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crop model parameters using
neural networks to enhance
genomic prediction of
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Introduction: Predicting the performance (yield or other integrative traits) of

cultivated plants is complex because it involves not only estimating the genetic

value of the candidates to selection, the interactions between the genotype and

the environment (GxE) but also the epistatic interactions between genomic

regions for a given trait, and the interactions between the traits contributing to

the integrative trait. Classical Genomic Prediction (GP) models mostly account

for additive effects and are not suitable to estimate non-additive effects such as

epistasis. Therefore, the use of machine learning and deep learning methods has

been previously proposed to model those non-linear effects.

Methods: In this study, we propose a type of Artificial Neural Network (ANN)

called Convolutional Neural Network (CNN) and compare it to two classical GP

regression methods for their ability to predict an integrative trait of sorghum:

aboveground fresh weight accumulation. We also suggest that the use of a crop

growth model (CGM) can enhance predictions of integrative traits by

decomposing them into more heritable intermediate traits.

Results: The results show that CNN outperformed both LASSO and Bayes C

methods in accuracy, suggesting that CNN are better suited to predict integrative

traits. Furthermore, the predictive ability of the combined CGM-GP approach

surpassed that of GP without the CGM integration, irrespective of the regression

method used.
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Discussion: These results are consistent with recent works aiming to develop

Genome-to-Phenotype models and advocate for the use of non-linear

prediction methods, and the use of combined CGM-GP to enhance the

prediction of crop performances.
KEYWORDS

convolutional neural networks, crop growth model, genomic prediction, sorghum,
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Introduction

The need to develop plant varieties adapted to evolving

production scenarios, especially in the face of climate change,

necessitates crops to fulfill increasingly complex and diverse

requirements, posing a great challenge for breeders. In this

context, the pursuit of traits combinations that confer desired

crop properties and adaptation is more critical than ever, giving

rise to the necessity to enhance multi-criteria or multi-trait breeding

(Moeinizade et al., 2020).

Leveraging the complete set of nucleotide diversity distributed

across the genome, for predicting breeding values of quantitative

traits (Genomic Prediction, GP, Meuwissen et al., 2001) has already

demonstrated its effectiveness in breeding programs. This approach

has proven instrumental to increase rates of genetic gains and

mitigating costs (Hickey et al., 2017). Nevertheless, the growing

need to breed for multiple environments (ME), e.g. in response to

climate change and better-defined target populations of

environments (Chapman et al., 2000), necessitates the adaptation

of genomic prediction methodologies to account for the emergence

of interactions between genotypes and environments (GxE)

(Rincent et al., 2017).

Previous studies tried to tackle GxE within Genomic Selection

(GS). For instance, Burgueño et al. (2012) developed multi-

environments statistical models. However, these models only

consider linear and non-causal environmental effects reducing

possible gains in prediction accuracy, especially for complex

integrative traits or for environments that significantly differ from

those in the calibration set (Rogers and Holland, 2022). Heslot et al.

(2014) on the other hand used a Crop Growth Model (CGM) to

derive environmental covariates. The incorporation of

environmental covariates within the GS framework increased

prediction accuracies and decreased prediction variability in

unobserved environments compared to standard GS models.

Integrating crop models to address GxE, as shown in studies such

as those by Heslot et al. (2014), emphasizes the utility of this

approach in the described breeding context. Nonetheless,

considering a large number of covariates significantly increases

the complexity of the problem, rendering it exceedingly challenging

to model (Larkin et al., 2019).
02
Furthermore, given that the target production traits commonly

predicted through GP models are typically polygenic (Song and

Zhang, 2009) and thus the presence of potential GxE interactions,

the decomposition of these traits into elementary traits, as

facilitated by CGM (Bustos-Korts et al., 2019), can offer a

valuable advantage. The exploration of multi-trait (MT) genomic

prediction strategies has been proposed to enhance the predictive

accuracy of integrative traits (e.g., Arojju et al., 2020; Gaire et al.,

2022; Shahi et al., 2022). Studies have demonstrated that

incorporating correlated physiological traits in the training (and/

or validation) sets can improve predictive abilities compared to

single-trait (ST) genomic prediction approaches. Crop growth

models inherently simulate integrative traits based on other

secondary traits, their integration into the genomic prediction

framework could thus provide an additional dimension to

consider. CGM simulate plant non-linear (causal) responses to

the environment through model parameters (representing

genotypic sensibility to these responses, GxE). They also have the

advantage of being able to simulate multiple traits dynamically.

Calibrated CGM for a genotype can thus be helpful to predict its

performance in unknown environments (e.g.: Larue et al., 2019),

but they cannot predict unknown genotypes.

Combining GP with CGM (integrated CGM-GP prediction)

could meet the shortcomings of standard GP models and CGM by

enabling the prediction of multiple traits, in multiple environments,

for unknown genotypes and unknown environments (Technow

et al., 2015; Cooper et al., 2016; Onogi, 2022). However, these

studies focus on a small number of parameters, physiological

processes, and markers, which contrasts with the need to consider

increasingly complex multi-traits phenotypes, and the availability of

high-throughput genotyping resulting in a large number

of markers.

Another drawback of classical GP models is their linear nature.

Integrative traits are generally under the impact of multiple genes,

rather than relying solely on small numbers of genetic variations.

This is commonly referred to as the “missing heritability problem”.

If the effects are additive, then “classical” GP models should be able

to capture them. However, if there are non-linear interactions

between markers (such as epistasis, Zuk et al., 2012), linear

models will fail to predict these integrative traits. Addressing
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these challenges, non-linear regression methods, such as Deep

Learning (Pérez-Enciso and Zingaretti, 2019), coupled with the

utilization of Graphical Unit Processing (GPU) computing (Carré

et al., 2022), present a promising avenue. This contrasts with

conventional linear regression methods (e.g., Montesinos-López

et al., 2018), offering in addition the potential to substantially

reduce the computational time required for evaluating epistasis.

In CGM, however, integrative traits are simulated by

interlinking secondary traits under the influence of multiple

genotypic input parameters through non-linear equations. When

coupled with genetic information through GP, this approach holds

the potential to address the missing heritability problem by

simulating integrative traits through non-linear equations that

consider the combined effects of all genes.

In this paper, we propose a comparison between three genomic

prediction approaches to study the extent to which non-linear

regression methods and crop growth models can contribute to

enhance the prediction of integrative traits. Using linear (LASSO,

Bayes C), or non-linear (Convolutional Neural Networks)

regression models, a plant complex integrative phenotypic trait

(aboveground fresh weight accumulation) is predicted either

directly or with an integrated CGM-GP approach.
Materials and methods

Phenotypic data

The phenotypic data used in this study are composed of 136

sorghum accessions selected within the Generation Challenge

reference set (Billot et al., 2013). Phenotyping was conducted on

the PhenoArch high-throughput phenotyping platform in

Montpellier, France (Cabrera Bosquet et al., 2015) where all

genotypes were followed for 45 days from September to October

2017. The Phenoarch platform is based on a PhenoWare™ system

(Lyon, France) composed of a conveyor belt structure of 28 lanes

carrying 60 carts of one pot. Plants were grown in polyvinyl chloride

(PVC) 9L pots (0.19m diameter and 0.4m high) filled with a 30:70

mixture of a clay and organic compost. Line spacing was of 0.4m

and row spacing was of 0.2m. Five grains per pot were sown on

August 30th, which were subsequently thinned to a single plant two

weeks after sowing. Two water treatment scenarios were tested

during the late vegetative phase (starting from eight fully expanded

leaves): well-watered (WW) plants were kept at 132% of soil

humidity (Fraction of Transpirable Soil Water, FTSW of 0.6) and

water-deficit (WD) plants were dried-down until 60% of soil

humidity (± 5%, FTSW of 0.22).

Within each treatment, genotypes were replicated four times and

local interactions were reduced by separating the genotypes into seven

classes depending on plant height. To control the environmental

heterogeneity of the greenhouse, the 28 rows were separated into four

complete blocks defined according to the environmental gradient of

the greenhouse (light and temperature, Cabrera-Bosquet et al., 2016).

Each block was further divided into seven sub-blocks wherein plant

height classes were randomly assigned following a Youden square (28

genotypes per sub-block). A d-optimal design generation software
Frontiers in Plant Science 03
(SAS procedure OPTEX) was used to assign the genotypes to the sub

blocks following an alpha-lattice.

All along the experiment, day temperature was kept at 30°C and

night temperatures at 23°C. Environmental variables, air

temperature (°C), radiation (PFFD, μmol m-2 s-1) and air relative

humidity (%) were continuously monitored at eight positions in the

greenhouse, above the canopy and recorded every fifteen minutes.

Thirteen pictures (twelve sides and one top) were taken daily of

each plant. Seven genotypes (one for each plant height class, at three

different growth stages) were used in a side experiment to calibrate a

model used to estimate the following traits on all plants:

aboveground fresh weight (Biomaerofw), plant leaf area (PLA),

and plant height (PHT). Weekly measurements by hand of

additional traits were conducted to assess: the number of

appeared (App) and ligulated (Lig) leaves on the main stem and

the number of tillers (Tillernb). After 45 days, plants were harvested

and final measurements were conducted: shoot (Biomaerofw),

mainstem (Mainstemfw) and mainstem blade (Bladefw) biomass

fresh weight, base mainstem diameter (Stemdiam), and last

ligulated leaf length and width (used to compute area of last

ligulated leaf, Arealfel). Table 1 summarizes all measured traits.

The integrative trait considered for genomic prediction in this

study is a Best Linear Unbiased Predictor (BLUP) of above-ground

biomass, estimated by a mixed model (Equation 1, modeled using

the R package Asreml v3, Butler et al., 2009) and considering all 8

plant replicates (4 replicates per water treatment, two water

treatments).

yijk = ai + bn + Cj + d11j=1 + d21j=2 + Gv + wt + (Gw)vt +Hik

+ Eivt (1)

With ai the fixed effect of the replicate, b the fixed competition

effect of any neighbor, n the number of neighbors, Cj the random effect

of any row j (except the first and second row), d1 and d2 the fixed effect

of the first and second row. 1j=1 and 1j=2 the indicators of the first and

second rows: their value is 1 if the pot belongs to the first (respectively

second) row, and 0 otherwise.Gv the random genotypic effect of variety

v, wt the fixed effect of the watering treatment t and (Gw)vt their

interaction. Hik the between sub-blocks error, i.e. random effect of the

sub-block of the ith replicate to which the kth height class was assigned.

Eivt the residual error for variety v in replicate i of treatment t.

This mixed model was the result of a more complete analysis of

the data and assumes that it partially compensates for the

heterogeneity of the greenhouse by modelling it as row and

column effects. The mixed model was selected after exploring

several types of variance decomposition. For the estimation of

genotypic parameters of the crop model, raw data from the four

WW replicate plants were used alongside local weather data (see

Cabrera-Bosquet et al., 2016), as environmental effects are

formalized inside the crop model (see Ecomeristem Model).
Genotypic data

Genotypic information of the 136 accessions was obtained

through Genotyping by Sequencing (GBS). Sequencing libraries
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were prepared according to the GBS protocol as per Elshire et al.

(2011), with the ApeK1 enzyme. Single-end sequencing was

performed on an Illumina HiSeq2000 (at the Genotool platform

in Toulouse, France). SNP calling was performed using the GATK

pipeline. After the SNP calling step, imputation was then realized

using Beagle v.4 (Browning and Browning 2013) with a 1000-SNP

window and an overlap of 500 SNP after filtering on missing data

per SNP (60% maximum of missing data and 5% maximum for

minor allele frequency to keep a SNP). The imputed genotype

matrix available for further analysis contained 31 713 SNP on the

whole set of 136 accessions.
Ecomeristem model

Model description
Ecomeristem is a sink-driven CGM developed for rice

vegetative vigor (Luquet et al., 2006 and Luquet et al., 2007) and

adapted for sorghum whole crop cycle (Larue et al., 2019). The

model is implemented in C++ and is simulated following the DEVS

formalism (Zeigler, 1987). The model simulates plant growth and

development at organ level driven by several genotypic parameters.

The model is hierarchical: it defines the organs in atomic models

and their temporal interaction in coupled models.

In this study, the focus was put on sorghum biomass growth

(fresh weight) during the vegetative phase. The vegetative phase

plays a crucial role in determining biomass and grain yield. Mainly,

during this phase sorghum plants focus on leaf area expansion

which increases the plant’s ability to capture light, essential for

photosynthesis, and thus contributing to biomass production and

later on grain filling. Ecomeristem simulates aboveground biomass

as the integration of different elementary traits: number, size and

weight of the organs of each axis of the plant. The organ number is

defined by an initiation rate “plastochrone, plasto_init” depending
Frontiers in Plant Science 04
on the temperature (thermal time between the initiation of two

successive phytomers). The “phyllochrone, phyllo_init” defines the

time from the first growth phase of a leaf until it appears beyond the

sheath of the previous leaf (thermal time between the appearances

of two successive leaves). Finally, the “ligulochrone, ligulo_init”

defines the time from its appearance until its ligulation (thermal

time between the ligulation of two successive leaves). The size of the

leaves is defined by the parameter “Meristem Growth Rate,

MGR_init” which makes it possible to calculate the pre-

dimensioning of the leaves under the influence of radiation

(through a state variable defining the balance between supply and

demand in Carbon (C), “Index of internal Competition, IC”). The

growth of an organ is therefore defined by the final size to be

reached divided by the thermal time needed for each phase (see
TABLE 2 Key genotypic parameters and the value ranges used for
parameter estimation.

Parameter Description (Unit) Interval

Epsib Light conversion coefficient (g.MJ-1) [3.0, 8.0]

Plasto_init/
phyllo_init/ligulo_init

Initial values of plastochron,
phyllochron and ligulochron (°Cd)

[25.0,
45.0]

Ict Threshold parameter tested on IC
(C supply/demand ratio)
enabling tillering

[0.5, 2.5]

MGR_init Initial value of the additive
parameter Meristem Growth Rate
pre-defining the potential size of
successive leaves

[6.0, 14.0]

Leaf_length_to_IN_length Ratio between leaf and
internode length

[0.1, 0.2]

SLAp Specific leaf area decrease rate
between successive leaves

[0.0, 0.1]
fro
TABLE 1 Phenotypic traits measured on the Phenoarch high-throughput phenotyping platform (see https://cropontology.org).

Phenotypic trait Crop Ontology id Unit Frequency Method Abbreviation

Number of appeared leaves* CO_324:0001016 # Weekly By hand APP

Number of ligulated leaves* CO_324:0001020 # Weekly By hand LIG

Number of tillers* CO_324:0000344 # Weekly By hand Tillernb

Plant biomass (fresh
weight)*

CO_324:0000558 g Daily Image + by hand Biomaerofw

Plant leaf area mm² Daily Image PLA

Plant height (ligule of the
last ligulated leaf)*

CO_324:0000978 mm Daily Image PHT

Mainstem biomass (fresh
weight)*

CO_324:0000777 g At harvest By hand Mainstemfw

Tiller biomass (fresh weight) CO_324:0000784 g At harvest By hand Tillerfw

Area of last ligulated leaf* mm² At harvest By hand Arealfel

Blade biomass
(fresh weight)

CO_324:0000795 g At harvest By hand Bladefw

Stem diameter CO_324:0000912 mm At harvest By hand Stemdiam
* used for parameter estimation of the Crop Growth Model.
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above). Organ and whole plant growth can be slowed down if the

daily supply of carbohydrates (defined by the parameter “Epsib”

which converts the radiation into C) is no longer sufficient to meet

the needs on the scale of the plant. The thickness of the leaves is

defined by the “SLAp” parameter, which decreases the specific leaf

area between successive leaves. The weight of the leaves is then

defined by the leaf area divided by the specific leaf area. The

“Leaf_length_to_IN_length” parameter defines the internodes’

pre-sizing compared to the corresponding leaf’s pre-sizing. The

growth of the internodes then occurs as for the leaves: a final size to

be reached in a defined (thermal) time, defined as being equal to 3

times the “ligulochrone”, and can be slowed down if the supply of C

is not sufficient to meet the demands. Each internode’s volume and

density then define the weight of the internodes. Finally, these

different processes take place daily on each axis (i.e. main stem +

tillers) of the plant. Tillers appear at each “plastochrone +

phyllochrone” if the state of the plant (supply/demand balance in

C) is favorable during the “phyllochrone” phase, that is to say if the

IC is greater than the parameter threshold “ICt.” All of these

processes therefore make it possible to integrate biomass growth

during the vegetative phase at the scale of the whole plant. Table 2

summarizes these parameters and the selected ranges of values for

parameter estimation. A genotype is thus characterized by its set of

genotypic parameters.

Parameter estimation of the CGM
Parameter estimation for each genotype, was performed using

the Differential Evolution (DE) metaheuristic implemented in the

DEoptim R package (Ardia et al., 2020). Eight key genotypic

parameters were estimated (see Table 2) for each genotype using

the data gathered on the PhenoArch platform by reducing the

errors between observed and simulated values for all measured

traits (see Table 1). The error was computed as the mean of

Normalized Root Mean Square Error (NRMSE, eq. 2) over the

four replicates.

NRMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(
yi − ŷi
yi

)2

n

vuuut
(2)

Where ŷ i are the predicted values, yi the observed values and n

the number of observations.

The parameter set resulting in the lowest error after 10 000

iterations of the DEoptim algorithm was then selected for each

genotype, these parameter values are hereafter considered as

“observed” parameter values. To facilitate the interpretation of the

results, the error per observed trait is represented by a Normalized

Mean Absolute Error (NMAE) in Supplementary Table S1.
Genomic prediction

Genomic prediction was performed either by using the Least

Absolute Shrinkage and Selection Operator (LASSO) implemented in

the glmnet R package (Friedman et al., 2010), Bayes C implemented

in the BGLR R package (Perez and de los Campos, 2014) or by a
Frontiers in Plant Science 05
multilayer Convolutional Neural Networks (CNN) constructed with

Tensorflow 2.0 (Singh and Manure, 2020) in Python (Van Rossum

andDrake, 2009). For each method, validation was performed using a

k-fold cross-validation method (with k = 5). The composition of each

fold was equal across methods.

Two scenarios were investigated in this study. In the first

instance, the direct prediction of aboveground fresh weight was

done using the abovementioned three regression methods. The 31

713 SNP were used as the explanatory variables and the observed

Biomaerofw as the explained variable. In the second scenario, the

CGM Ecomeristem was used. First its input parameters were

predicted using the same three regression methods, i.e. the SNP

were used as the explanatory variables and the eight genotypic

parameters as the explained variables. Then the predicted

parameters were used to simulate growth and development of each

genotype. The Ecomeristem output variable “Biomaerofw” was used

as prediction for the aboveground fresh weight and compared to the

observed Biomaerofw. The two scenarios and the three regression

methods were compared based on the Normalized Mean Absolute

Error (NMAE, Equation 3) between predicted and observed

phenotypic trait, as well as the predictive ability (PA, Equation 4).

NMAE ( % ) =
1
no

n

i=1
abs

yi−ŷ i

yi

� �
(3)

PA =
Cov(y, ŷ )
sysŷ

(4)

Where ŷi are the predicted values of either the integrative

phenotypic trait or the CGM parameters, yi the observed values

of either the trait (phenotyped on the Phenoarch platform) or the

CGM parameters (estimated trough the DE optimization algorithm,

see Parameter estimation of the CGM), s the standard deviation

and Cov the covariance.

The genetic markers used as input data were encoded as {-1, 0, 1}

corresponding respectively to homozygous for the reference allele,

heterozygous and the homozygous for the alternative allele.

LASSO
The first penalized regression method tested in this study is

LASSO. This method performs variable selection and regularization

and was first proposed by Tibshirani (1996). In this method, the

coefficient for all SNP (b) are obtained by minimizing the sum of

squares of the residuals (Equation 5), and are in addition under

constraint as follows: op
j=1 bj
�� �� ≤ t where t is an arbitrary specified

parameter controlling the regularization of the estimated

coefficients. This regularization is an l1-norm penalization

allowing some coefficients to exactly equal zero.

min
b0,b

1
2o

n

i=0
(yi − b0 −o

p

j=1
bjxi,j)

2 (5)

LASSO works well in problems of high dimensionality where

the number of predictors is higher than the number of individuals

(p > n) but only if a few of these predictors explain the observations.

Indeed, LASSO selects at most n variables before it saturates (Zou

and Hastie, 2005).
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Bayes C
The second regression method tested is Bayes C (Habier et al.,

2011). This method is derived from the Bayes A and Bayes B

methods (proposed by Meuwissen et al., 2001) to address some of

their drawbacks. Bayes A and B have shown to better address

linkage disequilibrium (LD) between SNP and QTL than with least

squares of the LASSO method resulting in higher prediction

accuracies (Hayes et al., 2009). However, Gianola et al. (2009)

have shown certain limitations to Bayes A and B concerning the

prior of marker effects.

Bayes A and B are based on the general statistical model

(Equation 6). The SNP effect is zero with probability p and is

normally distributed with mean zero and a locus specific variance,

with probability 1-p: N(0, s²j). In Bayes A, all SNP have non-zero

effect (i.e. p = 0), while in Bayes B p > 0. Having a locus-specific

variance means that the shrinkage of SNP effects heavily relies on

the scale parameter. Additionally, it becomes evident that such

variance introduces challenges in Bayesian learning due to the

posterior having only one more degree of freedom than the prior,

thus limiting the predictability of posteriors significantly deviating

from the prior (Gianola et al., 2009). Bayes C has been developed to

overcome these limitations by considering a common variance to all

SNP (see Habier et al., 2011).

y = μ +u +o
K

k=1

zkak + e (6)

Where μ is the overall mean of the phenotypic trait, u the polygenic

effects of all individuals, K is the number of SNP, zk the genotype at

SNP k, ak the additive effect of that SNP and e the residual effects.

Convolutional neural network
The last method tested is a Convolutional Neural Network (CNN,

LeCun et al., 2015), a type of neural network (NN). Neural networks

are machine-learning methods used for regression and classification in

a non-linear way. These networks aremade up of a set of “neurons”, i.e.
Frontiers in Plant Science 06
computational units, which, like neurons in the brain, can receive a

signal and transmit it (through a non-linear function) to other

connected neurons. These neurons are arranged in layers and the

signal passes through these successive layers. Each neuron therefore

performs a non-linear (and potentially local) regression of part or all

the connected neurons of the previous layer (Figure 1).

CNN (Figure 2) are a type of NN inspired by the visual cortex of

the human brain where neurons respond to stimuli in specific

regions of the field of view, with these regions overlapping. This

principle is used in CNN through two layers: a first layer of filters

that extracts high-level features (in our case, characteristics of the

genetic architecture between nearby markers), this is the

convolution layer that performs local regression between these

markers, i.e. SNP markers effect are estimated. The second layer

is the reduction of the dimension of this convolution through

pooling, generally a maxpooling which returns the maximum

value of the portion of markers covered by the convolution, in

our case similarly to other methods considering SNP with zero

effect. CNN are a continuation of these two layers of convolutions

(here between markers, or non-linear regression of groups of

markers) and pooling. Following these layers, CNN typically have

a layer of fully connected neurons in order to learn non-linear

combinations of the high-level features detected by the convolution

layers. CNN have completely changed the field of image analysis

because they are particularly well suited to take into account the

spatial nature of data, typically the relationship between pixels in an

image or similarly genetic markers along a sequence.

The CNN architecture developed in this study was designed by

hyperparameter optimization (Feurer and Hutter, 2019).

Hyperparameter tuning consists in trying multiple combinations of

network parameters and architectures until a suitable architecture

adapted to the studied data is identified. Typical hyperparameters

include number of layers, size of filters, activation functions, etc. The

hyperparameterized CNN was composed of five 1D-convolution

layers with kernel sizes of 11, 11, 9, 13 and 9; and strides of 1, 3, 5,
FIGURE 1

Schematic representation of a neural network with an input layer of size 8 and two hidden layers containing 4 and 2 neurons respectively. Drawn
with LeNail (2019) tool.
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5 and 5. Followed by a dense fully connected layer composed of 32

neurons, and the output layer of size 8 (number of CGM parameters

to be estimated) or one (for the direct prediction of the phenotypic

trait). The activation function (Nwankpa et al., 2018) between each

layer was a succession Rectified Linear activation function (ReLU,

Equation 7) or a softmax (Euation 8) except for the output layer

where a sigmoid (Equation 9) was used. The models were trained

using the Adam optimizer (Kingma and Ba, 2014) and evaluated

using the NRMSE (see Equation 2) loss function.

f (x) = max(0, x) (7)

s (z)j =  
ezj

oK
k=1e

zk
(8)

f (x) =
1

1 + e−x
(9)
Heritability of phenotypic traits and
CGM parameters

Narrow-sense heritability for all phenotypic traits, and CGM

parameters, were computed using the genotypic and phenotypic

data described above. In a first step, the Genomic Relationship

Matrix (GRM) using the method proposed by VanRaden (2008)

and implemented in the snpReady R package (Granato et al., 2018)

was generated. Then, marker-based heritability was estimated using

the heritability R package (Kruijer et al., 2015). The results are

presented in the Supplementary Table S2.
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Results

Genomic prediction of a complex
integrative trait: sorghum aboveground
fresh weight

The first scenario compared the three regression methods on

the direct prediction of sorghum aboveground fresh weight

(Figure 3). LASSO yielded the least accurate results with a

NMAE of 0.41 and a PA of 0.39. Bayes C had slightly better

results with a NMAE of 0.4 and a PA of 0.47. Finally, genomic

prediction using a CNN showed the best results with a NMAE of

0.22 and a PA of 0.53.
Predicting integrative traits using genomic
predicted CGM parameters

The genomic prediction of CGM parameters yielded variable results

across predicted parameters but not across predictionmethods (Table 3).

NMAE varied from 0.87 for the least accurately predicted parameter,

SLAp, to 0.05 for the most accurately predicted parameter, Ligulo_init.

The average NMAE for eachmethod was of 0.26 (SD = 0.27) for LASSO,

0.24 (SD = 0.24) for Bayes C and 0.24 (SD = 0.24) for CNN.

The prediction of Biomaerofw using Ecomeristem (Figure 4)

was slightly more precise when using parameters predicted with a

CNN (NMAE 0.19, PA 0.63). LASSO and Bayes C still yielded

parameters that resulted in good predictions (NMAE 0.20 and 0.19

respectively and PA 0.52 and 0.61).
FIGURE 2

Schematic representation of a 1-dimensional convolutional neural network with two convolution layers (kernel sizes 3 and 5 respectively) and a fully
connected 2-neuron layer. The kernel of the first layer (initially in blue) will slide over the input data with a step size defined by the stride (here equal to 1)
and perform a convolution of the n adjacent inputs (where n is the size of the kernel). The kernel of the second layer (initially in orange) will do the same.
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Biomass components (secondary traits) were also simulated using

Ecomeristem, based on the prediction of genotypic parameters through

a convolutional neural network and are presented in Supplementary

Figure 1. Mainstem biomass (Mainstemfw, NMAE = 0.18, r = 0.72) as

well as plant height (Pht, NMAE = 0.18, r = 0.6) were accurately

predicted. The predictive ability for both individual leaf size (Arealfel,

NMAE = 0.13, r = 0.53) and leaf biomass (Bladefw, NMAE = 0.22,

r = 0.47) were lower.
Discussion

In the present study, prediction of an integrative trait, sorghum

aboveground fresh weight (Biomaerofw), using different methods was
Frontiers in Plant Science 08
analyzed. The crop growth model Ecomeristem was then used to better

consider the direct environmental effects and their interaction with

genotypes on biomass growth. Eight genotypic parameters were

predicted using the same three regression methods. Finally, the CGM

predictions were compared to the direct genomic prediction

of Biomaerofw.
Convolutional neural networks enhanced
prediction accuracy of integrative traits in
direct genomic prediction

Integrative traits are under the influence of (i) many genes and

genetic interactions, especially epistasis (Zuk et al., 2012), and (ii)
TABLE 3 Normalized Mean Absolute Error (NMAE) on the prediction of Ecomeristem parameters using LASSO, Bayes C or CNN.

RMSE Epsib Ict MGR_init Plasto_init Phyllo_init Ligulo_init LL_to_IL SLAp

LASSO 0.19 0.28 0.09 0.15 0.07 0.05 0.38 0.87

Bayes C 0.18 0.27 0.09 0.15 0.07 0.05 0.33 0.78

CNN 0.17 0.26 0.09 0.14 0.07 0.05 0.33 0.79
A B

C

FIGURE 3

Genomic prediction of aboveground fresh weight by either LASSO (A), Bayes C (B) or CNN (C). Models are trained with a 5-fold cross-validation
using data from 136 sorghum genotypes. Results are expressed by normalized mean absolute error (NMAE) and the predictive ability (r).
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Genotype x Environment interactions (Rincent et al., 2017). These

interactions are, by nature, non-linear. Therefore, to assess the

capacity of linear regression models in producing accurate

predictions of these traits, LASSO and Bayes C were compared to

a non-linear regression method, specifically a convolutional neural

network (CNN). The results revealed that LASSO exhibited the least

accurate predictions for the studied integrative trait. While Bayes C

demonstrated higher prediction accuracy, it still faced challenges in

predicting aboveground fresh weight compared to convolutional

neural networks (almost twice as high NMAE, Figure 3). These

results are in line with previous studies comparing LASSO and

Bayesian methods (e.g. Howard et al., 2014).

The use of non-linear regression methods, capable of efficiently

considering interactions between polymorphism sites, could

potentially address the challenge of epistasis in predicting

integrative traits. Results showed that CNN, as a non-linear

regression method, surpassed both LASSO and Bayes C in

predicting total biomass fresh weight. The complexity of sorghum

biomass growth, influenced by numerous interdependent biological

processes and characterized as polygenic (Habyarimana et al., 2020),

underscores the relevance of considering epistatic interactions.
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Previous studies have shown the influence of epistasis on complex

trait variation, such as growth rate or crop yield (Kroymann and

Mitchell-Olds, 2005; Melchinger et al., 2007). Given that integrative

traits are influenced by myriad of local and distal SNP-SNP

interactions (Qian et al., 2017), convolutional neural networks, by

design, emerge as a suitable tool for accommodating these epistatic

interactions in the prediction of these traits. Recent studies proposed

the application of neural networks (NN), and in particular CNNs in

genomic prediction of complex human and animal traits (e.g. Pook

et al., 2020). These studies show that NNs can exhibit either slightly

better, similar or inferior prediction accuracies compared to classical

linear regression. Notably, the outcome is highly dependent on the set

of SNPs, the genetic architecture of the trait (e.g. Bellot et al., 2018),

and the architecture of the NN itself (Zhu et al., 2021).

The use of NNs in genomic prediction is obviously case-

dependent, and it is apparent that more research is needed to

adapt these non-linear methods to the Genomic Selection process.

Specifically, this involves understanding how genetic data is

processed by the NN, and assessing their impact on prediction

outcomes (e.g. Verplaetse et al., 2023). In contrast to classical linear

regression, a universal neural network architecture that suits all
A B

DC

FIGURE 4

| 5-fold cross validation of simulations of Biomaerofw by Ecomeristem using parameters predicted by either LASSO (A), Bayes C (B) or CNN (C)
compared to the direct genomic prediction of the integrative trait aboveground fresh weight (D). Each point represents the mean predicted value of
the genotypes forming the validation set in each fold.
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cases does not exist. Apart from estimating regression parameters,

the entire structure (including the number, type, and size of layers,

activation functions, etc.) must be adapted to the specific prediction

problem at hand.
Successful integration of crop growth
models in genomic prediction of
integrative traits

The Ecomeristem crop growth model was used to provide a

more comprehensive consideration of causal non-linear

environmental effects, as well as interactions between biomass

components on biomass growth, potentially leading to enhanced

prediction accuracies. Biomass is a highly polygenic trait,

Habyarimana et al. (2020) detected significant marker-trait

associations across eight of the then sorghum chromosomes. It is

also under the influence of epistatic interactions: Brown et al. (2008)

highlighted epistatic interactions between two major dwarfing QTL,

Ishimori et al. (2020) showed the important role of epistasis for total

biomass as well as stem length. Moreover, biomass components

show differences in the dynamics of the effects of different genes

depending on environmental conditions as well as developmental

stage (Mu et al., 2022).

In this context, we proceeded to predict genotypic parameters

that govern the equations formalizing biological processes where

GxE, as well as interactions between resulting intermediate traits

take place. Not all CGM parameters where predicted with the same

accuracy. The least accurate predicted parameter was associated

with the control of specific leaf area decrease between successive

leaves (SLAp), with an average NMAE of 0.81. This can be

attributed to the limited variability observed on this parameter

across genotypes, with 40% of them having identical values,

although SLAp exhibited high heritability (0.616). The challenge

in accurately predicting SLAp emphasizes the influence of

parameter characteristics and parameter estimation quality on the

efficiency of genomic predictions of crop model parameters.

Variations in prediction accuracy across other parameters can be

explained by their heritability (see Supplementary Table S2).

Parameters such as Plasto_init, Phyllo_init and Ligulo_init,

characterized by a lower heritability, resulted in less accurate

predictions. Conversely, parameters with higher heritability,

including MGR_init, LL_to_INL, and ICt, exhibited predictions

that are more accurate.

While errors are not directly comparable between parameters,

intermediate traits, and the integrative trait, the simulation of

Biomaerofw with Ecomeristem showed higher accuracies than the

direct prediction of the trait, as illustrated in Figures 4C and D. This

observation aligns with recent studies (e.g. Heslot et al., 2014;

Tolhurst et al., 2022; Filho et al., 2023) which highlighted the

enhanced prediction accuracies achieved through the incorporation

of environmental effects. Interestingly some studies, like the one of

Widener et al. (2021), suggest that the inclusion of environmental

covariates may have limited impact, if any, on improving predictions

in extreme environments. Moreover, they suggest that the

composition of the calibration set of environments may hold
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greater significance as they found that only a subset of the available

environments was needed to accurately predict GEBV. In addition,

Rogers and Holland (2022) showed that the environmental similarity

between training and test sets had a great impact on prediction

accuracies. Phenomic selection (PS, Rincent et al., 2018) is one way of

considering the impact of GxE. It is suggested that environmental

variation is captured by the spectra and could thus enhance

prediction accuracies compared to genomic prediction (e.g. Lane

et al., 2020; Robert et al., 2022). On the other hand, the integration of

crop models, as proposed in our study, introduces promising avenue

to include causal environmental effects into GP. By providing causal

relationships between environmental variation and individual traits,

crop models have the potential to offer insights of the environmental

effect on phenotypic plasticity. For example, the Ecomeristem model

has already demonstrated its ability to predict plant behavior in new

environments, i.e. not used during the estimation of genotypic

parameters, or for alternate crop management (Larue et al., 2019).

In addition, CGM simulate integrative traits as a result of interactions

between intermediate traits and as responses to plant state. Therefore,

the integrated CGM-GP approach could also answer the varying

effects of genes depending on plant developmental stage. However,

further research is imperative to thoroughly assess and quantify the

impact of the integration of crop models with genomic prediction on

prediction accuracy of the genetic values of candidates to selection,

particularly in the context of multi-environmental trials. Our dataset

was composed of a single environment. While GxE was still

introduced by considering individual plant micro-environment

inside the greenhouse (see Phenotypic data section), it is still

necessary to validate this approach in a multi-environment setting.

Several studies have explored this question (e.g. Reymond et al., 2003;

Technow et al., 2015; Jighly et al., 2023). Nevertheless, it is important

to note that their methodologies differ from the approach proposed in

our study, particularly in terms of how crop model parameters are

predicted through the use of genomic prediction: in their approach,

genotypic parameters are sampled in each iteration of a Bayesian

model and used for predicting observed traits through the CGM that

is then used to update the marker effects. They are thus estimating

parameters at the same time as the markers effects. In our approach,

the parameter values are considered to be known. More specifically,

the parameters are estimated in a preliminary step by model

inversion using an optimization algorithm (here, a metaheuristic

called Differential Evolution). These “observed” parameter values are

then used to train a prediction model using marker information with

no feedback of the CGM performance, relying solely on the difference

between predicted and “observed” parameter values. Once trained,

the prediction model is then used to predict the value of these

genotypic parameters for the validation set and are then fed to the

CGM to predict the phenotypic traits. Furthermore, these studies

often focus on either a limited number of markers or crop model

parameters; or they consider a reduced set of physiological processes

within the crop model. The differences in methods and areas of

interest highlights the need for a comprehensive study into the

potential benefits of employing crop models for predicting

integrative traits.

As mentioned previously, the prediction accuracy of the CGM-GP

approach is highly dependent on the calibration set, the quality of
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parameter estimation and also the relevance of the cropmodel (Rincent

et al., 2017). Indeed, the main limiting factor of the CGM-GP approach

is how well the crop model is able to simulate the integrative trait of

interest. In our study, the “optimal” parameter set yielded an average

NMAE of 0.065 on Biomaerofw (Supplementary Table S1). A perfect

prediction of the CGMparameters could not yield a more precise result

than the “optimal” parameter set. In any case, our study shows that the

CGM-GP approach improves the predictive accuracy of an integrative

trait compared to its direct prediction.
Comparative analysis: linear and non-linear
regression methods yield similar and
robust results when predicting crop
growth model parameters

In this study, we showed that using non-linear regression

methods (convolutional neural networks) in the genomic

prediction process yielded higher prediction accuracies than

classical linear methods, such as LASSO or Bayes C. However,

CNN superiority is less significant when the prediction target is

CGM parameters rather than the integrative trait (Figure 3). Table 3

shows that, across all CGM parameters, the NMAE is similar for all

regression methods. The same trend in parameter prediction

accuracy as highlighted before is true for the three regression

methods. As mentioned previously, it is suggested that the crop

models decompose integrative traits into potentially more heritable

intermediate traits (organ size, number, etc.) that are simulated

through response curves to the environment, defined by genotypic

parameters and can thus be used to predict the genetic variability of

these integrative traits (Reymond et al., 2003; Parent and Tardieu,

2014). Indeed, the heritability of the integrative trait Biomaerofw was

of 0.714 while the elementary traits composing aboveground biomass

systematically harbored higher heritability with the exception of the

number of tillers (see Supplementary Table S2). Most of these traits

were indeed simulated with higher accuracy than the direct

prediction of aboveground biomass (see Supplementary Figure S1).

It is interesting to note that the prediction of the trait through a

CGM is also more accurate for the LASSO and Bayes C methods

compared to the direct prediction of the trait. These results may

show that genotypic parameters are under less complex genetic

control than the integrative traits of interest. It could also indicate

the robustness of the crop model for parameter sets that deviate

slightly from the observed values. Lastly, considering causal effects

of the environment on intermediate traits, as formalized in crop

models, could enhance prediction accuracies of the integrative trait.
Conclusion

The present study suggested that the use of convolutional neural

networks (CNN) to predict complex integrative phenotypic traits

enhanced prediction accuracies in classical Genomic Prediction

approaches by considering non-linear genetic interactions. It also

reaffirmed the benefits of using crop growth models (CGM) to
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better account for environmental effects on these traits as well as

facilitating marker-based prediction by breaking down integrative

traits into simpler traits. Epistatic genetic architecture and non-

linear relationships between traits and between CGM parameters

were suggested as the explanation for the more robust results of

CNN. The CGM-GP approach using CNN showed promising

results in a multi-trait (MT) context and could also enhance

predictions in a multi-environment (ME) and MTME context.
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SUPPLEMENTARY FIGURE 1

5-fold cross validation of simulations of mainstem fresh weight (A), plant
height (B), area of last fully elongated leaf (C) and mainstem leaf blade fresh

weight (D) by Ecomeristem using genomic predicted parameters obtained

with the use of a convolutional neural network.

SUPPLEMENTARY TABLE 1

Results of parameter estimation expressed as the mean of normalized mean

absolute error over all genotypes for each observed phenotypic trait.

SUPPLEMENTARY TABLE 2

Narrow sense heritability for estimated parameters and their corresponding trait.

SUPPLEMENTARY TABLE 3

Normalized Mean Absolute Error (NMAE) and Predictive Ability (PA) for the

three genomic prediction model used either in the direct prediction of
sorghum biomass (direct-GP) or the prediction through an integrated crop

growth model – genomic prediction (CGM-GP) approach.
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