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A tree peony RING-H2 finger
protein, PsATL33, plays an
essential role in cold-induced
bud dormancy release by
regulating gibberellin content
Yanxiang Mao1,2†, Yanping Yuan1,2†, Yeshen Gao1, Lingling Zeng1,
Siyu Fan1,2, Jianrang Luo1,2* and Daoyang Sun1,2*

1College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, China,
2National Engineering Technology Research Center for Oil Peony, Northwest A&F University,
Yangling, Shaanxi, China
Bud dormancy is crucial for woody perennial plants to resist low-temperature

stress in winter. However, the molecular regulatory mechanisms underlying bud

dormancy release are largely unclear. Here, a tree peony (Paeonia suffruticosa)

transcript ARABIDOPSIS TOXICOS EN LEVADURA 33 (PsATL33), encoding a

RING-H2 finger protein, was selected from previously generated RNA

sequencing data of chilling-treated buds. The objective of this study is to

investigate the role of PsATL33 in the regulation of cold-induced bud

dormancy release. Subcellular localization assay revealed that PsATL33 was

localized to the nucleus and plasma membrane. Reverse transcription–

quantitative PCR analysis showed that PsATL33 was dramatically upregulated

during cold-triggered bud dormancy release. Exogenous treatments with

gibberellin (GA3) increased, but abscisic acid (ABA) inhibited the transcription of

PsATL33. Ectopic transformation assay indicated that overexpression of PsATL33

in petunia promoted seed germination, plant growth, and axillary bud break.

Silencing of PsATL33 in tree peony through virus-induced gene silencing assay

delayed bud dormancy release. tobacco rattle virus (TRV)-PsATL33-infected

buds exhibited reduced expression levels of dormancy break-related genes

EARLY BUD-BREAK 1 (PsEBB1) and CARBOXYLESTERASE 15 (PsCXE15).

Silencing of PsATL33 decreased the accumulation of bioactive GAs, GA1 and

GA3, rather than ABA. Transcript levels of several genes involved in GA

biosynthesis and signaling, including GA20-OXIDASE 1 (PsGA20ox1), GA3-

OXIDASE 1 (PsGA3ox1), PsGA3ox3, GA2-OXIDASE 1 (PsGA2ox1), and GA-

INSENSITIVE 1A (PsGAI1A), were changed by PsATL33 silencing. Taken

together, our data suggest that PsATL33 functions as a positive regulator of

cold-induced bud dormancy release by modulating GA production.
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Introduction

The dormancy represents one of the most adaptive responses of

plants to cope with cold stress in winter (Cooke et al., 2012). The

stages of bud dormancy can be classified into paradormancy,

endodormancy, and ecodormancy (Gillespie and Volaire, 2017).

Of them, the state of shoot growth cessation and bud set is referred

to as endodormancy (Sasaki et al., 2011). Low temperature and

short-day photoperiod can induce plant growth arrest and bud

endodormancy (Yang et al., 2021). For temperature-sensitive

perennials, the buds must achieve adequate exposure to low

temperatures to fulfill their cold requirements (Anderson et al.,

2010), which initiates bud dormancy release and break in spring

(Fadón et al., 2020). It is also a crucial developmental step that

affects plant growth and flowering (Yamane et al., 2023).

Endogenous hormones are critical regulators of the bud

endodormancy process, especially gibberellins (GAs) and abscisic

acid (ABA) (Yang et al., 2019). It is well known that GAs play an

important role in chilling-induced bud dormancy release (Schrader

et al., 2004). GA content has been shown to increase after chilling

treatment. Bud burst only occurred when sufficient levels of GA4 were

present in poplar buds (Rinne et al., 2011). GA4 treatment accelerated

the rate of bud burst in Japanese apricot (Zhuang et al., 2013). ABA

content varies during bud dormancy establishment, maintenance, and

release (Liu and Sherif, 2019). ABA functions as a crucial signal in

response to short-day photoperiod during the harshest seasons (Zheng

et al., 2015). Application of ABA led to plant growth cessation and bud

dormancy development in various birch ecotypes (Li et al., 2003a).

ABA production reached the maximum levels in potato tubers that

were completely dormant (Destefano-Beltrán et al., 2006). Increased

ABA levels were found at the onset of bud dormancy in sweet cherry,

followed by a decrease during the transition from endodormancy to

ecodormancy (Vimont et al., 2021). In flower buds of sweet cherry, the

ratio of ABA/GA3 increased during dormancy induction and

decreased during dormancy release (Wang et al., 2017b).

In recent years, significant progress has been made to reveal the

regulatory mechanisms underlying cold-induced bud dormancy

release (Yang et al., 2021). DORMANCY-ASSOCIATED MADS-

BOX (DAM) and SHORT VEGETATIVE PHASE-LIKE (SVL)

proteins, belonging to the MADS-box transcription factor family,

are considered critical regulators of the bud dormancy process

(Falavigna et al., 2019). In hybrid aspen, an ortholog of SVL

negatively regulated the GA pathway to promote bud dormancy

(Singh et al., 2019). In kiwifruit, SVP2 played a pivotal role in

preventing premature bud break during dormancy (Wu et al.,

2017c). Ectopic overexpression of MdDAMb and MdSVPa in apple

also resulted in delayed bud break (Wu et al., 2017b). In Japanese

apricot, PmRGL2 functioned as a negative regulator of bud dormancy

by affecting the transcription of several GA biosynthetic and signaling

genes (Lv et al., 2018). A recent report showed that PpMAPK6

accelerated the degradation of PpDAM6 through phosphorylation

and promoted the dormancy release of peach flower buds (Zhang

et al., 2023). However, few studies have focused on the regulation of

bud dormancy in woody ornamental plants.

Tree peony (Paeonia section Moutan DC.), belonging to the

family Paeoniaceae, is a woody perennial shrub with great
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ornamental value (Guo et al., 2020). Tree peony bud is a typical

compound bud whose dormancy is known as endodormancy (Xin

et al., 2019). Bud dormancy is a constraining factor for a successful

forcing culture in the tree peony industry. Therefore, the elucidation

of molecular mechanisms of tree peony bud dormancy release is

required. It has been revealed that a sufficient chilling duration is

required to promote bud dormancy release in tree peony. The

temperature ranging from 0°C to 4°C is the most frequently used to

break bud dormancy (Huang et al., 2008). GAs have been suggested

as the primary signals in the chilling-induced bud dormancy release

of tree peony (Gai et al., 2013). In particular, exogenous GA3

application resulted in faster bud burst, shoot growth, and

flowering (Zhang et al., 2021). It was found that PsBG6

responded to low temperatures and regulated GA-induced bud

dormancy release in tree peony (Gao et al., 2021). PsRGL1,

encoding a DELLA protein, played an important role in the

regulation of bud dormancy by suppressing GA signaling (Gao

et al., 2023). Moreover, artificial chilling and exogenous GA

treatments are two common methods to break tree peony bud

dormancy. Accordingly, bud break is an economically and

environmentally important process in tree peony, but its

molecular regulatory mechanisms are not fully understood.

In previous studies, we performed RNA sequencing (RNA-Seq)

analysis of tree peony buds during chilling-induced dormancy release

(Yuan et al., 2024). A large number of differentially expressed genes

were identified from RNA-Seq data. Given the importance of

ARABIDOPSIS TOXICOS EN LEVADURAs (ATLs) in plant

response to environmental stresses (Wu et al., 2023), one

upregulated transcript, PsATL33, was selected for functional

characterization. We hypothesized that this upregulation may

indicate a crucial role of PsATL33 in the regulation of cold-

induced tree peony bud dormancy release. The experiments

presented here were conducted to test this hypothesis.
Materials and methods

Plant materials and growth conditions

One-year-old grafted tree peony plants (Paeonia suffruticosa

‘Yulouchun’), obtained from Luhe Tree Peony Planting Professional

Cooperative (Heze, China), were used as the main experimental

materials in this study. The plants were planted in plastic pots (16-

cm height, 14-cm top diameter, and 11-cm bottom diameter) filled

with a soil mixture containing peat moss and perlite (2:1, by vol.) in

late September. Each pot was irrigated with 300 mL of tap water

containing an appropriate concentration of complex fertilizer (N:P:

K = 2:1:1, by wt.) once per week. They were kept in an outdoor

environment (a temperature range from 12°C to 21°C, relative

humidity of 52%–80%, and natural photoperiod) until early

November when the bud dormancy was completely established.

The plants were transferred to a cold chamber at 2°C for chilling

treatment. The apical buds treated with low temperature at intervals

(0 days, 5 days, 10 days, 15 days, 20 days, 25 days, and 30 days) were

used for gene expression analysis. The buds at 25 days of chilling

treatment, near the time of a complete endodormancy release, were
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used for a tobacco rattle virus (TRV)-based virus-induced gene

silencing (VIGS) experiment. Petunia seeds (Petunia hybrida

‘Mitchell Diploid’), obtained from Goldsmith Seeds (Gilroy, CA,

USA), were sown in a tray containing the same soil mixture. The

leaflets were harvested as the explants for Agrobacterium-mediated

stable transformation (Ji et al., 2023). Wild-type (WT) and

transgenic petunia plants were grown in the plastic pots (11-cm

height, 11-cm top diameter, and 9-cm bottom diameter) and

irrigated as mentioned above. Tree peony plants upon VIGS assay

and petunia plants were maintained in a growth chamber at 22°C

day/20°C night with a 16-h light/8-h dark photoperiod.
Isolation and identification of PsATL33

Based on the RNA-Seq data of tree peony buds, the cDNA

sequence of PsATL33 containing a 483-bp coding region was

isolated. The translation of nucleotides into amino acids was

conducted using the ExPASy tool (http://web.expasy.org/translate/

). Phylogenetic tree analysis was carried out using MEGA4 software

(version 4.0.2). The RING-H2 conserved domain was identified

according to a previous report (Serrano et al., 2006). The modeling

process of the RING-H2 domain was performed using a Modeling

server (version 9.20) based on the sequence alignment. A similar

protein structure (Protein Data Bank: 1X4J) of PsATL33 was used

as the template. The model was evaluated through Discrete

Optimized Protein Energy (DOPE) values and GA 341 scores and

finally visualized using the PyMOL tool (version 2.5.4).
Subcellular localization assay

The coding region of PsATL33 was amplified with the stop

codon removed to construct the pCAMBIA2300-PsATL33–green

fluorescent protein (GFP) fusion expression vector. The

expression vector containing PIP2A-mCherry was used as the

control to mark the plasma membrane. The fusion expression

vectors were transformed into Agrobacterium tumefaciens

GV3101 through the freeze–thaw method. The Agrobacteria

transformed with PsATL33-GFP and PIP2A-mCherry were

mixed in equal proportion and injected into 4-week-old

Nicotiana benthamiana leaves. The reagent 4′,6-diamidino-2-

phenylindole (DAPI) was used to mark the nucleus. The

fluorescence was observed under a laser scanning confocal

microscope (TCS SP8 SR; Leica, Wetzlar, Germany). GFP,

mCherry, and DAPI were excited using 488-, 561-, and 405-nm

lasers and detected after passing through 500–560-nm, 590–620-

nm, and 410–492-nm band-pass filters, respectively.
Exogenous hormone and abiotic
stress treatments

To examine the effects of exogenous hormones and abiotic stresses

on expression profiles of PsATL33, tree peony buds before artificial
Frontiers in Plant Science 03
chilling treatment were used. For exogenous hormone treatments, the

buds were sprayed with solutions containing 100 mM GA3, 100 mM
ABA, 100 mM salicylic acid (SA), 50 mM ethephon (ETH), and 100 mM
methyl jasmonate (MeJA). The control buds were treated with

deionized water. For abiotic stress treatments, the plants were

irrigated with 20% PEG6000 and 100 mM NaCl or placed in a

warm room (37°C) and a cold room (−4°C). For each case, the buds

with three biological replicates were collected at 0 h, 6 h, 12 h, 24 h,

36 h, and 48 h after treatment. They were frozen in liquid nitrogen and

stored at −80°C.
Reverse transcription–quantitative
PCR assay

Total RNAs of tree peony buds and petunia leaves were

extracted using RNAprep Pure Plant Kit (Tiangen, Beijing,

China). To remove DNA contamination, RNA samples were

treated with RNase-free DNase I (Promega, Madison, WI, USA)

at 37°C for 30 min. RNA concentration and quality were evaluated

via 1.2% agarose gel electrophoresis and a spectrophotometer

(NanoDrop, Wilmington, DE, USA). First-strand cDNA was

synthesized from 2–5 µg of RNA samples using PrimeScript RT

reagent (Takara, Otsu, Shiga, Japan). Reverse transcription–

quantitative PCR (RT-qPCR) analysis was performed using the

synergy brands (SYBR) Green Reagent in a LightCycler480 Real-

Time PCR System (Roche Diagnostic, Basel, Switzerland). PsActin

and PhEF1a were used as the reference genes in tree peony and

petunia, respectively. The primer pairs were designed using Primer3

Input (version 0.4.0) and shown in Supplementary Table S1.

Relative expression levels of the genes were calculated as

previously described (Livak and Schmittgen, 2001). Three

biological replicates were used in this experiment.
Detection of gibberellin and abscisic
acid contents

The samples were ground into powder in liquid nitrogen and

extracted with 80% (v/v) methanol and 1 mM butyl

hydroxytoluene. The extract was transferred into a tube with 20

mg of polyvinylpolypyrrolidone and fully mixed. The mixture was

centrifuged at a relatively low temperature at 5,000 rpm for 20 min.

Under the condition of 40°C, the extract was almost concentrated

into a water phase containing ammonia. After filtration with a 0.45-

µm filter, the samples were dried by vacuum freezing. The particles

were then dissolved in 50% (v/v) methanol and analyzed through

high-performance liquid chromatography using an Agilent

chromatograph (Model 1100, Agilent Technologies, Santa Clara,

CA, USA). The detection wavelength used in this assay was 210 to

280 nm, and the flow rate was 1 mL/min. The standard hormones

were purchased from Sigma-Aldrich (St Louis, MO, USA). The

peak areas were analyzed to quantify the levels of bioactive GAs and

ABA. Three biological replicates were used for each

hormone measurement.
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Generation of transgenic petunia plants

The coding region of PsATL33was PCR-amplified and cloned into a

modified pCAMBIA1300 vector to generate the overexpression

construct (Sun et al., 2020). The recombinant plasmid was

transformed into A. tumefaciens GV3101. The leaf disc method was

used for stable genetic transformation of petunia plants (Yuan et al.,

2024). Briefly, young leaves from petunia ‘Mitchell Diploid’ plants were

collected and cut into 1 cm × 1 cm leaf discs, which were infected with

Agrobacteria harboring the recombinant plasmids. The inoculated leaves

were placed on a co-cultivation medium at room temperature for 2 days

and then transferred to a fresh regeneration medium for the selection of

positive transformants. Regular PCR amplification was conducted when

the plants reached the four-leaf stage to confirm the integration of

PsATL33. Transcript abundances of PsATL33 in leaves from transgenic

petunia lines were examined by RT-qPCR. Three lines with higher

transcription of PsATL33 were selected for functional investigation.
Virus-induced gene silencing assay

To generate the TRV-PsATL33 construct, a 347-bp fragment of

PsATL33 was PCR-amplified and introduced into the TRV2 vector

between KpnI and XhoI sites. TRV2 empty vector and TRV-PsATL33

plasmids were transformed into A. tumefaciens GV3101. The

inoculum was prepared according to a previous description (Mao

et al., 2022). The transformed Agrobacteria were cultured in Luria-

Bertani (LB) media (40 mg/L kanamycin, 20 mg/L gentamicin, 10 mM

MES, and 20 mM acetosyringone) at 28°C for 48 h. When the OD600

reached 2.0, the cells were harvested and resuspended in the infiltration

buffer (10 mM MgCl2, 10 mM MES, and 200 mM acetosyringone).

After a gentle shaking for 3 h, Agrobacterium cultures bearing TRV1

and TRV2 empty vectors or TRV-PsATL33 were mixed together in

equal volumes. The bacterial solution was used to inoculate tree peony

buds under a vacuum pressure at 0.7 MPa for 20 min. The inoculated

plants were transplanted into the soil mixture andmaintained in a cold

room at 10°C for 2 days, which would help increase viral accumulation.

Next, the plants were transferred to a growth chamber for phenotype

observation. Three tree peony plants were used for each inoculation.
Freezing tolerance assay

To investigate the function of PsATL33 in response to freezing

stress, tree peony plants inoculated with TRV empty vector and TRV-

PsATL33were placed in a cold room at −4°C with light illumination. A

normal condition at 22°C was used as the control. After cold treatment,

the survival rate of tree peony buds was recorded at 0 and 6 h post-

freezing. The buds were collected at the same time points for

measurement of malondialdehyde (MDA) content and ion leakage

rate. Three biological replicates were used with a pool of three seedlings

per replicate. The detection of MDA content was performed as

previously described (Shin et al., 2012). In brief, the bud tissues were

homogenized with 0.1% (w/v) trichloroacetic acid on ice. The mixture

was centrifuged at 12,000 rpm for 10 min at 4°C. The resulting

supernatant was evenly blended with 0.25% (w/v) thiobarbituric acid.
Frontiers in Plant Science 04
The mixture was heated in a water bath at 95°C for 10 min and cooled

rapidly to 4°C for further centrifugation at 4,500 rpm for 10 min. The

supernatant was detected by measuring A450, A532, and A600 values,

with deionized water being the blank control. MDA content was

analyzed based on the following formula: 6.45 (A532 − A600) − 0.56

A450. The ion leakage rate was measured following a previously

described method (Wu et al., 2017a). First, the buds were soaked in

0.4 M mannitol at 20°C for 3 min, and the initial conductivity was

measured using a meter (Leici, Shanghai, China). The samples were

heated in a water bath at 85°C for 20 min, and the total conductivity

was measured thereafter. The ion leakage rate was determined as the

percentage of initial conductivity to total conductivity. Three biological

replicates were used for each measurement.
Statistical analysis

All experiments reported here were performed using three

biological replicates. Statistical significance was evaluated through

Student’s t-test at p-values <0.05 and <0.01 using JMP software

(version 11.0; SAS Institute Inc., Cary, NC, USA).
Results

PsATL33 contains a RING-H2 domain and
is localized into nucleus and
plasma membrane

To investigate the molecular mechanisms of bud dormancy break

in tree peony, a 783-bp transcript encoding a putative RING-H2

finger protein, designated PsATL33, was identified from

transcriptome data of chilling-treated tree peony buds (Yuan et al.,

2024). Sequence analysis revealed that its cDNA contains a complete

coding region of 483 bp, encoding a polypeptide of 161 amino acids

(Supplementary Figure S1). PsATL33 was phylogenetically close to

AtATL33 from Arabidopsis thaliana, PvRNF167 from Pistacia vera,

and other ATL33s from Vitis vinifera, Glycine max, Medicago

truncatula, and Camellia sinensis (Figure 1A). The C-terminuses of

these amino acid sequences shared a conserved RING-H2 domain.

The characteristic sequence of this domain is Cys-2X-Cys-14–15X-

Cys-1X-His-2X-His-2X-Cys-10X-Cys-2X-Cys (X represents any

amino acids except Cys and His), which belongs to the C3H2C3-

type RING-H2 domain (Figures 1B, C). To study the subcellular

localization of PsATL33, the fusion protein PsATL33-GFP was

transiently expressed in tobacco leaves. DAPI staining and co-

expression with PIP2A-mCherry were used as nucleus and plasma

membrane markers, respectively. The results indicate that PsATL33

is localized into the nucleus and plasma membrane (Figure 1D).
PsATL33 is upregulated during
chilling-induced bud dormancy release

To understand expression patterns of PsATL33, RT-qPCR

analysis was performed using tree peony buds. It was found that
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expression levels of PsATL33 initially increased during chilling-

induced bud dormancy release, followed by a slight decrease in the

last 10 days (Figure 2A). Transcription of PsATL33 increased

significantly after GA3 treatment but decreased after ABA

treatment (Figure 2B). The effects of several stress-associated

hormones and abiotic stresses on PsATL33’s expression were also

examined. ETH and MeJA treatments resulted in a significant

increase in the expression of PsATL33, but there was no

significant change after SA treatment (Figure 2C). In addition,

transcript levels of PsATL33 increased following treatments with

drought, salinity, and freezing rather than heat (Figure 2D). These

data indicate that PsATL33 is responsive to dormancy- and stress-

related hormonal or environmental signals.
Overexpression of PsATL33 promotes
petunia seed germination, plant growth,
and axillary bud break

To study the function of PsATL33 in bud dormancy, we carried

out a heterologous transformation experiment in petunia (P.

hybrida). Compared with WT plants, PsATL33-overexpressing

transgenic plants exhibited accelerated seed germination

(Figure 3A). RT-qPCR results confirmed the constitutive

expression of PsATL33 in transgenic petunia lines (Figure 3B). A

shorter seed germination time was found in transgenic lines
Frontiers in Plant Science 05
overexpressing PsATL33 than that in the WT line (Supplementary

Figure S2A). Overexpression of PsATL33 resulted in increased

petunia plant height and internode length in the following growth

periods (Figures 3C, D; Supplementary Figure S2B). Its

overexpression also led to enlarged leaf size in petunia

(Supplementary Figure S3). In addition, PsATL33-overexpressing

transgenic plants displayed promoted growth of axillary buds

(Figure 3E). The number and length of axillary buds in transgenic

petunia lines were significantly higher than those in WT control

(Figures 3F, G). Increased production of bioactive GAs, GA1 and

GA3, was found in PsATL33-overexpressing transgenic lines

(Figure 3H). These findings suggest that overexpression of

PsATL33 promotes the dormancy release of petunia seeds and

axillary buds.
Silencing of PsATL33 inhibits tree peony
bud dormancy release

To further verify the function of PsATL33 in bud dormancy, we

performed a TRV-based VIGS experiment. Compared with empty

vector control, tree peony plants inoculated with TRV-PsATL33

showed delayed bud break and growth at 2 and 3 weeks after

inoculation (Figure 4A). RT-qPCR results showed that expression

levels of PsATL33 in the buds inoculated with TRV-PsATL33 were

significantly reduced in comparison to the control, suggesting a
A

B

D

C

FIGURE 1

Amino acid sequence and subcellular localization analysis of PsATL33. (A) Phylogenetic tree of PsATL33 with its similar proteins from Vitis vinifera
(VvATL33), Pistacia vera (PvRNF167), Glycine max (GmATL33), Medicago truncatula (MtATL33), Camellia sinensis (CsATL44), and Arabidopsis thaliana
(AtATL33 and other ATLs) belonging to groups e, f, and g of ATL family. Bootstrap values are expressed as a percentage of 1,000 replicates and shown at
branch nodes. PsATL33 is marked by a solid circle. AtATL33 is denoted by a solid diamond. (B) Alignment of RING-H2 conserved domains within PsATL33
and its homologous proteins. The key cysteine (C) and histidine (H) residues are boxed. (C) Protein modeling of PsATL33 in superimposition with its similar
protein structure 1X4J. The C and H residues are shown as sticks with different colors. (D) Subcellular localization of PsATL33 in Nicotiana benthamiana
leaves using PsATL33-GFP fusion. DAPI and PIP2A-mCherry were used to mark the nucleus and plasma membrane, respectively. Scale bars = 20 mm.
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successful silencing of PsATL33 in the buds (Figure 4B). Consistent

with the phenotypes, the PsATL33-silenced buds showed significantly

reduced bud break rate and plant height (Figures 4C, D). Transcript

levels of two bud dormancy break-associated genes, EARLY BUD-

BREAK 1 (PsEBB1) (Zhang et al., 2021) and CARBOXYLESTERASE 15

(PsCXE15) (Huang et al., 2008), were dramatically lower in PsATL33-

silenced buds than that in empty vector control (Figure 4E), indicating

that silencing of PsATL33 inhibits tree peony bud dormancy release.
Silencing of PsATL33 affects the
production of gibberellins rather than
abscisic acid

Given the essential roles of GAs and ABA in the regulation of

bud dormancy, we detected their contents in tree peony buds upon

VIGS assay. In comparison to empty vector control, the

accumulation of bioactive GAs, GA1 and GA3, in TRV-PsATL33-

infected buds was significantly reduced at different weeks after

infiltration, and notably, the decrease of GA3 accumulation was

more significant than that of GA1 (Figure 5A). However, no

significant alteration in ABA accumulation was found in the buds

infiltrated with TRV-PsATL33 (Figure 5B).
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To further study the role of PsATL33 in mediating the GA

pathway, we analyzed the transcription of some genes related to GA

biosynthesis and signal transduction in the buds. RT-qPCR analysis

showed that expression levels of GA biosynthetic genes GA20-

OXIDASE 1 (PsGA20ox1), GA3-OXIDASE 1 (PsGA3ox1), and

PsGA3ox3 decreased significantly in PsATL33-silenced buds

compared to the control, whereas transcript abundances of GA

catabolic gene GA2-OXIDASE 1 (PsGA2ox1) and GA signal

transduction repressor GA-INSENSITIVE 1A (PsGAI1A) increased

(Figure 6). No significant difference in transcript levels of other GA

pathway-related genes, ENT-KAURENE OXIDASE (PsKO), ENT-

KAURENOIC ACID OXIDASE 1 (PsKAO1), GA-INSENSITIVE

DWARF 1A (PsGID1A), and RGA-LIKE 1 (PsRGL1), was observed

in the buds infected with empty vector and TRV-PsATL33 (Figure 6).

These results demonstrate that PsATL33 affects bud dormancy

release by modulating GA production.
Discussion

Bud dormancy is an effective strategy for woody perennial

plants to resist cold weather in winter (Yuan et al., 2024). The

timely bud dormancy and release are important for perennial plants
A B

DC

FIGURE 2

Expression analysis of PsATL33 during bud dormancy release and in response to exogenous hormones and abiotic stresses. (A) Reverse transcription–
quantitative PCR (RT-qPCR) analysis of expression levels of PsATL33 in tree peony buds during chilling-induced dormancy release. The samples were
collected on different days (d) after chilling treatment. RT-qPCR analysis of expression levels of PsATL33 in the buds at different hours (h) after treatments
with 100 mM gibberellin (GA3), 100 mM abscisic acid (ABA) (B), 100 mM salicylic acid (SA), 50 mM ethephon (ETH), and 100 mM methyl jasmonate (MeJA) (C).
Treatment with distilled water was used as the control. (D) RT-qPCR analysis of expression levels of PsATL33 in the buds upon exposure to drought, salinity
(NaCl), heat (37°C), and freezing (−4°C) at intervals. PsActin was used as an internal control. Error bars represent standard error of the mean from three
biological replicates. Asterisks indicate statistical significance as calculated by Student’s t-test (∗p < 0.05, ∗∗p < 0.01).
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to overwinter and grow normally in the next year. Therefore, a full

understanding of the regulatory mechanisms of bud dormancy

release is of great significance for plants. In this study, we found

that a RING-H2 protein, PsATL33, played an important role in the

regulation of tree peony bud dormancy. PsATL33 mainly

modulated the accumulation of GAs, thereby functioning as a

positive regulator of bud dormancy release.

Current studies have shown that the RING-H2 proteins are

involved in a variety of physiological processes in plants. StATL2-

like protein from Solanum tuberosum regulated plant growth and

acted as a negative regulator of low-temperature tolerance (Song

et al., 2022). PtXERICO from Populus trichocarpa improved plant

drought tolerance by regulating the expression of ABA synthesis-

and drought-related genes (Kim et al., 2020). IbATL38 reduced the
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accumulation of H2O2 to improve the salt tolerance of Ipomoea

batatas plants (Du et al., 2021). The grape VpRH2 conferred

enhanced resistance to powdery mildew (Wang et al., 2017a).

MdCIP8 modulated anthocyanin accumulation to affect the apple

plant response to light, thus contributing to hypocotyl elongation

(Kang et al., 2020). In rice, OsMAL was involved in the

accumulation of cytokinins and reactive oxygen species for

promoting root development (Jiang et al., 2020). However, few

studies have been reported on the regulation of RING-H2 proteins

in bud dormancy. Here, we found that PsATL33, a member of the

ATL family, participated in the modulation of bud dormancy.

Heterologous expression of PsATL33 in petunia promoted seed

germination, plant growth, and dormancy release of axillary buds.

Silencing of PsATL33 in tree peony buds resulted in delayed bud
A B

D E F

G H

C

FIGURE 3

Overexpression of PsATL33 promotes seed germination, plant growth, and axillary bud break in petunia. (A) Representative phenotypes of
germinating seeds from wild-type (WT) and PsATL33-overexpressing transgenic petunia lines (#4, #7, and #8) at 12 days after sowing. The insets are
the whole phenotypes of petunia seedlings. (B) Reverse transcription–quantitative PCR (RT-qPCR) analysis of expression levels of PsATL33 in the
seedlings from WT and transgenic petunia lines. PsActin was used as an internal control. (C) Representative phenotypes of WT and PsATL33-
overexpressing transgenic petunia plants at 40 days after sowing. (D) Plant height of transgenic petunia lines in comparison to WT. (E) Representative
phenotypes of axillary buds from WT and transgenic petunia lines at 40 days after sowing. Red arrows indicate the axillary bud outgrowth. Axillary
bud number (F) and length (G) of transgenic petunia lines compared to WT. (H) Accumulation of bioactive gibberellins (GA1) and (GA3) in the
seedlings and axillary buds of transgenic petunia lines. The seedlings at 12 days and axillary buds at 40 days after sowing were collected for
measurement. Expression levels were standardized to PhEF1a. Error bars represent standard error of the mean from three biological replicates.
Asterisks indicate statistical significance as determined by Student’s t-test (∗p < 0.05, ∗∗p < 0.01).
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germination, shown as a significant decrease in bud break rate and

plant height. The results supported that PsATL33 serves as a

positive regulator of bud dormancy release.

GAs and ABA are two important hormones during the bud

dormancy transition. These two hormones have opposite effects on

the dormancy process (Zhuang et al., 2013). Overproduction of GAs

promotes the dormancy release of plants, and dormancy

maintenance depends on high levels of ABA (Howe et al., 2015;
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Wen et al., 2016; Khalil-Ur-Rehman et al., 2019; Yang et al., 2020).

Several studies have shown that GAs promoted bud germination

and growth of tree peony buds, while ABA treatment inhibited

germination (Zheng et al., 2009; Guan et al., 2019). In our studies,

we found that both GA and ABA treatments caused a significant

change in the expression of PsATL33, with the effect of GAs being

more significant. However, in PsATL33-silenced buds, there was no

significant change in the accumulation of ABA. The production of
A B

D E

C

FIGURE 4

Silencing of PsATL33 inhibits bud dormancy release in tree peony. (A) Representative phenotypes of sprouting buds from tree peony plants
inoculated with tobacco rattle virus (TRV) empty vector and TRV-PsATL33 at 2 and 3 weeks (w) after inoculation. The chilling-treated buds for 25
days were used in the virus-induced gene silencing (VIGS) assay. Scale bars = 0.8 cm. (B) Reverse transcription–quantitative PCR (RT-qPCR) analysis
of expression levels of PsATL33 in the buds inoculated with various TRV constructs at 2 and 3 w after inoculation. Bud break rate (C) and plant
height (D) of TRV empty vector- and TRV-PsATL33-infected tree peony plants at different time points. (E) RT-qPCR analysis of expression levels of
dormancy break-associated genes PsEBB1 and PsCXE15 in the buds inoculated with various TRV constructs at different time points. PsActin was
used as an internal control. Error bars represent standard error of the mean from three biological replicates. Asterisks indicate statistical significance
as evaluated by Student’s t-test (∗p < 0.05, ∗∗p < 0.01).
A B

FIGURE 5

Silencing of PsATL33 decreases gibberellin content in tree peony buds. Accumulation of bioactive gibberellins (GA1) and (GA3) (A) and abscisic acid (ABA)
(B) in the buds infected with tobacco rattle virus (TRV) empty vector and TRV-PsATL33 at 2 and 3 weeks (w) after inoculation. Error bars represent standard
error of the mean from three biological replicates. Asterisks indicate statistical significance as calculated by Student’s t-test (∗p < 0.05, ∗∗p < 0.01).
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bioactive GAs, GA1 and GA3, decreased in the buds with PsATL33

silencing, and notably, GA3 content decreased more significantly.

Therefore, we speculate that PsATL33 probably regulated tree

peony bud dormancy by mediating the GA3 biosynthesis.

Through expression assessment in PsATL33-silenced buds, it was

found that a few GA biosynthesis-related genes, PsGA20ox1,

PsGA3ox1, and PsGA3ox3, were significantly downregulated, and

transcript abundances of PsGA2ox1 and PsGAI1A involved in GA

catabolism and signal transduction were elevated. Based on these

data, we conclude that PsATL33 may regulate GA-induced bud

dormancy release by targeting both GA biosynthesis and

signaling pathways.

Increasing evidence has demonstrated that ATL proteins may help

plants adapt to environmental stresses through ubiquitin-mediated

protein degradation (Ariani et al., 2016). Arabidopsis AtATL2, rice

OsATL5, and potato StRFP1 were reported to be directly involved in

the defense against external stresses (Salinas-Mondragón et al., 1999;

Takai et al., 2002; Ni et al., 2010). LeATL6 from Lycopersicon

esculentum played an important role in defense response by

participating in the regulation of JA signaling (Hondo et al., 2007).

ATL78 affected the sensitivity of plants to ABA and participated in the
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response of Arabidopsis plants to drought stress (Suh et al., 2016).

GmRFP1 was also involved in stress responses via ABA signaling in

soybean (Du et al., 2010). Moreover, PsATL33was found to be induced

by ETH, MeJA, drought, salinity, and freezing treatments. We

hypothesize that bud dormancy release may also be regulated by

other plant hormones apart from GAs and ABA. It has been reported

that a subset of ETH pathway-related genes were potentially implicated

in the regulation of bud dormancy in grape (Shi et al., 2018). A recent

report revealed that transcription factors BZR2/MYC2 regulated pear

bud dormancy by modulating JA signaling (Wang et al., 2023).

In addition, PsATL33 may play a crucial role in plant tolerance

to abiotic stresses, which was validated by our freezing assay

(Supplementary Figure S4). The results showed that the buds

inoculated with TRV-PsATL33 exhibited a reduced tolerance to

freezing stress (−4°C) compared with the control, suggesting that

PsATL33 positively regulates the tolerance of tree peony buds to

low temperatures. It has been demonstrated that some relationship

between bud dormancy and cold acclimation exists in plants (Li

et al., 2003b). However, bud dormancy and freezing tolerance can

be regulated independently (Rinne et al., 1997), and their molecular

mechanisms are different to a large extent. Our findings revealed an
FIGURE 6

Silencing of PsATL33 downregulates gibberellin biosynthesis and signaling-related genes in tree peony buds. Reverse transcription–quantitative PCR
(RT-qPCR) analysis of expression levels of gibberellin biosynthesis- and signaling-related genes, including PsKO, PsKAO1, PsGA20ox1, PsGA3ox1,
PsGA3ox3, PsGA2ox1, PsGID1A, PsGAI1A, and PsRGL1, in the buds inoculated with tobacco rattle virus (TRV) empty vector and TRV-PsATL33 at 2 and
3 weeks (w) after inoculation. PsActin was used as an internal control. Error bars represent standard error of the mean from three biological
replicates. Asterisks indicate statistical significance as determined by Student’s t-test (∗p < 0.05).
frontiersin.org

https://doi.org/10.3389/fpls.2024.1395530
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Mao et al. 10.3389/fpls.2024.1395530
important role of PsATL33 in the regulation of both bud dormancy

and cold acclimation. The specific mechanism for PsATL33’s role in

cold acclimation remains still elusive. Although it is known that tree

peony buds can endure extremely low temperature in winter, the

tolerance can be largely decreased when the dormancy is fully

released, and notably, bud break occurs (Vitra et al., 2017). The

young germinating buds of tree peony are easily damaged by

occasional freezing stress in early spring. Thus, the temperature

(−4°C) we used in this assay can be considered serious stress at the

stage of bud dormancy release and break in tree peony. Moreover,

considering the upregulation of PsATL33 by drought and salinity, a

further investigation of the role of PsATL33 in the tolerance to these

two stresses should be performed in future work.
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