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Rhizosphere effects and
microbial N limitations drive the
root N limitations in the
rhizosphere during secondary
succession in a Pinus
tabuliformis forest in
North China
Songlan Duan, Jinping Guo*, Yunxiang Zhang, Libao Liu,
Rui Wang and Rongrong Zheng

College of Forestry, Shanxi Agricultural University, Jinzhong, China
Introduction: Rhizosphere effects (REs) have recently been identified as

important regulators of root and microbial nutrient acquisition and are

positively involved in nutrient cycling of belowground carbon (C), nitrogen (N),

and phosphorus (P). Nutrient conditions of the fine roots and soil N are likely to

influence REs. Still, it is unclear how REs of soil nutrients themselves variably

impact the supply of nutrients to plants in terms of the responses to soil N due

to succession.

Methods: In this study, we applied both fine roots and extracellular enzymes for

vector analysis and stoichiometry of N:P to explore the metabolic limitations of

roots and rhizospheric soil microbes and their relationships with REs across five

levels of soil N (0, 5, 10, 15, and 20 kg N m−2 year−1) along successional age

classes of 42, 55, and 65 years in a Pinus tabuliformis forest.

Results: Overall, the metabolism of root and rhizospheric soil microbes was

mediated by soil N. N limitation of roots initially decreased before increasing,

whereas that of microbes demonstrated opposite trends to the N levels owing to

competition for inorganic N between them by REs of NO3
−–N. However, N

limitations of both roots and microbes were alleviated in young stands and

increased with succession after the application of N. In addition, root N

limitations were manipulated by REs of three different soil N-related indicators,

i.e., total N, NH4
+–N, and NO3

−–N. Rhizospheric soil microbial N limitation was

almost unaffected by REs due to their strong homeostasis but was an important

driver in the regulation of root N limitation.
Abbreviations: REs, rhizosphere effects; SOM, soil organic matter; DBH, diameter at breast height; EES,

extracellular enzyme stoichiometry; TER, threshold elemental ratio; V-T, enzymatic vector; ECM,

ectomycorrhizal; SOC, soil organic carbon; TN, total N; TP, total P; NH4
+–N, ammonium ions; NO3

−–N,

nitrates; AP, available P; TC, total C; BG, b-1,4-glucosidase; NAG, b-1,4-N-acetylglucosaminidase; LAP, L-

leucine aminopeptidase; ACP, acid phosphatase.
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Discussion: Our results indicated that successional age was the most critical

driver that directly and indirectly affected root N metabolism. However, the level

of N application had a slight effect on root N limitation. Microbial N limitation and

variations in the REs of N indicators regulated root N limitation in the rhizosphere.

As a result, roots utilized REs to sequester N to alleviate N limitations.

These findings contribute to novel mechanistic perspectives on the

sustainability of N nutrition by regulating N cycling in a system of plant–soil–

microbes in the rhizosphere to adapt to global N deposition or the

heterogeneous distribution of bioavailable soil N with succession.
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1 Introduction

Over the last decade, there has been a rapid increase in the

investigation of the rhizosphere, which is strongly affected by roots

and serves as an important area of research on soil–plant–microbial

interactions (Philippot et al., 2013; Vives-Peris et al., 2020; Ling et al.,

2022; Jing et al., 2023; López et al., 2023) because of its critical role in

terrestrial carbon (C) and nitrogen (N) cycling (Cheng et al., 2014; Finzi

et al., 2015; Gan et al., 2021). Decoding the course of the rhizosphere

connected with N cycling and their responses to exogenous N input has

significant effects on plant physiological metabolism and growth in

different life stages (Kuzyakov and Xu, 2013; Kang et al., 2022). The

release of a diverse array of chemicals, including carbohydrates, organic

acids, amino acids, mucilage, and exudative root cells, into the

rhizosphere by living roots during plant growth and metabolism

favors the improvement of soil fertility (Cheng and Kuzyakov, 2015;

Carrillo et al., 2017; Vives-Peris et al., 2020). For example, Zea mays

release more carbohydrates and c-aminobutyric acid into the

rhizosphere to modify the P deficiency while decreasing the excretion

of amino acids and the quantities of sugars to combat N and potassium

(K) deficiencies (Carvalhais et al., 2011; Olanrewaju et al., 2019; Koshila

Ravi and Muthukumar, 2024). This process leads to significant

differences between rhizospheric soils that cling to root surfaces and

bulk soils in terms of their physical, chemical, and biological properties

(Kumar and Garkoti, 2022; Li et al., 2022; Herre et al., 2022a, 2022b).

Specifically, it promotes the growth and development of plants, carbon

sequestration, and functioning of terrestrial ecosystems by enhancing

soil nutrient availability, influencing plant hormonal signaling,

facilitating nutrient absorption and cycling, and alleviating abiotic

stress through microorganisms in the rhizosphere (Kumar and

Verma, 2019; Berger et al., 2020; Darriaut et al., 2022; Solomon et al.,

2024; Zhuang et al., 2024). The magnitude of these modifications to

rhizosphere attributes is often defined as the rhizosphere effect (RE)

(Phillips and Fahey, 2006; Finzi et al., 2015; Gan et al., 2021).

The ecological stoichiometry of the N:P ratio, an effective

indicator for detecting nutritional limitation, describes the
02
interactions of essential elements in the global ecological

processes of the balance between energy flow and nutrient cycles

in terrestrial ecosystems (Elser et al., 2010; Chen et al., 2016; Ren

et al., 2016; Cui et al., 2018). Nitrogen and phosphorus, two basic

but the most restrictive nutritional elements, directly affect the

growth and development of plants, the nutrient status of the soil,

and the metabolism and activities of microbes (Elser et al., 2000,

2010; Sinsabaugh and Follstad Shah, 2011, 2012; Hu et al., 2018).

Roots are essential organs that facilitate the absorption of N, P, and

other elemental nutrients and serve as an interface between the soil

and plants (Wang et al., 2020; Shi et al., 2021). The N:P ratios in fine

roots are the most immediate and efficient reflections of growth rate

and physiological adjustment to the environment, such as changes

in N levels, warming, and elevated CO2 (Sardans et al., 2017; Wang

et al., 2020), as well as nutrient availability and limitations (Su et al.,

2019; Cao et al., 2020; Geng and Jin, 2022; Ma et al., 2022; Geng

et al., 2023). Furthermore, the ecological stoichiometry of

extracellular enzyme stoichiometry (EES) actively engaged in N

and P cycling revealed equilibrium relationships between the

relevant nutrient requirements for microbial metabolism and soil

provision (Sinsabaugh et al., 2009; Sinsabaugh and Follstad Shah,

2012; Cui et al., 2019; Dong et al., 2021). Subsequently, the proposal

and development of the threshold elemental ratio (TER) and

enzymatic vector (V-T) models have thoroughly estimated the

metabolic limitations of microbes based on traditional models,

enhanced the uniformity of predictions for the metabolic

limitations of microbes, and further confined the nutritional

constraints of N and P (Sinsabaugh et al., 2009; Sinsabaugh and

Follstad Shah, 2012; Cui et al., 2018, 2021).

Microbes use their ability to decompose soil organic matter (SOM)

to acquire supplemental nutrients such as N and P via labile C as root

exudates released by plant roots (Phillips et al., 2011; Dijkstra et al.,

2021; He et al., 2021). REs are influenced by the availability of soil

nutrients owing to the metabolic balance between microbes and fine

roots (Phillips and Fahey, 2008) and may also be a useful nutritional

adjunct to plants (Dijkstra et al., 2013; Hicks et al., 2020), which further
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affects soil C and N cycling (Dijkstra et al., 2013; He et al., 2021). REs

also contribute to the maintenance of forest productivity during extra

growth and provide a long-term enhancement response to elevated

CO2 when forests endure a gradual increase in N limitation (Drake

et al., 2011; Phillips et al., 2011; Meier et al., 2015). For example, a meta-

analysis reported that roots could accelerate mineralization, and the

priming of REs explained approximately 33.3% of the total soil C andN

mineralization. Furthermore, the REs due to root-derived C accounted

for up to 4% and 6% of gross and net primary production, respectively,

in a temperate forest (Finzi et al., 2015). Therefore, the magnitude of

REs is not only a crucial factor used to explain species coexistence and

biodiversity (Lambers et al., 2009; Cheng et al., 2014; Hicks et al., 2020)

but also a promising mechanism for evaluating the capacity of plants to

accelerate soil organic carbon (SOC) turnover/accumulation (Han

et al., 2020; Dijkstra et al., 2021) and resist future atmospheric N

deposition (Phillips et al., 2011; Henneron et al., 2020; Gao et al., 2023).

REs are emerging as a global nutritional acquisition strategy for

different types of woody plants at large spatial scales and function as

substitutional nutrients when bulk soil nutrients are insufficient for

plant growth (Dijkstra et al., 2013; Sun et al., 2023).

Heterogeneity in the distribution of bioavailable N in soil across

different regions and the incessant increase in N deposition in the

atmosphere (Sun et al., 2022; McDonnell et al., 2023; Zhou et al.,

2024) have led to differences in the nutrient limitation of roots and

rhizospheric soil microbes, as well as rhizospheric effects that can

extend through the entire ecosystem (Phillips et al., 2011; Zhang

et al., 2019; Cai et al., 2023). Several studies have focused on regional

and global climatic change (Dijkstra et al., 2013; Cheng et al., 2014;

Terrer et al., 2016) and plant economic resource acquisition

strategies (Keller et al., 2021; Sun et al., 2023). Although N

deposition is a major global change, the response of REs to

changes in soil N content remains poorly understood. Thus, an

investigation into the effects of N application on the REs of soil

nutrients linked to N and P and root and rhizospheric soil microbial

nutrient limitations is critical. Specifically, it is critical to elucidate

the ecological influences of N deposition on the nutritional balance

and constraints in the rhizosphere of forest ecosystems.

Pinus tabuliformis is a widespread ectomycorrhizal (ECM) tree

that occupies a pioneering niche in the coniferous forest ecosystems

of northern China (Long et al., 2016; Taniguchi et al., 2021) and

plays a dominant role as a carbon sink in forests (Song et al., 2021).

This native tree species is drought-resistant and adaptable to harsh

environments; therefore, it is typically used for revegetation (Song

and Hou, 2020; Zhang et al., 2021). With continuous increases in N

deposition in the atmosphere and the heterogeneity of the

distribution of bioavailable N in the soil across different regions,

it is essential to understand the responses of REs, the ecological

stoichiometry of the C:N:P ratio, and the nutritional limitations of

roots and microbes in the succession of P. tabuliformis forests. In

this study, the metabolic limitations of both fine roots and

rhizospheric soil microbes were explored by means of vector

analysis of extracellular enzymes and roots based on the

stoichiometry of N:P and their relationships with REs across five

levels of N application (0, 5, 10, 15, and 20 kg N m−2 year−1) along a

secondary succession of classes (42, 55, and 65) in a P. tabuliformis

forest. Specifically, we hypothesized that 1) the application of N
Frontiers in Plant Science 03
affects the nutritional limitations of rhizospheric soil

microorganisms and fine roots, as well as REs. Furthermore, the

response of nutritional microbial limitations in rhizospheric soil

and roots of elder stands was more susceptible than that of young

stands. 2) The nutritional limitation of roots with succession would

be associated with microbial nutritional limitation in the

rhizosphere and the REs.
2 Methods

2.1 Site description

This study was conducted at the Xiaowenshan Forest Farm

(established in 1962) in the Guandishan Forest Region of Shanxi

Province, northern China (Figure 1). The total area covers

approximately 1.99 × 104 ha, with altitudes ranging from 1,460 to

1,610 m. This region is located in the inner continental mountain

monsoon climate zone. The mean annual temperature is 4.2°C, the

mean annual precipitation is 822.6 mm, and the relative humidity is

70.9%. The soil is a typical Alfisol, which is covered by a 3–7-cm

humus layer. P. tabuliformis is a typical dominant tree species, with

a few associated species such as Larix principis-rupprechtii, Picea

wilsonii, Betula platyphylla, and Quercus mongolica. The understory

species primarily comprise Spiraea salicifolia, Rosa xanthine,

Corylus mandshurica, Rosa bella, and a few Lespedeza bicolor

(Zhang et al., 2021).
2.2 Experimental design

In 2020, 42-year-old (42-year), 55-year-old (55-year), and 65-

year-old (65-year) stands of P. tabuliformis forest were selected as

experimental sites at the forest farm (111°24′E–112°37′E, 37°41′N–
37°54′N) (Figure 1). A randomized block design with three replicate

blocks of five levels of N application at each successional age was

established before the experiment: N0 (0 kg N m−2 year−1, N1 (5 kg

N m−2 year−1), N2 (10 kg N m−2 year−1), N3 (15 kg N m−2 year−1),

and N4 (20 kg N m−2 year−1). Five 201-m2 circular plots (radius =

8 m) with a buffer zone (Song, 2017; Pretzsch, 2022) were included

in each block. A backpack sprayer was used to apply various

concentrations of urea solutions (CH4N2O) to the corresponding

N application plots (N0, 0 g CH4N2O; N1, 6,608 g CH4N2O; N2,

8,913 g CH4N2O; N3, 11,217 g CH4N2O; and N4, 15,826 g CH4N2O;

each added to 20 L of water) continuously before rain in mid-May,

July, and September of each year (Geng and Jin, 2022). The details

of the experimental sites are listed in Table 1.
2.3 Soil and root sampling

In June 2022, after the continuous application of N for 1.5 years,

three standard trees were randomly selected to collect the paired

non-rhizospheric and rhizospheric soils, as well as the living fine

roots (Ø ≤ 2 mm) in each plot of each stand age. Three 8 cm inside

diameter soil cores (10 cm depth) were randomly extracted under
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the canopy area of each standard tree to ensure sufficient

rhizospheric soil and living fine root samples following careful

removal of understory plants and surface litter. The living roots of

P. tabuliformis can be distinguished based on their features,

including shape, color, taste, and elasticity. The fine roots were

gently shaken to collect the adhered rhizospheric soil (Phillips et al.,

2011). The fine roots were collected and placed in polyethylene

bags. Finally, soil without any attachment to the roots was collected,

which was regarded as non-rhizospheric soil. The living fine roots

and paired non-rhizospheric and rhizospheric soils of three

standard trees collected from each plot were pooled for a

homogenized sample.
Frontiers in Plant Science 04
A cooler box was used to store the collected rhizospheric and

non-rhizospheric soil samples, and it was ensured that their

transport to the laboratory was complete within 24 h of analysis.

Each soil sample was divided into two fractions. One fraction was

stored at 4°C for <1 week and subsequently used for the analysis of

soil enzyme activity. The other fraction was sieved using a 0.25-mm

sieve after air-drying at room temperature (20°C–25°C) to analyze

its chemical properties, including the concentration of SOC, total N

(TN), total P (TP), NH4
+–N, NO3

−–N, and available P (AP). The

root samples were first gently rinsed in distilled deionized water

over a 0.5-mm wet sieve and then dried to a constant mass at 75°C

for 48 h after heat-killing at 105°C for 15 min. Finally, the dried root
TABLE 1 Basic data on the sampling points in the study area.

Stand
age

Block Altitude
(m)

Longitude Latitude Slope
(°)

Mean diameter
at breast height

(DBH) (cm)

Mean tree
height (m)

Canopy
closure

(%)

42 years B1 1495.2 111°30′43.83″E 37°44′08.75″N 19° 24.03 16.97 75

B2 1539.8 111°31′29.14″E 37°44′12.27″N 22° 27.28 16.24 52

B3 1554.4 111°31′30.40″E 37°44′14.57″N 21° 27.73 16.64 59

55 years B1 1523.8 111°30′48.03″E 37°44′15.90″N 32° 23.18 14.45 42

B2 1554.3 111°30′53.64″E 37°44′24.39″N 35° 32.01 19.14 75

B3 1566.2 111°30′56.99″E 37°44′25.69″N 37° 20.58 16.91 62

65 years B1 1518.2 111°30′46.79″E 37°44′12.87″N 26° 26.39 16.76 80

B2 1562.6 111°30′51.13″E 37°44′20.55″N 31° 29.99 16.75 60

B3 1557.0 111°30′55.05″E 37°44′23.82″N 28° 24.07 18.47 67
FIGURE 1

Location of the sample site.
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samples were ground into fine powder to determine their chemical

properties [TN, TP, and total C (TC)].
2.4 Lab analysis of soil and root samples

The SOC and TC of the roots were quantified using a TOC/TN

analyzer (Multi N/C 3100; Analytik Jena, Jena, Germany). The TN

and TP concentrations in the paired rhizospheric and non-

rhizospheric soils were quantified using Kjeldahl digestion and

molybdenum blue colorimetry, respectively. Root TN and TP

contents were determined by initial digestion with H2SO4–H2O2

(Nelson and Sommers, 1973; Parkinson and Allen, 1975). The soil

samples were extracted using a 2 M KCl and 0.5 M NaHCO3

solution under shaking and then passed through filter paper to

determine the available N and P (NH4
+–N, NO3

−–N, and AP) of

paired rhizospheric and non-rhizospheric soils (Olsen et al., 1954;

Bremner and Keeney, 1966). These parameters were determined

using an automated discrete analyzer (SmartChem 450, AMS

Alliance, Rome, Italy).

The activities of four soil extracellular enzymes, i.e., b-1,4-
glucosidase (BG), b-1,4-N-acetylglucosaminidase (NAG), L-

leucine aminopeptidase (LAP), and acid phosphatase (ACP),

representing one C-acquiring, two N-acquiring, and one P-

acquiring enzymes, respectively, were determined using standard

fluorometric techniques and enzyme calibration (M Plex, Tecan,

Männedorf, Switzerland) (Cui et al., 2019, 2021; Huang et al., 2022).

The enzymatic activity was expressed as nmol g−1 h−1.
2.5 Data analysis

The REs of each soil nutrient variable were calculated as the

percentage difference between paired rhizospheric and non-

rhizospheric soil samples using the Equation 1 (Phillips and

Fahey, 2006):

REs = (CR − CN)=CN � 100 (1)

where CR and CN are the concentrations of the measured variables

that include one soil C-related indicator (SOC), three soil N-related

indicators (TN, NH4
+–N, and NO3

−–N), and two soil P-related

indicators (TP and AP) in the paired rhizospheric and non-

rhizospheric soil samples, respectively.

Extracellular enzyme N:P stoichiometry in the rhizospheric soil

was calculated using the Equation 2:

N:PSEE = Ln(NAG + LAP)=Ln(ACP) (2)

where N:PSEE represents the natural logarithm of the ratio of

relative enzymatic activity, which indicates N acquisition and P

acquisition in rhizospheric soil (Cui et al., 2018).

The vector analysis of soil extracellular enzymes was widely

applied to determine the responses of soil microbial nutritional

constraints of C, N, and P to internal plant succession and external

soil environmental changes, which are always calculated with

Equations 3 and 4 (Cui et al., 2021; Huang et al., 2022; Kang et al.,
Frontiers in Plant Science 05
2022; Xu et al., 2022):

Vector length =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ln(BG)
Ln(ACP)

� �2
+

Ln(BG)
Ln(NAG   +   LAP)

� �2
2

s
(3)

Vector angle = Degree ATAN2
Ln(BG)
Ln(ACP)

� �
,

Ln(BG)
Ln(NAG   +   LAP)

� �� �� �
(4)

The vector length (dimensionless) quantified the relative

microbial C limitation. The greater the vector length, the more

severe the C limitation experienced by the microbes. The magnitude

of the vector angle (°) determines the relative microbial N or P

limitation. Vector angles (> 45° or < 45°) indicate that the microbes

experienced relative P or N limitation, respectively. The greater the

vector angle, the more P-limited the microbes and vice versa for N-

limited microbes. Thus, we developed a new indicator to define

microbial N limitation, as the formula, Equation 5:

Microbial N limitation

= Degree ATAN2
Ln(BG)

Ln(NAG   +   LAP)

� �
,

Ln(BG)
Ln(ACP)

� �� �� �
(5)

where Degree represents the tangent angle of the line extending

from the origin of the coordinates to the points with horizontal and

vertical coordinates of Ln BG/Ln ACP and Ln BG/Ln (NAG +

LAP), respectively.

The N:P stoichiometry of fine roots was calculated as described

by Elser, with Equation 6 (Elser et al., 2010):

N:PCON = TN=TP (6)

where N:PCON represents the mass ratio (g N/g P) of TN: TP in the

fine roots.

A new vector analysis was developed to determine the

nutritional limitations of N and P in plants, similar to that in a

previous study (Xu et al., 2022), and was calculated with Equation 7:

Vector angle = Degree½ATAN2(TP,TN)� (7)

The magnitude of the vector angle (°) determines the relative N or P

limitation of the fine roots. A vector angle (> 4.09° or < 3.58°)

indicated that the roots were experiencing relative N or P limitation,

respectively, and (3.58° < vector angle < 4.09°) indicated that the

relative P or N was free from limitation in fine roots. The greater the

vector angle, the more serious the N-limitation experience for

the roots and vice versa for the P limitation. The degree

represents the tangent angle of the line extending from the origin

of the coordinates to points with the horizontal and vertical

coordinates of the TN and TP contents, respectively.

Differences in the parameters representing the metabolic

limitations of root and rhizospheric soil microbes and the REs

between different N application levels and successional ages were

tested using a two-way analysis of variance (ANOVA). Multiple

comparisons among the different N application levels and

successional ages were conducted using the least significant

difference (LSD) test (p < 0.05). Relationships between paired

nutrient REs were determined using Pearson’s correlation
frontiersin.org
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analysis. The relationships between root and rhizospheric soil

microbial nutrient limitations and REs were identified using

linear regression analysis.

The relative importance of TC content in fine roots,

rhizospheric soil microbial nutrient limitation, and REs in the

regulation of root nutrient limitation was demonstrated using

random forest analysis and the random forest R package. The

complicated directions of multiple variables and the direct and

indirect effects of the predicted variables on the metabolic

limitations of the roots were quantified by constructing structural

equation models (SEMs) based on our fundamental knowledge in

conjunction with the results of linear regression analysis and

random forest modeling (Zhao et al., 2022). Moreover, we used

five metrics containing low chi-square value (c2), high p-values (>

0.05), high Jöreskog’s goodness fit index (GFI > 0.95), and

comparative fit index (CFI > 0.95), as well as low root mean

square error of approximation (RMSEA < 0.05) to verify an ideal

model fit. Construction and examination of the SEM model were

based on the maximum likelihood estimations and performed

through the R “lavaan” package (Zhao et al., 2022). All analyses

were performed using the R version 4.2.2 (R Core Team, 2022).
3 Results

3.1 Changes in root and rhizospheric soil
microbial N limitations

3.1.1 Effects of the application of N on root and
rhizospheric soil microbial N limitations

Both the roots andmicrobes in the rhizosphere exhibited serious N

restrictions [root N:PCON < 14, root vector angle (> 4.09°), enzyme N:P

ratios > 1, and microbial vector angle (< 45°)] (Figures 2G–J, 3C–F).

Typically, the application of N generally increased the root TC, TN and

TP contents of three successional ages (Figures 2A, C, E), but

significantly decreased the root vector angles in both 42-year and 55-

year stands (p < 0.05) (Figure 2I). This indicated an enhancement in

nutrient uptake and a mitigation in root N limitation following the

application of N. However, microbial N limitation in the rhizosphere of

stands of three successional ages and the root N limitation in the 65-

year stand were not affected by the application of N (p > 0.05)

(Figures 2I, 3G), although there was a slight decrease when the level

of N application was >15 kg N m−2 year−1 in root N limitation of the

65-year stand. Vector length, representing a relative microbial C

limitation, was only significantly different among the levels of N

application in the 65-year stand (Figure 3A).

3.1.2 Patterns of root and rhizospheric soil
microbial N limitations with succession

The average values of the natural logarithmic ratios of the

extracellular enzyme activity represented stoichiometric C:N:P

ratios of 1: 1.30: 1.08, 1: 1.28: 1.05, and 1: 1.34: 1.09 (Figure 4),

demonstrating a slight increase with succession, although the effect

was not significant (Figures 3B, D, F, H). However, succession had

significant effects on root elements, except for the TP content, and
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significantly increased the root N limitation (Figures 2B, D, F, H, J).

Besides, the root TN and TP contents were linearly correlated in all

three stands (Figure 5). There were no interactive effects between

the application of N and succession on root and rhizospheric soil

microbial N limitations (p > 0.05; Table 2).
3.2 Changes in REs

3.2.1 Effects of the application of N on REs
The application of N generally reduced the REs of SOC and TN in

stands of three successional ages (except REs of TN in a 42-year stand),

whereas it increased the REs of two soil P-related indicators, that is, TP

and AP (except REs of AP in the 65-year stand) (Figures 6A, C, E, K).

The REs of NH4
+–N and NO3

−–N demonstrated a similar pattern after

the application of N, which decreased in the 42-year stand and

increased in the 55-year and 65-year stands (Figures 6G, I).

The REs were generally significantly correlated with historical N

rates according to the fitted model (Figure 7). The REs of the SOC

and NH4
+–N generally linearly decreased with N levels (except in

the REs of NH4
+–N in 65-year stand) (Figures 7A, D). The REs of

TN and AP generally decreased non-linearly with increasing N

levels and demonstrated a similar trend for both the 42-year and 55-

year stands but differed from that of the 65-year stand

(Figures 7B, F). However, the REs of NO3
−–N generally increased

non-linearly with higher N levels (Figure 7E). The REs of the TP

increased linearly with the N level (Figure 7C), and the REs of the

AP showed nearly no variation under different N levels (Figure 6K).

3.2.2 Pattern of REs with succession
During the development of P. tabuliformis forests, REs differed

following the application of N. The magnitudes of the REs of SOC

and TN significantly increased with succession and were greater in

the 65-year stands (Figures 6B, D). However, the REs of TP, NH4
+–

N, NO3
−–N, and AP tended to decrease with succession and were

only significant in REs of two soil P-related indicators, i.e., TP and

AP (Figures 6F, H, J, L). The directions of TP and NO3
−–N were

positive and greater in magnitudes in 42-year stand compared with

those of the other successional stages (Figures 6F, J). Generally,

there were no interactive effects between N application and

succession on REs, except for the REs of TP (p > 0.05; Table 2).
3.3 Relationships between the paired REs
and root TC, TN, and TP contents

Pearson’s correlation analysis revealed that the root TC and TN

contents were negatively correlated with the REs of SOC or REs of

TN, respectively, but positively correlated with the REs of NO3
−–N.

However, these relationships were only significant in the REs of TN

with root TC and TN contents (p < 0.05) (Figure 8). Root TN

content also tended to decrease with the REs of NH4
+–N; however,

these relationships were not significant (p > 0.05) (Figure 8). In

addition, the REs of NO3
−–N were negatively correlated with the

REs of NH4
+–N (p < 0.05) (Figure 8).
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3.4 Potential drivers of root N
limitations during P. tabuliformis
secondary succession

Linear regression analysis indicated that REs of SOC, TN, TP,

NH4
+–N, and NO3

−–N, as well as rhizospheric soil microbial N

limitation, were linearly correlated with root N limitation, and their
Frontiers in Plant Science 07
correlation coefficients were 0.30, 0.34, −0.44, 0.35, −0.33, and 0.34,

respectively; p < 0.05) (Figures 9B, C). Among the variables,

successional age (20.5% IncMSE), REs of TP (4.9% IncMSE), and

microbial N limitation in the rhizosphere (3.8% IncMSE) were the

three strongest predictors of root N limitation (Figure 10).

The results of the SEM model demonstrated that the explanatory

factors cumulatively explained 64 variances in root N limitation
B

C D

E F

G H

I J

A

FIGURE 2

C, N, and P contents, N: P stoichiometry, and N limitations of fine roots for five levels of N application of stands of different ages (A, C, E, G, I) and
their changes with succession (B, D, F, H, J) in Pinus tabuliformis forest. Different small letters denote the significant differences (p < 0.05) among
different N application levels within the successional age, different capital letters denote the significant differences (p < 0.05) among three
successional ages, and ns represents non-significance on the basis of ANOVA and LSD tests (p > 0.05). N0 = 0 kg N m−2 year−1; N1 = 5 kg N m−2

year−1; N2 = 10 kg N m−2 year−1; N3 = 15 kg N m−2 year−1; N4 = 20 kg N m−2 year−1. 42yr, 42-year-old stand; 55yr, 55-year-old stand; 65yr, 65-
year-old stand. Red dashed lines represent the mean value of each variable in each successional age. LSD, least significant difference.
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(Figure 11A). Succession, which had the highest overall effect, was the

most critical factor driving root N limitation, both directly and

indirectly. The N limitation of microbes in the rhizosphere and REs

of NH4
+–N availability, with relatively high total effects, ranked

following succession and had direct positive effects on root N

limitation (Figures 11A, B). Succession had an indirect effect on root

N limitation by manipulating root TC content to regulate the REs of

NO3
−–N availability and the N limitation of microbes (Figure 11A). In

addition, we found that the REs of TN directly and positively regulated

microbial N limitation in the rhizosphere (Figures 9A, 11A). However,

the REs of TN and N levels had slight indirect effects on root N

limitation (Figures 11A, B).
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4 Discussion

4.1 Effects of N availability on N limitations
of roots and microbes in the rhizosphere
with succession

Initially, we found that the roots were limited by soil N, which is

consistent with our previous study on branches and leaves (Yan et al.,

2023). This indicates that both the aboveground growth and

underground growth were consistent. In the present study, root N

limitation was significantly alleviated when N addition rates reached

20 kg N m−2 year−1 in the 42-year and 55-year stands. However, N
B

C D

E F

G H

A

FIGURE 3

Vector analysis and stoichiometry N: P of extracellular enzyme, as well as N limitations of rhizospheric soil microbes for five levels of N application of
stands of different ages (A, C, E, G) and their changes with succession (B, D, F, H) in Pinus tabuliformis forest. Different small letters denote the
significant differences (p < 0.05) among different N application levels within the successional age, different capital letters denote the significant
differences (p < 0.05) among three successional ages, and ns represents non-significance on the basis of ANOVA and LSD tests (p > 0.05). Red
dashed lines represent the mean value of each variable in each successional age. LSD, least significant difference.
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application increased root N limitation in the 65-year stands

(Figure 2I). As a fast-growing tree species prior to maturity, the

increase in exogenous N in P. tabuliformis directly promoted the

accumulation of root TN in the 42-year and 55-year stands

(Figure 2C), which is consistent with previous studies (Kou et al.,

2018; Liu et al., 2021; Geng et al., 2023). However, because the

increased growth rate of P. tabuliformis caused by improved N

availability exceeds the nutrient uptake rates during the maturation

period, dilution effects have been observed (Deng et al., 2017;

Geng et al., 2023).

Notably, the microbial vector angles were (< 45°), indicating N

restriction rather than P restriction for microorganisms in the

rhizospheres of stands at the three successional ages (Figures 3C, D).

Similarly, application of N generally alleviated microbial N limitations

in the 42-year and 55-year stands but exacerbated them in the 65-year
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stand, although they were not significantly affected by the application of

N due to their strong homeostasis (Figures 3C, E, G) (Zhang et al.,

2019). This correlated with root N limitation and was consistent with

the SEM results, which suggested a key role of microorganisms in plant

nutrient limitation and competitive utilization of resources between

roots and rhizospheric microbes (Figure 11A). Roots and microbes in

the rhizosphere are always in progressive N limitation (Figures 2I, J, 3C,

D), which is attributed to the formation of strong depletion zones

around the roots by continuous N uptake by plants (Kuzyakov and Xu,

2013). Similar patterns were also observed for root and microbial N

limitation during succession, which increased with succession,

consistent with previous studies (Zhou et al., 2017; Zhang et al.,

2022), indicating that succession would increase N limitation in the

root–soil–microbe system in the rhizosphere under the same level of

soil N in this forest ecosystem.
A B C

FIGURE 5

Simple linear regression analysis to identify the relative nutritional constraint for N or P of fine roots of stands of 42-, 55- (A), (B) and 65-year-old
(C). Black dashed lines denote referenced lines with slopes of 14 for the N:P stoichiometry.
B CA

FIGURE 4

Standard major analysis of soil extracellular enzyme stoichiometry (C: N, C: P and N: P) (A–C) to identify the relative nutritional constraint for N or P
of rhizospheric soil microbes. Black dashed lines denote referenced lines with slopes of 1.0 for the extracellular enzyme stoichiometry.
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4.2 Effects of N availability on the REs
with succession

The REs of SOC and TN decreased following N application,

although sensitivity to N varied in P. tabuliformis stands of different

ages (Figures 6A, C). Soil, a strong source of plant N acquisition,

provides N resources to meet its high demand and conserves N for

low demand and vice versa (He et al., 2021). The application of N

reduces the mineralization of soil N in the rhizosphere, which is

aligned with C inputs from root exudates (Dijkstra et al., 2013;

Cheng et al., 2014; He et al., 2021). Thus, the improvement in soil N

availability resulting from exogenous N input (i.e., fertilization or

atmospheric N deposition) would enable plants to obtain N from

the soil immediately rather than investing more C in belowground

tissues and root exudates to stimulate microorganisms to

decompose SOM for N acquisition (Phillips et al., 2009).

However, the magnitude of the REs of SOC and TN in the 65-

year stand was the greatest (Figures 6B, D, 12) in response to

exacerbated root and microbial N limitations caused by lower root

TC and TN contents in the roots of 65-year stands, in contrast to

that in the 42-year and 55-year stands (Zhu et al., 2022) (Figure 8).

This was consistent with some previous studies that showed that a

dilution effect related to greater nutrient accumulation and biomass

production would lead to lower N and P concentrations in plants

(Guiz et al., 2016; Lü et al., 2019; Zhang et al., 2022). In addition to

root exudates or rhizodeposits, microbes obtain N by assimilating
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the intractable decomposition of SOM to meet their elevated N

requirements under intense N-limited conditions (Dijkstra et al.,

2013; Kirkby et al., 2014; He et al., 2021), which is consistent with

the preferential substrate utilization hypothesis (Phillips and Fahey,

2008; Dan et al., 2023).

The decreased REs of NH4
+–N availability with the

development of P. tabuliformis forests after the application of N

was due to decreased root TN content (Figure 8), which is similar to

previous findings (Hogberg et al., 1998; Jiang et al., 2020). However,

positive REs of the NH4
+–N availability in the 65-year stand and

REs of the NO3
−–N availability of all stands (Figures 6G–G, 7D, E)

positively direct root TC content to the REs of the NO3
−–N,

positively correlate between the REs of the NO3
−–N and root TN

content, and positively affect the indirect REs of the NO3
−–N to

NH4
+–N ratio induced by grave root N limitation (Figures 8, 11A)

and demonstrated that differently aged natural secondary P.

tabuliformis stands exhibited similar N preferences and

dominantly relied on NO3
−–N for its inorganic N nutrition. This

was due to the greater mobile properties of NO3
−–N than NH4

+–N

in soil solution (Kuzyakov and Xu, 2013). Our results also suggested

that P. tabuliformis forests in 65-year-old absorbed NH4
+–N from

soils under severely N-limited conditions as a strategy to make full

use of soil N sources, which enhances the primary productivity of

forest ecosystems (Houle et al., 2014; Gao et al., 2020). Similarly,

from this perspective, the REs of TN and NH4
+–N availability

alleviated root N limitation.

The REs of TP increased linearly with the N level, leading to a

generally insignificant response signal of the REs of AP, which was

further free from P-limited roots and microbes in the rhizosphere

(Figures 6K, 7C). Lower soil pH owing to the application of N

promoted phosphatase activity, which is consistent with the

findings of Phillips and Fahey (Phillips and Fahey, 2006).
4.3 REs of soil N components and
rhizospheric soil microbial N limitations are
useful predictors for root N limitations

As shown by root exudation and nutrient absorption, REs

control N cycling in the soil. The REs of the soil N indicators

were susceptible to soil N in P. tabuliformis stands at the three

successional ages. Numerous studies have shown that applying N to

soil has variable effects on each RE indicator of N indicators (Cai

et al., 2023; Dan et al., 2023; Gao et al., 2023). Moreover, REs affect

the nutrient supply to plants and are essential drivers for alleviating

root N limitation (Sun et al., 2014; Han et al., 2023). Linear

regression and RF analyses revealed the importance of the REs of

soil N indicators and the N limitation of microbes in the

rhizosphere for root N limitation (Figures 9B, C, 10). SEMs

revealed that the root TC content indirectly mitigated root N

limitations by regulating the REs of NO3
−–N availability and N

limitations of microbes in the rhizosphere (Figure 11A). Thus, we

put forward a conceptual diagram to summarize the effects of

succession on the N limitation of roots and rhizospheric soil

microbes (Figure 12). We determined the characteristics of stands

of three successional ages by comparing their REs, microbial C and
TABLE 2 Interaction effects of successional ages and the levels of N
application tested by two-way ANOVA.

Factor F p

Root properties Root TC 0.937 0.5012

Root TN 1.458 0.2141

Root TP 1.527 0.18956

Root N:PCON 1.495 0.201

Root
N limitation

1.336 0.264

Microbe properties Vector
length

0.364 0.931

Vector angle 0.633 0.743

N:PSEE 0.654 0.727

Microbial
N limitation

0.633 0.743

Rhizosphere effects REs on SOC 1.195 0.3350

REs on TN 0.840 0.575

REs on TP 3.853 0.00318 **

REs on
NH4

+–N
1.130 0.372

REs on
NO3

−–N
0.494 0.851

REs on AP 1.832 0.1099
TC, total C; TN, total N; TP, total P; SOC, soil organic carbon; REs, rhizosphere effects; AP,
available P; **p < 0.01.
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FIGURE 6

REs on SOC, TN, and TP, as well as available nutrients (NH4
+–N, NO3

−–N, and AP) for five levels of N application of stands of different ages (A, C, E,
G, I, K) and their changes with succession (B, D, F, H, J, L) in Pinus tabuliformis forest. Different small letters denote the significant differences (p <
0.05) among different N application levels within the successional age, different capital letters denote the significant differences (p < 0.05) among
three successional ages, and ns represents non-significance on the basis of ANOVA and LSD tests (p > 0.05). N0 = 0 kg N m−2 year−1; N1 = 5 kg N
m−2 year−1; N2 = 10 kg N m−2 year−1; N3 = 15 kg N m−2 year−1; N4 = 20 kg N m−2 year−1. 42yr, 42-year-old stand; 55yr, 55-year-old stand; 65yr,
65-year-old stand. White points and red dashed lines represent the mean value of each variable at each N application level and in each successional
age, respectively. REs, rhizosphere effects; SOC, soil organic carbon; TN, total N; TP, total P; AP, available P; LSD, least significant difference.
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FIGURE 8

The matrix of Pearson’s correlation coefficients among paired REs and the chemical property of fine roots in Pinus tabuliformis forests. *p < 0.05,
***p < 0.001. REs, rhizosphere effects.
B C

D E F

A

FIGURE 7

Regressions of the REs of six soil nutrients (SOC, TN, TP, NH4
+–N, NO3

−–N, and AP) along the levels of N application for three successional ages of
Pinus tabuliformis forest (A–F), respectively. Lines in three colors imply the fitted linear relationships. R2 and P represent the coefficient of
determination and level of significance, respectively. Gray-shaded areas indicate the 95% confidence intervals. REs, rhizosphere effects; SOC, soil
organic carbon; TN, total N; TP, total P; AP, available P.
Frontiers in Plant Science frontiersin.org12

https://doi.org/10.3389/fpls.2024.1392934
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Duan et al. 10.3389/fpls.2024.1392934
B

C

A

FIGURE 9

Linear regression analysis between the N limitations of rhizospheric soil microbes and root with the REs of each soil nutrient (SOC, TN, TP, NH4
+–N,

NO3
−–N, and AP) (A, B). Linear regression analysis between the N limitations of root and rhizospheric soil microbes and their relationships with the

rhizospheric soil microbial C limitation (C). The black lines with gray-shaded areas imply the least-squares linear regressions with the REs and
limitations and their 95% confidence intervals. The values of R and p represent the corresponding Pearson’s correlation coefficients and level of
significance, respectively. REs, rhizosphere effects; SOC, soil organic carbon; TN, total N; TP, total P; AP, available P.
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N limitations, and root N limitation among the five levels of N

application using radar charts in P. tabuliformis forests after N

input (Figure 13).

Stand development enhanced the fine root biomass production,

resulted in weaker fine root nutrient foraging ability, and caused lower

soil N nutrient availability (Ryan et al., 2004; Lü et al., 2019; Zhu et al.,
Frontiers in Plant Science 14
2022). These changes directly decreased root TC and TN

concentrations, increased investment in belowground photosynthetic

products such as root exudates, and increased microbial N limitation in

the rhizosphere symbiosed with roots when plant growth was N-

constrained (Figures 2B, D, 3F, H) (Guiz et al., 2016; Geng et al., 2021;

He et al., 2021; Zhang et al., 2022; Geng et al., 2023). However, the
BA

FIGURE 11

(A) Structural equation models (SEMs) describing multivariable effects of different predicted variables on REs of three different soil N-related
indicators, i.e., total N, NH4

+–N, and NO3
−–N, limitations of rhizospheric soil microbes, successional ages, and roots TC content on root N

limitation. Standardized path coefficients were expressed by numbers on the arrows. Proportion to the strengths of relationships is expressed by
arrow widths. R2 represents the percentage of variance accounted for each response variable. CFI, GFI, and RMSEA represent comparative fit index,
Jöreskog’s goodness fit index, and root mean square error of approximation, respectively. (B) Standardized direct, indirect, and total effects of each
predicted variable on root N limitation calculated by SEM are demonstrated. *p < 0.05, **p < 0.01, ***p < 0.001.
FIGURE 10

Potential drivers of variation in regulation of root N limitation in Pinus tabuliformis forests. Percentage increases in the mean square error (%MSE)
were used to estimate the relative importance of these different predicted variables as drivers in regulation of root N limitation, and higher %MSE
values mean more important predictors. *p < 0.05, **p < 0.01, ns (0.05 < p < 0.1).
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increase in microbial N limitation with succession is insignificant

owing to their faster turnover rates and strong homeostasis (Zhang

et al., 2019, 2024). Root exudate inputs induced by succession promote

the growth and activity of microorganisms and further stimulate

stronger REs of SOC and TN and theoretically stronger REs of

NH4
+–N and NO3

−–N availability to obtain more N resources

(Figures 6B, D) (He et al., 2021; Zhu et al., 2022). In fact, continuous
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available N uptake by roots and microbes in the rhizosphere and the

increased competitive utilization of resources between them led to

strong depletion zones near the roots (Kuzyakov and Xu, 2013; Zhang

et al., 2024), which ultimately decreased the REs of NH4
+–N and

NO3
−–N availability with succession (Figures 6H, J). In addition, REs of

NH4
+–N also directly and positively drove the root N limitation and

directly controlled the transformation from REs of NO3
−–N
FIGURE 12

Conceptual framework for exploration of the pathways of successional effects on N limitations of roots and rhizospheric soil microbes after the
application of N. We displayed linkages with REs of three different soil N-related indicators, i.e., total N, NH4

+–N, and NO3
−–N, to demonstrate that

development with succession increased the N limitations of microbes and roots. REs, rhizosphere effects.
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(Figure 11A). This was because of the poor mobile properties in the soil

solution of NH4
+–N compared with NO3

−–N and was not quickly

absorbed by microbes in the rhizosphere but could be easily uptake by

roots, making the roots outcompete in the uptake of N in the
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rhizosphere under N-limited condition (Kuzyakov and Xu, 2013;

Huygens et al., 2016; Zhang et al., 2024).

The results of the radar charts showed that root N limitation of

stands of the three ages and REs of TP in the 42-year stand generally
B

C

A

FIGURE 13

Comparison of REs of each soil nutrient (SOC, TN, TP, NH4
+–N, NO3

−–N, and AP), microbial C, N limitation, N:PSEE, and root N limitations among
five N application levels of stands of 42-, 55- (A), (B) and 65-year-old (C). REs, rhizosphere effects; SOC, soil organic carbon; TN, total N; TP, total P;
AP, available P.
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increased with N levels, whereas root N limitation and REs of SOC

greatly increased with succession (Figure 13). This result indicates

that the adverse effect of N application on root N limitation in the

42-year stand was the smallest among the three stands of different

ages. Therefore, the afforestation activities of the natural secondary

P. tabuliformis forest in this area should prioritize middle-aged

forests (40–50 years old) to adapt to global N deposition or the

distribution heterogeneity of bioavailable soil N.
5 Conclusion

We assessed the responses of N limitation in the roots and

rhizospheric soil microbes and the REs to N application of N-

limited natural secondary P. tabuliformis forests of different

successional ages. N limitation characterized the root and

microbial communities. Older tree stands were subject to

relatively strong root and microbial N limitations compared to

younger stands in response to N. The magnitudes of the REs of SOC

and TN were significantly greater in the 65-year stands. However,

the magnitudes of the REs of P indicators and available N

indicators, which were NH4
+–N and NO3–N, were significantly

lower in the 65-year stand.

Root N limitation was primarily contingent on variations in the

REs of three different soil N-related indicators, TN, NH4
+–N, and

NO3
−–N. Rhizospheric soil microbial N limitation was one of the

most important factors driving root N limitation. The level of N

application had only a slight effect on root N limitation. In addition,

the root TC content, driven by successional age, directly affected

microbial N limitation. This suggested that succession of

P. tabuliformis forest increased microbial metabolic N limitation

and further increased root N limitation owing to the formation of

strong depletion zones near the roots but stimulated stronger REs to

obtain more N in a N-limited forest ecosystem.
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