), cowpea (96 mg 100 g–1), and common bean (103

mg 100 g–1) (Sen Gupta et al., 2013; Hefni andWitthoft, 2014). Folate

content in chickpea ranges from 42–537 mg 100 g–1 (Hall et al., 2017),

with cooking reducing the level from 557 mg 100 g–1 (uncooked) to

172 mg 100 g–1 (cooked) (Wallace et al., 2016). Moreover, chickpea

consumers intake 627 µg day–1 folate compared to non-chickpea

consumers (Wallace et al., 2016). Jha et al. (2015) used ultra-

performance liquid chromatography and mass spectrometry to

quantify six folate monoglutamates in four chickpea genotypes,

revealing substantial genetic variability for folate (351–589 mg 100

g–1), with 5-methyltetrahydrofolate (5-MTHF) and 5-

formyltetrahydrofolate (5-FTHF) the most abundant. Moreover,

the study identified a significant effect of location and a

location×cultivar interaction, suggesting that folate levels are

responsive to genotype×environment interactions (Jha et al., 2015).
Vitamin E

Chickpea oil is particularly rich in tocopherols, with alpha-

tocopherol the highest among pulses, reaching up to 13.7 mg 100

g–1 (Wood and Grusak, 2007; Pittaway et al., 2008). The oil comprises

four different forms of tocopherols—alpha, beta, gamma, and delta
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(Zia-Ul-Haq et al., 2009), with gamma-tocopherol recognized as a

natural seed antioxidant (Gul and Egesel, 2008; Boschin and Arnoldi,

2011). The total tocopherol in chickpea oil ranges from 20.69–52.44

mg kg–1 (Gul and Egesel, 2008), with higher amounts of vitamin E in

uncooked chickpea (0.82 mg 100 g–1) than cooked chickpea (0.35 mg

100 g–1) (Wallace et al., 2016). The National Health and Nutrition

Examination Survey reported that chickpea consumers intake 10.1 mg
day–1 more vitamin E than non-chickpea consumers (Wallace et al.,

2016). The significant genetic variability observed for these vitamins

underscores the potential of chickpea for addressing nutritional

deficiencies, especially in regions where vitamin-related deficiencies

are prevalent.
Bioactive compounds

Chickpea is rich in bioactive compounds, including antioxidants,

phenolic acids, flavonoids, and condensed tannins, which offer

numerous health benefits (Heiras-Palazuelos et al., 2013). These

compounds play significant roles in physiological and metabolic

processes and contribute to reducing the risk of various diseases.

Antioxidants in small quantities prevent the formation of free radicals

or reactive oxygen species by retarding the oxidation of unsaturated

fats, which are easily oxidized. Desi and kabuli chickpea exhibit

varying antioxidant activities (Heiras-Palazuelos et al., 2013).

Phenols, essential bioactive compounds found in the chickpea

seed coat (Xu et al., 2007), include phenolic acids, flavonoids, and

condensed tannins (Singh et al., 2017; de Camargo et al., 2022),

which offer various health benefits, including anti-carcinogenic,

anti-thrombotic, anti-ulcer, anti-atherogenic, anti-allergenic, anti-

inflammatory, antioxidant, and immune-modulating properties (de

Camargo et al., 2022; Begum et al., 2023). Total phenolic contents in

chickpea range from 27.48–48.01 mg 100 g–1 for kabuli types,

38.59–83.52 mg 100 g–1 for desi types, and 63.08–113.30 mg 100

g–1 for wild species (Kaur et al., 2019). They also observed that

genotypes with higher phenol content exhibited greater antioxidant

activity, suggesting a positive association between seed phenol

content and antioxidant activity.A study using UPLC-MS/MS

identified three specific phenolic acids in chickpea—taxifolin,

biochanin, and m-hydroxybenzoic acid—that decrease oxidative

damage in human HuH-7 cells induced by peroxy radicals,

indicating hepatoprotective properties (de Camargo et al., 2022).
Anti-nutrients

Chickpea seeds also contain substances like tannins, protease

inhibitors (such as trypsin and amylase inhibitors), phytic acid, and

saponins (Soetan and Oyewole, 2009; Kaur et al., 2014, Kaur et al,

2019) that function as anti-nutrients by inhibiting the

bioavailability of various nutrient components (Soetan and

Oyewole, 2009). Tannins are recognized as significant anti-

nutritional compounds, binding with enzyme proteins or

minerals, resulting in the inactivation of digestive enzymes and

reduced protein digestion (Kaur et al., 2019). Various studies have

reported tannin contents in chickpea seeds ranging from 5.44–10.87
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mg g–1 (Kaur et al., 2014), 17.52 mg g–1 (Bulbula and Urga, 2018),

and 11.93 mg g–1 in desi types, 10.63 mg g–1 in kabuli types, and

16.38 mg g–1 in wild species (Kaur et al., 2019). Chickpea genotypes

also varied in tannin contents, ranging from 9.08 mg g–1 in GL

14015 to 18.47 mg g–1 in C. judaicum ILWC 30 (Kaur et al., 2019).

Phytic acid forms complexes with proteins, impeding the

absorption of micronutrients such as Fe, Ca, Zn, Cu, and Mg in

the gastrointestinal tract (Tiwari and Singh, 2012). Studies have

reported phytic acid levels ranging from 3.49–11.52 mg g–1 in desi

types and 3.45–12.35 mg g–1 in kabuli types (Mondor et al., 2009),

11.33 mg g–1 in whole chickpeas, 11.53 mg g–1 in split chickpeas,

and 14 mg g–1 in desi types (Shi et al., 2018), and 9.43–13.67 mg g–1

in kabuli types, 8.48–18.39 mg g–1 in desi types, and 4.24–8.48 mg

g–1 in wild species (Kaur et al., 2019). Phytic acid has a negative

association with most minerals except Zn; an increase in phytic acid

suggests a negative impact on the absorption of these minerals

(Kaur et al., 2019).

Saponins, naturally occurring surface-active glycosides, also

inhibit nutrient absorption and bioavailability in chickpea

(Choudhary et al., 2015; Katoch et al, 2016; Kaur et al., 2019; Singh

et al., 2022). They contribute to enzyme inactivation, significantly

impacting cellular metabolism and reducing nutrient absorption.

Studies have reported saponin levels ranging from 4.98–12.23 mg

g–1 in kabuli types (Choudhary et al., 2015) and 7.22 mg g–1 in desi

types, 7.02 mg g–1 in kabuli types, and 8.38–9.68 mg g–1 in wild

species (Kaur et al., 2019).

Trypsin inhibitors hinder digestive enzymes, specifically trypsin

and chymotrypsin, affecting the utilization of sulfur amino acids in

the body. Genetic variability for trypsin inhibitors in chickpea

ranges from 111.5–218.4 trypsin inhibitor units (TIU) g–1 (Gupta

et al., 2017), 38.53–64.47 TIU g–1 in kabuli types, 32.91–112.32 TIU

g–1 in desi types, and 122.73–150.18 TIU g–1 in wild species (Kaur

et al., 2019). Thus, minimizing anti-nutrient contents through

breeding, genomics, and other innovative approaches could

improve the bioavailability of essential micronutrients, vitamins,

phosphorus, and other nutrients, enhancing their nutritional values

and health benefits (Table 2).
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Genomic resources for
improving nutrients

Advancements in genome sequencing technologies have

revolutionized chickpea breeding by providing extensive genomic

resources, including decoding the chickpea genome sequence, whole

genome resequencing, pan-genome assembly, and transcriptome

assembly for various traits (Varshney et al., 2013; Varshney et al,

2021). Leveraging these advanced genomic resources has made it

possible to dissect various traits of agronomic importance, including

nutrient components in chickpea. For example, Wang et al. (2019)

genotyped a bi-parental mapping population developed from

ICC5912 × ICC995 across four environments, identifying several

SPCQTL explaining 34.8–57% phenotypic variation explained (PVE)

with the quantitative trait loci (QTL) q-3.2 identified as the major

seed protein QTL. Sab et al. (2020) identified 11 QTLs for seed Fe

concentration on CaLG03, CaLG04, and CaLG05 using a F2:3 derived

from MNK-1 and Annigeri 1, which explained 7.2% (CaqFe3.4) to

13.4% (CaqFe4.2) PVE. Further, eight QTLs for seed Zn, reported on

CaLG04, CaLG05, and CaLG08, explained 5.7% (CaqZn8.1) to 13.7%

PVE (CaqZn4.3) (Sab et al., 2020). Introgression of the QTL-hotspot

region on CaLG04 that harbors several drought tolerance-related

QTLs (Varshney et al., 2019) may increase seed Fe and Zn, with three

QTLs for seed Fe and Zn (CaqFe4.4, CaqFe4.5, and CaqZn4.1) co-

localized in this region (Sab et al., 2020). The authors identified genes

in the QTL regions that encode Fe–S metabolism and Zn-dependent

alcohol dehydrogenase activity on CaLG03, Fe ion binding

oxidoreductase on CaLG04, and Zn-induced facilitator-like protein

and ZIP zinc/iron transport family protein on CaLG05. Whole

genome resequencing data identified 48 SNPs associated with

targeted sugar types and nine genes “(Ca_06204, Ca_04353, and

Ca_20828: Phosphatidylinositol N-acetylglucosaminyltransferase;

Ca_17399 and Ca_22050: Remorin proteins; Ca_11152: Protein-

serine/threonine phosphatase; Ca_10185, Ca_14209, and Ca_27229:

UDP-glucose dehydrogenase)” as potential candidates for sugar

metabolism and transport in chickpea (Elango et al., 2022). A

GWAS using 16,376 single nucleotide polymorphisms (SNP)
TABLE 2 Essential amino acid components in chickpea (g 100 g–1 protein).

Amino acids Zia-Ul-Haq et al (2007) Xiao et al (2023) Grewal et al (2023) Recommended amount (FAO, 2013)

Arginine 8.0–8.5 2.10–2.65 – –

Histidine 2.9–3.2 0.65–0.79 2.89 2.0

Isoleucine 4.5–4.8 0.92–0.98 4.22 3.2

Leucine 8.1–8.5 1.45–1.70 7.64 6.6

Lysine 6.7–7.0 1.40–1.75 7.30 5.8

Methionine 0.8–1.1 0.23–0.37 Met + Cys (2.63) 2.7

Phenylalanine 5.0–5.3 1.20–1.50 Try + Phe (6.56) 5.2

Threonine 2.7–3.0 0.63–0.82 3.63 3.1

Tryptophan 0.8–0.9 0.57–0.81 1.41 0.85

Valine 4.1–4.6 0.99–1.10 3.80 4.3

Total 44.0–46.2 – – –
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TABLE 3 List of QTL/genomic regions contributing to various nutritional components in chickpea.

Nutrient component Population
type

QTL/genomic region LG/Chromosome and
name and position of
associated marker

PVE% References

Protein content GWAS (187) Two significant MTAs LG3, 5 8–17 Jadhav
et al. (2015)

Protein content GWAS (336) Seven genomic regions Chromosomes 1, 2, 4, 6, 7 41 Upadhyaya
et al. (2016b)

Protein content ICC 995×ICC5912,
RIL (189)

qPRO-ABE-1.1, qPRO-ABE-3.2,
qPRO-BIG-3.2, qPRO-BIG_6.2,
qPRO-GH-1.1, qPRO-GH-3.2,
qPRO-ICR-1.1, qPRO-ICR-3.2,
qPRO-1.1, qPRO-3.1, qPRO-3.2,
qPRO-6.2

LG1, 3, 6 34.8–57 Wang
et al. (2019)

LG1 (Ca1:363821–Ca1:1162304,
Ca1:363821–Ca1:1162304,
Ca1:363821–Ca1:1162304)

LG3 (Ca3:22724462–CaGM13632,
Ca3:22724462–CaGM13632,
Ca3:22724462–CaGM13632,
Ca3:22724462–CaGM13632,
Ca3:7351552–Ca3:10193673,
Ca3:22724462–CaGM13632)

LG6 (Ca6:2432945–Ca6:3140044)

Protein content GWAS 7 SNPs Chromosomes 1, 4, 6, 7 Srungarapu
et al (2022b)

Protein content ICC4958 ×
ICC12299, RIL
(180)
GWAS (211)

CaREN1 LG5 (SNP1 genomic location
37177950, SNP5, 195644)
LG6 (SNP1 genomic location
37177950, SNP2, 11095309,
SNP3, 11106054)

23 Chakraborty
et al. (2023)

Protein content (under heat stress) GWAS (140) 15 MTAs Chromosomes 1, 2, 3, 6, 7
S3_10482045 and S6_59061568

24 Samineni
et al. (2022)

Protein content (under drought stress) GWAS (140) 46 MTAs Chromosomes 6, 7 18 Samineni
et al. (2022)

S1_1451316, S1_18239723,
S1_812178, S1_35622241, nd
S6_ 12788060

Protein content (under non stress) GWAS (140) 66 MTAs Chromosome 3 (S3_28729262,
S3_5346023; S3_5969219)
Chromosome 4 (S4_38618901)
Chromosome 5 (S5_3793636)
Chromosome 6 (S6_46910162)
Chromosome 8 (S8_13109034)

1–28 Samineni
et al. (2022)

Protein content GWAS (258) 4 MTAs Ca6 (Ca6_57802709) 1.7–2.4 Roorkiwal
et al. (2022)

Protein content GWAS (88) 3 MTAs LG1, 4, 6
SCA1_V1.0_KABULI_27758317
SCA4_V1.0_KABULI_10255941
SCA6_V1.0_KABULI_55623192

10.6–
11.5

Mugabe
et al. (2023)

Starch content ICC995×ICC5912,
RIL (189)

q-1.1 Chromosome
1 (markerCa1:333974)

14.3–
31.6

Wang
et al. (2019)

Raffinose GWAS (211) 16 SNPs changes in 31 genes SNP Ca4_43438450 – Elango
et al. (2022)

Stachyose GWAS (211) 7 SNPs changes in 12 genes – – Elango
et al. (2022)

Sucrose GWAS (211) 9 SNPs changes in 17 genes SNP Ca6_2510863 – Elango
et al. (2022)

Total sugars GWAS (211) 8 SNPs changes in 14 genes – – Elango
et al. (2022)

(Continued)
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TABLE 3 Continued

Nutrient component Population
type

QTL/genomic region LG/Chromosome and
name and position of
associated marker

PVE% References

Starch content GWAS (88) MTAs Chromosomes 1, 4, 5, 6
SCA1_V1.0_KABULI_27758317
SCA4_V1.0_KABULI_38788991
SCA5_V1.0_KABULI_28817538
SCA6_V1.0_KABULI_4964048

4.6–19.7 Mugabe
et al. (2023)

Oil content GWAS (88) LG2, 5
SCA2_V1.0_KABULI_17862582
SCA2_V1.0_KABULI_6644653
SCA5_V1.0_KABULI_4127731

7.6–16 Mugabe
et al. (2023)

Fatty acid (palmitic acid, linoleic acid,
alpha-linolenic acid)

GWAS (354) 5 significant SNPs Chromosomes 1, 2, 8
Chromosome 2
(SCM001765.1_7756123,
SCM001765.1_7281701)
Chromosome 8
(SCM001771.1_3705203,
SCM001771.1_13092034)
Chromosome
1 (SCM001764.1_29706924)

Salaria
et al. (2023)

Calcium content GWAS (258) One MTA Ca5 1.6 Roorkiwal
et al. (2022)

Copper content GWAS (147) 12 MTAs LG1, 2, 3, 4, 5, 6, 8
LG1 (Affx_123261919)
LG2 (Affx_123255840)
LG6
(Affx_123294330,
Affx_123280871)

12.8–
19.6

Fayaz
et al. (2022)

Zinc and iron content GWAS (96) 8 significant SNPs associated with
Zn and Fe content

Chromosomes 1, 4, 6, 7 – Diapari
et al. (2014)

Zinc and iron content GWAS (92) 16 genomic loci/genes LG1, 2, 3, 4, 5, 7 29 Upadhyaya
et al. (2016a)

Zinc and iron content ICC 4958 × ICC
8261
RIL (277)

CaqFe1.1, CaqZn2.1, CaqFe3.1,
CaqZn3.1, CaqFZ4.1. CaqFe4.1,
CaqFZ5.1, CaqFZ7.1

LG1, 2, 3, 4, 5, 7 16.9–
23.6

Upadhyaya
et al. (2016a)

Zinc content GWAS (107 C.
reticulatum
and 73
C. arietinum)

23 significant SNPs related to seed
Fe content

Chromosomes 1, 4, 5
Chromosome 1 (SNP204)
Chromosome4 (SNP8254,
SNP8255)
Chromosome 5 (SNP 9478)

7.3–21 Karaca
et al. (2020)

Zinc content 16 significant SNPs related to seed
Zn content

Chromosomes 2, 3, 4
Chromosome 4 (SNP8284)
Chromosome 5 (SNP9528,
SNP9529, SNP10249)

7–16 Karaca
et al. (2020)

Zinc content GWAS (147) 5 MTAs LG1, 4, 7
LG4 (Affx_123261732)
LG7 (Affx_123247267,
Affx_123295749, Affx_123241958)
LG1 (Affx_123243695)

11.6 Fayaz
et al. (2022)

Iron content GWAS (147) 9 MTAs LG1, 3, 4, 5, 6, 8
LG5 (Affx_123275255)
LG6 (Affx_123293935,
Affx_123243960, Affx_123240923)
LG4 (Affx_123282040)
LG3 (Affx_123258734)
LG1 (Affx_123272321)
LG8 (Affx_123255008)

up to 20 Fayaz
et al. (2022)

(Continued)
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TABLE 3 Continued

Nutrient component Population
type

QTL/genomic region LG/Chromosome and
name and position of
associated marker

PVE% References

Manganese content GWAS (147) 9 MTAs LG1, 2, 3, 4, 7
LG7 (Affx_123292401,
Affx_123261947)
LG3 (Affx_123296790,
Affx_123293942)
LG4 (Affx_123291734,
Affx_123252620, Affx_123272607)
LG2 (Affx_123296837)
LG1 (Affx_123282242)

4.5–12.7 Fayaz
et al. (2022)

Zinc content GWAS (258) 7 MTAs Ca1, 3, 6
(Ca1_1204130, Ca3_31771545)

2.6–12.1 Roorkiwal
et al. (2022)

Mn content GWAS (258) – Ca2_7953148 Roorkiwal
et al. (2022)

Iron content GWAS (258) 1 MTA Ca1 – Roorkiwal
et al. (2022)

Iron content (under heat stress) GWAS (140) 43 MTAs S1_12185432, S3_37090540 22 Samineni
et al. (2022)

Zinc content (under heat stress) GWAS (140) 5 significant SNPs Chromosome 2 (S2_2323804,
S2_2370534, S2_2312104)
Chromosome 4 (S4_32672776)
Chromosome 7 (S7_37159003)

– Samineni
et al. (2022)

Iron content (under drought stress) GWAS (140) 1 MTA Chromosome 4 9 Samineni
et al. (2022)

Zinc content (under drought stress) GWAS (140) 1 MTA Chromosome 7 11 Samineni
et al. (2022)

Iron content (under non stress) GWAS (140) 1 MTA Chromosome 4 (S4_44607232) 11 Samineni
et al. (2022)

Zinc content (under non stress) GWAS (140) 3 MTAs Chromosomes 1, 7, 4
(S1_15267578,
S7_11907729, S4_9867593)

34 Samineni
et al. (2022)

Iron content GWAS 12 SNPs Chromosomes 1, 4, 6, 7 – Srungarapu
et al (2022b)

Zinc content GWAS 1 SNP – – Srungarapu
et al (2022b)

Folate content GWAS (258) 10 MTAs Ca2, 4, 5, 6
(Ca5_664616, Ca4_1677219)

3.5–28.6 Roorkiwal
et al (2022)

Vitamin B2 GWAS (258) 10 MTAs Ca1, 3, 4, 6
(Ca3_3519666)

up to 25 Roorkiwal
et al (2022)

Vitamin B6 GWAS (258) 14 MTAs Ca1, 3, 4, 5, 7
(Ca4_17620596)

up
to 9.5

Roorkiwal
et al. (2022)

Vitamin B1 GWAS (258) 4 MTAs Ca1, 2, 4
(Ca1_32272158)

– Roorkiwal
et al. (2022)

Manganese GWAS (258) 4 MTAs Ca1, 2, 4, 6 11.4 Roorkiwal
et al. (2022)

Magnesium GWAS (258) 2 MTAs Ca4 8.5 Roorkiwal
et al. (2022)

Beta carotene Cicer
arietinum L.×

4 QTLs for beta-carotene LG1b., LG3 – Abbo
et al. (2005)

Lutein C. reticulatum 1 QTL for lutein concentration LG8 – Abbo
et al. (2005)

(Continued)
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markers identified seven genomic regions associated with SPC in 336

chickpea accessions, explaining a combined 41% PVE (Upadhyaya

et al., 2016b) (see Table 3).

Furthermore, a combined QTL-seq and GWAS approach

identified two major QTLs that regulate SPC on LG5 and LG6

(Chakraborty et al., 2023). The highly significant SNPs and genomic

region controlling SPC were validated in 211 chickpea accessions,

indicating the tight association of an SNPmarker with the “CaREN1

(ROP1 ENHANCER1)” genomic region, explaining 23% PVE.

CaREN1 knockdown significantly reduced SPC, confirming the

role of CaREN1 in governing SPC (Chakraborty et al., 2023).

Diapari et al. (2014) conducted GWAS using SNP markers to

elucidate genomic regions associated with grain Zn and Fe in 96

chickpea genotypes, identifying eight SNPs contributing to Zn or

Fe, with one SNP on chromosome 1 associated with both.

Additionally, two SNPs related to Fe and Zn were identified on

chromosomes 6 and 7, and three SNPs related to Zn and two SNPs

related to Fe were identified on chromosome 4 (Diapari et al., 2014)

(see Table 3).

A recombinant inbred lines-based bi-parental mapping

population approach using an ICC 4958 × ICC 8261 population

identified eight QTLs governing seed Fe and Zn on six

chromosomes, explaining a combined 39.4% PVE (Upadhyaya

et al., 2016a). Furthermore, genotyping 92 sequenced desi and

kabuli accessions with 24,620 SNPs identified 16 genomic loci/

genes contributing to seed Fe and Zn, accounting for a combined

29% PVE (Upadhyaya et al., 2016a). Subsequently, a GWAS on a

diverse panel of 147 chickpea genotypes phenotyped for two years

and genotyped with an “Axiom®50K CicerSNP array” identified 35

significant marker-trait associations (MTAs) contributing to grain
Frontiers in Plant Science 12
Zn, Fe, Cu, and Mn, with five MTAs consistently identified in

different environments (stable), six explaining more than 15% of the

phenotypic variation (major), and three both stable and major

MTAs (Fayaz et al., 2022). Likewise, over two years, SNP204 on LG1

and SNP9478 on LG5 showed significant MTAs for Fe content at

Sanliurfa, and SNP8254 and SNP8255 on LG4 showed significant

MTAs for Fe content at Bornova (Karaca et al., 2020). A GWAS on

258 chickpea genotypes using 318,644 SNPs derived from whole

genome sequencing revealed 62 significant MTAs for 12 important

nutritional traits, including crude protein, b-carotene, seed Ca, and

folate content, on chromosomes Ca1, Ca3, Ca4, and Ca6, explaining

up to 29% PVE (Roorkiwal et al., 2022). A GWAS on a reference set

of 280 chickpea genotypes using a 5k SNP array and the FarmCPU

and BLINK models identified seven significant SNPs for grain

protein, 12 SNPs for Fe, and one SNP for Zn on chromosomes 1,

4, 6, and 7 (Srungarapu et al., 2022b). Another GWAS analysis

identified 181 MTAs for grain protein, Zn, and Fe content in 140

diverse chickpea genotypes under non-stress, drought, and heat

stress conditions, with 48 and 63MTAs significantly associated with

drought stress and heat stress, respectively (Samineni et al., 2022).

Thus, targeting the identified overlapping/common genomic

regions controlling these micronutrients for cloning could help

elucidate the precise functions of candidate genes associated with

nutrient content.

A GWAS on 354 kabuli and desi chickpea genotypes highlighted

the significance of key grain fatty acids, including palmitic, linoleic,

alpha-linolenic, and oleic acids, identifying five significant SNPs on

chromosomes 1, 2, and 8 strongly associated with palmitic acid

(Salaria et al., 2023). Another GWAS using 36,645 SNP markers

derived from 88 chickpea accessions uncovered MTAs for starch on
TABLE 3 Continued

Nutrient component Population
type

QTL/genomic region LG/Chromosome and
name and position of
associated marker

PVE% References

Carotenoid content Biparental
mapping
populations
CDC Jade’ × ‘CDC
Frontier’
CDC Cory’ ×
‘CDC Jade’
‘ICC4475’ ×
‘CDC Jade

8 QTLs (b-carotene, zeaxanthin, b-
cryptoxanthin, b-
carotene, violaxanthin)

LG1,3,5 and 8
LG1 (marker AX-123644659 for
q-Zea-1-JF QTL, AX-123641029
for q-Crt-1-JF QTL, AX-
123638575 for q-Lut-1-JF QTL)
LG5 (marker AX-123632228 for
q-Zea-5-JF QTL)
LG8 (marker AX-123637790 for
q-Cryp-8-JF QTL, AX-123657409
for
q-Crt-8-JF QTL, AX-123657409
for
q-Vio-8-JF QTL)

58–70 Rezaei
et al. (2019)

b-carotene GWAS (258) 2 MTAs Ca4, 5 2.4 Roorkiwal
et al. (2022)

Phytic acid GWAS (258) 1 MTA Ca1 – Roorkiwal
et al. (2022)

Fiber content GWAS (88) MTAs Chromosome 7
(SCA7_V1.0_KABULI_33227889,
SCA7_V1.0_KABULI_39055774)

20 Mugabe
et al. (2023)

8.5–19.8

Ciceritol GWAS (211) 7 SNPs changes in 12 genes SNP Ca_46225454, Ca5_1870839 – Elango
et al. (2022)
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chromosome 2 (12% PVE), fiber content on chromosome 6 (20%

PVE), oil content on chromosome 7 (11% PVE), and grain protein on

chromosome 1 (11% PVE) (Mugabe et al., 2023).
Functional genomics approaches for
discovering candidate gene(s)
contributing to nutrients

Advances in functional genomics, particularly RNA-seq-based

transcriptome assembly, have greatly enhanced our ability to

identify trait-based candidate genes in chickpea (Kudapa et al.,

2018). For instance, quantitative RT-PCR can be used to profile the

expression of candidate genes for SPC. Notably, GWAS revealed

higher differential upregulatory expression in high SPC-containing

mapping individuals (21.5–22.4%) than in low SPC-containing

mapping individuals (15.6–16.5%) during the seed development

stage (Upadhyaya et al., 2016b). Similarly, functional analysis of the

SPC gene ROP1ENHANCER1, identified through combined QTL-

seq and candidate gene-based association mapping, demonstrated a

significant reduction in SPC when this gene was knocked down in

chickpea (Chakraborty et al., 2023). Similarly, Upadhyaya et al.

(2016a) used qRT-PCR to explore the functional expression of

candidate genes related to grain Fe and Zn, reporting high

expression in the seeds of parental chickpea genotypes with high

Fe and Zn compared to those with low Fe and Zn.

Furthermore, investigating the potential role of various

transporter genes (“FRO2, IRT1, NRAMP3, V1T1, YSL1, FER3,

GCN2, and WEE1”) in Fe metabolism, Jahan et al. (2023) validated

their function in Fe uptake, root and stem translocation, and leaf

tissue accumulation. Examining the expression patterns of

identified genes related to carotenoid content, Rezaei et al. (2016)

analyzed the expression of 19 selected genes associated with the

carotenoid biosynthesis pathway in five chickpea cultivars,

reporting up-regulatory expression in the CDC Jade cultivar.

Functional genomics advancements will potentially uncover

more candidate genes associated with quality traits, offering

insights into their precise functions. This knowledge could facilitate

the cloning and transfer of these genes to elite chickpea cultivars.
Innovative breeding tools for
improving nutritional components

Recent advances in breeding approaches, including genomic

selection, speed breeding, and high-throughput phenotyping, offer

promising avenues for improving the nutritional components of

chickpea and developing nutritionally dense or biofortified

genotypes. Genomic selection (GS) can harness high-throughput

SNP markers derived from chickpea genomics resources to select

progenies with superior genetic merit for various nutritional traits

using prediction models trained on a large target population

(Meuwissen et al., 2001). Speed breeding protocols can expedite

the generation of mapping populations, such as recombinant lines

and backcross populations, for mapping various nutritional
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component QTLs/genes (Watson et al., 2018). Advances in high-

throughput phenotyping and non-destructive phenotyping,

including hyperspectral imaging, Fourier transform near-infrared

imaging, and micro-computed tomography imaging, offer efficient

means of assessing nutritional components in chickpea

(Hacisalihoglu and Armstrong, 2023). Emerging approaches like

artificial intelligence and machine learning tools that use

convolutional and deep neural networks could predict nutritional

quality and the role of novel genes/pathways associated with various

nutritional and anti-nutritional components in chickpea (Tachie

et al., 2023). By integrating these innovative breeding tools into

chickpea breeding programs, researchers can accelerate the

development of nutritionally enhanced varieties, contributing to

efforts to combat hunger and improve food security worldwide.
Scope of genome editing for
improving nutrient bioavailability

Conventional breeding approaches have significantly increased

the global yield and production of chickpea. Before the advent of

CRISPR/Cas9 (Wang et al., 2016), other genome editing systems

like zinc-finger nucleases (ZFNs) (Urnov et al., 2010), transcription

activator-like effector nucleases (TALENs) (Joung and Sander,

2013), and homing endonucleases or meganucleases (Pâques and

Duchateau, 2007; Daboussi et al., 2015) were used. Zinc-finger

nucleases, comprising distinct DNA binding and FokI nuclease

DNA cleavage domains, were among the earliest synthetic proteins

used for targeted mutagenesis and gene replacement (Li et al., 1992;

Carroll, 2011; Davies et al., 2017). However, they suffered from low

specificity, limited efficacy, and inability to achieve gene knockout

and RNA editing (Wang et al., 2016; Salsman and Dellaire, 2017;

Kumar et al., 2022). Similarly, TALENs, which function as

nonspecific DNA-cleaving nucleases, tether a restriction nuclease

to a DNA-binding protein domain termed TAL effector (Hensel

and Kumlehn, 2019) but faced similar drawbacks as ZFNs.

Meganucleases, rare cutting enzymes also known as homing

endonucleases (Pingoud and Silva, 2007), offered highly specific

site cleavage (Khan, 2019) with low cytotoxicity. Despite their

efficiency in excising large DNA sequences, challenges in

manufacturing and potential off-targeting effects hindered their

widespread use (Jin et al., 2016; Kumar et al., 2022).

In contrast, CRISPR/Cas9-based genome editing technology

has revolutionized molecular biology by enabling precise and

accurate targeted mutations in desired genomic regions (Wada

et al., 2020). This breakthrough offers opportunities to improve

functional quality traits, including nutrient-related parameters

(Haun et al., 2014; Waltz, 2016; Sun et al., 2017; Li et al., 2018;

Sánchez-León et al., 2018). Notably, a CRISPR/Cas9 protocol has

been successfully established in chickpea (Badhan et al., 2021;

Gupta et al., 2023a) and used to edit genes like 4-coumarate ligase

(4CL) and Reveille 7 (RVE7) associated with drought tolerance

(Badhan et al., 2021). Likewise, this technology has successfully

knocked out chickpea phytoene desaturase (CaPDS), resulting in

albino chickpea phenotypes (Gupta et al., 2023b).
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Recent advances in genome editing, such as base editing and

prime editing, further enhance the efficiency and precision of

CRISPR/Cas9. Base editing introduces single nucleotide variants

into DNA/RNA through programmable base editors (Porto et al.,

2020), while prime editing enables insertions, deletions, or base

conversions of up to 12 nucleotides without introducing double-

strand breaks (Anzalone et al., 2019; Zong et al., 2022; Ahmad et al.,

2023; Zhao et al., 2023). These technologies hold promise for

addressing challenges in crop improvement, including developing

biofortified chickpea varieties to combat malnutrition and promote

global nutritional security. However, overcoming technical hurdles

like reliable transformation and regeneration protocols, identifying

genomic regions for target traits, and determining the precise

metabolic pathways involved (Ku and Ha, 2020) remains crucial

for real izing the full potential of genome editing in

crop enhancement.
Conclusions and future perspectives

Addressing the challenges of global food security and malnutrition

requires concerted efforts to enhance the nutritional quality of crops

like chickpea. While progress has been made in increasing chickpea

yield, there remains a need to balance this with improved nutritional

traits. Thorough studies on the correlation of various quality traits,

including carbohydrates, proteins, fats, and micronutrients, are crucial

for integrating these factors into efforts aimed at enhancing nutritional

characteristics. Recognizing the tradeoff between production and

quality traits is crucial, and breeding programs should aim to find

the optimal balance to meet both needs.

Using the genetic diversity in chickpea crop wild relatives,

landraces, and germplasm resources and leveraging genomic
Frontiers in Plant Science 14
resources such as the chickpea genome sequence and pan-genome

assembly can help identify the key genetic determinants/gene(s)/

QTL controlling nutritional traits. Marker-assisted selection can

facilitate the transfer of nutrient-dense genomic regions to elite

chickpea cultivars (see Figure 2). Furthermore, CRISPR/Cas9

genome editing offers precise editing of genomic regions related

to anti-nutrients, enhancing nutrient bioavailability. Efforts to

elucidate metabolic pathways associated with quality traits will

deepen our understanding of the molecular mechanisms and gene

(s) governing these quality traits. Developing improved chickpea

cultivars with enhanced nutrition can help meet the rising demand

for protein-rich diets and combat malnutrition, contributing to

global food and nutrition security, modern cropping system

diversity, and agricultural sustainability.
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FIGURE 2

Various breeding and innovative approaches for developing biofortified chickpea cultivars.
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