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Milk thistle, Silybum marianum (L.), is a well-known medicinal plant used for the

treatment of liver diseases due to its high content of silymarin. The seeds contain

elaiosome, a fleshy structure attached to the seeds, which is believed to be a rich

source of many metabolites including silymarin. Segmentation of elaiosomes

using only image analysis is difficult, and this makes it impossible to quantify the

elaiosome phenotypes. This study proposes a new approach for semi-automated

detection and segmentation of elaiosomes in milk thistle seed using the

Detectron2 deep learning algorithm. One hundred manually labeled images

were used to train the initial elaiosome detection model. This model was used

to predict elaiosome from new datasets, and the precise predictions were

manually selected and used as new labeled images for retraining the model.

Such semi-automatic image labeling, i.e., using the prediction results of the

previous stage for retraining the model, allowed the production of sufficient

labeled data for retraining. Finally, a total of 6,000 labeled images were used to

train Detectron2 for elaiosome detection and attained a promising result. The

results demonstrate the effectiveness of Detectron2 in detecting milk thistle seed

elaiosomes with an accuracy of 99.9%. The proposed method automatically

detects and segments elaiosome from the milk thistle seed. The predicted mask

images of elaiosome were used to analyze its area as one of the seed phenotypic

traits along with other seed morphological traits by image-based high-

throughput phenotyping in ImageJ. Enabling high-throughput phenotyping of

elaiosome and other seed morphological traits will be useful for breeding milk

thistle cultivars with desirable traits.
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1 Introduction

Milk thistle [Silybum marianum (L.) Gaertn.] is a biennial or

annual plant belonging to the Asteraceae family. It is one of the

widely known medicinal plants used as a supportive treatment for

liver diseases (Abenavoli and Milic, 2017; Gillessen and Schmidt,

2020; Marceddu et al., 2022). Milk thistle is currently a reliable

source of silymarin, a flavonoid complex that is linked with the

therapeutic effects of milk thistle. Although silymarin is present in

all parts of the plant, the seeds contain the highest amount (Lv et al.,

2017). Most of the previous studies focused on the chemistry,

genetics, and bioactivity of this important plant, while

phenotyping of morphological traits received less attention

(Bijak, 2017).

Seed morphological traits provide information for biodiversity

analysis of germplasm collections and genotypic discrimination.

Since seeds are relatively easy to handle and store, using seed traits

for genetic diversity analysis is advantageous (Dong et al., 2016,

2023). The measurements of various seed morphological traits and

correlation analysis can be used in breeding to improve seed yield

and quality and to understand the genetic basis of trait variation

(Finch-Savage and Bassel, 2016). However, effective and accurate

phenotyping of seed morphological traits needs the measurement of

a larger number of samples. Manual measurement of seed

morphological traits is limited to few parameters and is time-

consuming, labor-intensive, and error-prone. The development of

digital phenotyping technologies is greatly improving these

limitations and accelerating plant phenotyping tasks (Furbank

and Tester, 2011; Yang et al., 2020; Song et al., 2021). To enable

image-based high-throughput phenotyping of seed morphological

traits, different tools have been developed including SmartGrain

(Tanabata et al., 2012), GrainScan (Whan et al., 2014),

SeedExtractor (Zhu et al., 2021), and AIseed (Tu et al., 2023),

which greatly improved the challenges of seed high-throughput

phenotyping. Image analysis has been increasingly used to extract

features of seed images in different crops (Baek et al., 2020;

Ropelewska and Rutkowski, 2021; Dong et al., 2023).

Deep learning algorithms are powerful for analyzing complex

datasets and give fast and robust results. Although deep learning

algorithms can work with any type of data, some algorithms can be

best suited to perform specific tasks, and the selection of a suitable

model that better works for your specific task is essential (Sarker,

2021). Some of the commonly used deep learning algorithms

include Convolutional Neural Network (CNN), Recurrent Neural

Network (RNN), Long Short-Term Memory Network (LSTM),

Radial Basis Function Network (RBFN), Multilayer Perception

(MLP), Deep Belief Network (DBN), and Auto-encoders. In the

past few years, there has been advancement in deep learning

algorithms, leading to its widespread application in agriculture for

crop monitoring, yield prediction, weed and pest detection, disease

detection, nutrient deficiency detection, and crop identification by

digital image processing (Meshram et al., 2021; Farjon et al., 2023;

Liu and Zhang, 2023).

Moreover, deep learning algorithms can be used for fruit

detection and counting, which is crucial for yield estimation

(Afonso et al., 2020; Liu et al., 2020). Similarly, machine learning
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algorithms have been recently applied in seed analysis for seed

counting, phenotyping, quality assessment, defect detection, and

germination detection (Genze et al., 2020; Farjon et al., 2023). A

convolutional neural network and transfer learning-based high-

throughput soybean seed phenotyping method was proposed by

Yang et al. (2021), which automatically generates synthetic labeled

images to reduce the cost of image labeling. Semi-automatic image

labeling was also implemented in RustNet (a neural network-based

image classifier) for high-throughput detection and classification of

wheat stripe rust disease in the field. Predictions of the previously

trained model with manual correction were used for retraining the

model, thereby increasing the labeling efficiency and gradually

improving the accuracy of the model (Tang et al., 2023).

Milk thistle contains a fleshy structure attached to the seeds

known as elaiosome, which is rich in lipids and proteins. Elaiosomes

are found in many plant species and have many colors, shapes, and

sizes (Sasidharan and Venkatesan, 2019). Phenotyping of elaiosome

will enable us to better understand and dissect the metabolome

profile of milk thistle seed. Moreover, the phenotypic information

can be used to study the genetic basis of elaiosome variation in

different plant species.

Despite the availability of various image-based methods for high-

throughput phenotyping of different seed traits, elaiosome phenotyping

cannot be performed using only existing image analysis tools. This is

because the white stripe on the seed coat of milk thistle resembles the

elaiosome color, which makes it difficult for segmentation based on

color threshold. Such limitations need the application of deep learning

algorithms, which can effectively segment the area of interest by

learning the deep features of images (Minaee et al., 2022; Li et al.,

2023). In this study, a deep learning model, Detectron2, was trained for

elaiosome detection and segmentation in milk thistle seed to enable its

high-throughput phenotyping.
2 Materials and methods

2.1 Plant materials and image acquisition

A collection of 397 milk thistle germplasms received from EL&I

Co., Ltd. (https://www.elniseed.com) was used in this study. Seed

images of the germplasm were acquired using a digital camera

(Sony a6000, 6000 × 4000 resolution; Sony, Tokyo, Japan) and

saved in the JPG (Joint Photographic Experts Group) format.

Images were captured by spreading approximately 100 seeds of

each line on a blue background without contact between seeds.

Then, the individual seeds were segmented and saved as a single

image file, making a total of ~39,700 individual seed images. Images

were captured at Phenome studio, Plant Phenome Research Center,

National Institute of Agricultural Sciences, Rural Development

Administration, Jeonju, Republic of Korea.
2.2 Experimental operation environment

The processing unit consists of Intel® Core™ i7–8700 CPU and

NVIDIA GeForce RTX3090 GPU with 62 GB of memory. The
frontiersin.org
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environment for deep learning-related procedures includes Python

v3.7 and PyTorch v1.8, which were operated in Ubuntu 20.04

operating system.
2.3 Image preprocessing

During image acquisition, 100 seeds of each line were captured

at once. The acquired original image was too large to recognize

elaiosome using the Detectron2 model. Therefore, individual seeds

were segmented and saved as a single image file, making a total of

~39,700 seed images. From the original image, the blue background

and the seed portion were processed and separated based on YUV

color using ImageJ (Schneider et al., 2012; Baek et al., 2020). Seed

images were resized into sizes of 170 × 170 pixels in order to adjust

to the requirements of the deep learning model. Background

removal and foreground extraction were performed to reduce the

overall noise in the image. For model training, images were

prepared with three backgrounds (black, blue, and white) in order

to enhance the robustness of the model to detect in varied

conditions. Segmentation of elaiosome only using image

processing based on color thresholding was not successful due to

the interference of the white stripe on the seed coat, which

resembles the color of the elaiosome (Figure 1).
2.4 Image augmentation

Using an adequate number of sample size is vital to obtain

robust results from the deep learning model. The model trained

with a large sample size has stronger generalization ability. Data

augmentation is a successful method used to deal with a limited

number of data for deep learning. It includes generating new

training images from the original dataset by applying visual and

spatial transformations before being used in training (Shorten and

Khoshgoftaar, 2019; Mumuni and Mumuni, 2022). The Detectron2

model provides various types of augmentation techniques. We

applied default augmentation methods provided by Detectron2

such as random augmentation of brightness, contrast, saturation,
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rotation, and flipping to our datasets to increase the diversity of the

input images (Figure 2). Brightness or the amount of hue was

adjusted with a random value within the range of 0.8 to 1.8, which

means that the augmented image can have a brightness of anywhere

between 0.8 (darker) and 1.8 (brighter) times compared to the

original image. Contrast is the amount of luminance and was

adjusted with a random value within the range of 0.6 to 1.8.

Saturation indicates the purity of the color and was adjusted with

a random value within the range of 0.8 to 1.4. Such color space

augmentations will help the model learn different lighting and color

conditions to improve the robustness and generalization of the

model. Geometric transformations, rotation and flip, were

performed by rotating the image by a random angle within the

range of −90° to 90° and vertical flip with a 40% probability,

respectively. These augmentations can help the model to learn to

handle different orientations and positions of elaiosome in

the image.
2.5 Detectron2 model architecture

Detectron2 is an object detection model released by Facebook’s

AI research team and was developed on top of the PyTorch deep

learning framework. It is the second version of the Detectron

framework and provides object detection and segmentation

algorithms. Although it was initially trained using images from

daily life, Detectron2 allows transfer learning (enabling the rapid

retraining of the model using custom datasets from a different

domain) (Wu et al., 2019). It combines different deep learning

models for object detection such as Faster R-CNN, Mask R-CNN,

RetinaNet, and DensePose. This model consists mainly of three

blocks: Feature Pyramid Network (FPN), Region Proposal Network

(RPN), and Region of Interest (ROI) heads. FPN as a backbone

network is responsible for extracting features from input images

during the learning process. Features extracted at each res stage

(convolution blocks of “ResNet”, the backbone network) are used as

input for RPN and ROI heads. The RPN is used to specify the

location of the candidate bounding box with a confidence score in

the input feature. ROI head block consists of a box head and a mask
A B C

FIGURE 1

Using only image processing for elaiosome segmentation. (A) Raw images of milk thistle seeds; 100 seeds of each line were captured together.
(B) Elaiosome region and the seed coat white pattern with similar colors, making it difficult to segment elaiosome region using image processing.
(C) Results of image processing for elaiosome segmentation. These sample images indicate only using image processing based on color
thresholding to segment elaiosome region in milk thistle seed.
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head. The final outputs of the ROI block are predictions of the class

(object level classification), bounding box (localization), and

segmented mask of objects (pixel level classification) from the

characteristics received from FPN and RPN (Figure 3) (Wu et al.,

2019; Ackermann et al., 2022).
2.6 Image labeling and model training

Detectron2 offers more accuracy and flexibility and supports

various backbone architectures, making it a choice for accurate and

fast object detection. It was written in the PyTorch framework,

which is easy to customize and extend. Here, we used Detectron2

for accurate detection and segmentation of elaiosome in milk thistle

seeds. In deep learning, the image labeling step is a time-consuming

and labor-intensive task because the model training requires large
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amounts of labeled data. To reduce the time and labor power

required for image labeling, we employed image processing and

deep learning to enable semi-automatic image labeling of elaiosome

in milk thistle seeds. Few seeds that were precisely detected as

elaiosomes using image processing were selected and labeled using

ImageJ in the form of segmentation. These images were used to

train the first elaiosome detection Detectron2 model. Then, this

model was used to predict elaiosome in the entire dataset, and the

correct prediction segmentation masks were manually selected and

used as labeled images for retraining the model.

The dataset was divided into a ratio of 8:1:1 for training,

validation, and testing. Before feeding to the model, images were

prepared in COCO (Common Objects in Context) format (JSON

file, containing all the characteristics of the images including size,

bounding box coordinates, and labels of the box). To improve the

prediction accuracy of the model, the training was repeated using
FIGURE 2

Sample images of different image augmentation techniques. Only minimum (top) and maximum (bottom) value augmentations are shown for each
black, blue, and white background.
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the correctly predicted images with manual checking from the

previous training stages. The second training was conducted

using the predicted images (n = 200) from the results of the first

trained model. Similarly, the third and fourth training were

repeated using the correctly predicted images in stage 2 (n =

3,000) and stage 3 (n = 6,000) (Figure 4). Semi-automatic

labeling, i.e., selecting and using the prediction results of the

previous stage as input for retraining the model, helps to obtain

an adequate number of labeled data easily and saves much time and

labor because it takes significantly less time to verify if an

automatically suggested label is correct than to manually label

from scratch. During the training process, a learning rate of

0.000005 and a batch size of 40 were used.
2.7 Evaluation of the model performance

Model evaluation is an essential aspect of deep learning. The

prediction accuracy of the elaiosome detection model was evaluated

using various evaluation metrics including precision, recall, F1-

score, specificity, and accuracy. The results of the model prediction

are classified into true positive, false positive, true negative, and false

negative. The ground truth data of the test set were used to derive

positive and negative counts and were calculated using the

following formula (Tang et al., 2023).

� Accuracy =
True Positve + True Negative

True Positive + True Negative + False Positive + False Negative

� Recall =
True Positive

True Positive + False Negative

� Specificity =
True Negative

True Negative + False Positive 
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� Precision =
 True Positive

True positive + False positive

� F1 score =
 2*Precision*Recall

Precision + Recall

� Average Precision(AP) =on=0(Recalln+1 − Recalln)rinterp(Recalln+1)

∘ pr int erp( Re calln+1) = max
�r :�r≥rn+1

r(~r)

∘ where r(~r) is measured precision at recall ~r

� Mean Average Precision (mAP)  =ocn
n=1APn

∘ cn is number of class

∘ APn is measured AP about class n.

Intersection over Union (IoU) is a basic evaluation metric that

measures the similarity and diversity of two sets. IoU is a good

measure of the amount of overlap between two bounding boxes or

segmentation masks. The ratio of the area of overlap to the area of

union was calculated between the ground truth (gt) and the

prediction results for each stage of the training. A higher IoU

indicates a more accurate detection of the model. To assess the

prediction results of the models at different stages (first, second, third,

and fourth stages), we compared the predicted images between these

stages using the Jaccard similarity coefficient. To calculate similarity,

we used the predicted mask IoU of the fourth stage with the first,

second, and third stages.

� Boundingbox _ IoU =  
Area(Boxgt   ∩   Boxpredict)

Area(Boxgt   ∪  Boxpredict)

� Mask IoU =  
Area(Maskgt   ∩  Maskpredict)

Area(Maskgt   ∪  Maskpredict)
FIGURE 3

Detectron2 model architecture.
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� Similarity =
 ycount

ycount + ncount

 ycount + 1 if 
Area(predictMask4th  ∩   predictMaskn)
Area(predictMask4th  ∪   predictMaskn)

> 0:9 ;

n ¼3rd,  2nd ,  1ststages

 ncount + 1 if 
Area(predictMask4th  ∩   predictMaskn)
Area(predictMask4th  ∪   predictMaskn)

 ≤  0:9
2.8 Image-based high-throughput
phenotyping of milk thistle seed

Seed morphological traits were analyzed for 397 milk thistle

germplasm by high-throughput method. Seed images of milk thistle

were processed and analyzed following our previously developed

pipeline for high-throughput phenotyping of seed morphological

traits using ImageJ (Baek et al., 2020). In total, 10 seed traits

including area, perimeter, major axis, minor axis, solidity,

circularity, roundness, solidity, aspect ratio (AR), elaiosome area,

and the ratio of elaiosome area were measured for a total of ~39,700
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seeds using image-based high-throughput phenotyping. For the

analysis of the elaiosome area, predicted segmentation mask images

were used as inputs. One hundred seeds of each line were analyzed

by high-throughput method, and an average was calculated.
3 Results and discussion

3.1 Elaiosome detection using Detectron2

Detection of elaiosome using deep learning will help in high-

throughput phenotyping of milk thistle seed. Enabling elaiosome

phenotyping will be an important input for better understanding

and dissection of the genetics and metabolomics of milk thistle seed.

Image processing allowed us to select some images precisely

showing segmentation of elaiosome region. Such images were

selected and automatically labeled using ImageJ and used for

training the first elaiosome detection Detectron2 model. The

labeling was performed as a form of segmentation in ImageJ,

enabling automatic analysis of labeling processes in the

following steps.
FIGURE 4

Overview of model development for elaiosome detection. After each training stage, the model was used to predict elaiosome in the entire milk
thistle images (~39,700 images). The training set for the next stages was manually selected from the prediction results of the previous stage and
used for retraining the model.
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Initially, we used only 100 images to train the first elaiosome

detection model. We used this model to predict elaiosome in the

entire image dataset (~39,700 images). Two hundred images were

manually selected from the correct predictions of the previous

model and used to retrain the model. The third model was

trained using 3,000 manually selected images from the prediction

results of the second model. Similarly, the fourth model was trained

using 6,000 selected images from the prediction results of the third

model, which greatly improved the prediction accuracy of the

updated model. The developed method, which uses few manually

labeled images for training the first detection model and retraining

the model using correctly predicted images of the previous model,

will greatly improve the challenges of the image labeling process.

Previously, high-throughput soybean seed phenotyping using

CNNs and transfer learning was shown to be effective for large-

scale accurate quantification of morphological parameters. This

method uses synthetic image generation and augmentation to

train instance segmentation networks for high-throughput

soybean seed segmentation. It significantly decreases the cost of

manual annotation and facilitates the preparation of training

datasets. The use of transfer learning can reduce computing

costs by fine-tuning pre-trained model weights (Yang et al.,

2021). Mask R-CNN and YOLO, two popular deep learning

models combined with techniques like domain randomization

and transfer learning, have also shown promising results for seed
Frontiers in Plant Science 07
phenotyping. Domain randomization and transfer learning

approaches were applied to alleviate the need for large amounts

of training data, which is often a bottleneck in phenotyping.

Domain randomization is a technique used to improve the

robustness of deep learning models by training them on a

diverse set of synthetic images with randomized backgrounds,

lighting conditions, and other variations. This helps the model

generalize better to real-world images, which can have significant

variations compared to the training data. Transfer learning, in

contrast, involves using a pre-trained model (e.g., on a large

dataset like ImageNet) as a starting point and fine-tuning it on

the specific task and dataset of interest, which can improve

performance with limited training data (Margapuri and Neilsen,

2021). Our approach simplified the labeling process to obtain an

adequate number of training data using real milk thistle images.

The model was able to predict the elaiosome and give an output of

class, which is only one in this case, bounding box, and the

corresponding mask images of the elaiosome region (Figure 5).

Our study developed a deep learning approach based on

Detectron2 for the detection and segmentation of elaiosome from

milk thistle seed for the first time. Our deep learning approach was

able to precisely predict and segment elaiosome in images where

only image processing did not succeed (Figure 6). The resulting

mask images of elaiosome were used as inputs for quantitative

analysis of elaiosome phenotypes using ImageJ. This brings a new
A B

DE

C

FIGURE 5

Overview of the elaiosome detection using Detectron2. (A) Raw images of milk thistle seeds; 100 seeds of each line were captured together.
(B) Image preprocessing (individual seed segmentation, background removal, and resizing). (C) Results of using only image processing for elaiosome
segmentation. Images indicated in yellow box were precisely identified as elaiosome, while the other images show incorrect results. (D) Images
precisely identified as elaiosomes were selected (n = 100), automatically labeled in the form of segmentation, and used to train the first elaiosome
detection model. Images with three backgrounds (black, blue, and white) were used for training to enhance the robustness of the model.
(E) Prediction results of Detectron2 indicating bounding box and the corresponding segmentation mask images of elaiosome.
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trait of milk thistle seed under consideration, which was previously

difficult to measure.
3.2 Evaluation of the model performance

The performance of a deep learning model can be influenced by

various factors including the quality and quantity of the training

dataset, the model architecture, hardware and software libraries,

and hyperparameters (learning rate, batch size, and number of

iterations) (Kamilaris and Prenafeta-Boldú, 2018). The

performance of Detectron2 in detecting elaiosome in milk thistle

seeds was evaluated using average precision (AP), loss, and

accuracy curves.

The results of the AP, loss, and accuracy curves for 10,000

iterations are presented in Figure 7. AP and accuracy increased as

the number of iterations increased for all training stages. AP

measures the quality of a detection algorithm across different

confidence levels of recall and is calculated as the area under the

precision-recall curve. It is calculated using multiple mask IoU

threshold levels from 0.5 to 0.95 with a 0.05 increment. AP50 is the

AP value when the IoU is 0.5 (at least 50% overlap between the

ground truth and model predicted box or mask) and is a relatively

low threshold. AP50 reached a maximum of 100% for the bounding

box and more than 90.15% for the mask. AP75 indicates AP when

the IoU is 0.75, which is the stricter threshold, as it requires more

correct matching. AP75 for the bounding box is more than 99%, and

for the mask, it is more than 81.1% for all the training stages,

indicating the highest accuracy of the model. AP50:95 is calculated by

averaging all the IoU thresholds from 0.5 to 0.95. The average

precision of the model after 10,000 iterations reached 93.9%

(box_AP) and 89.694% (Mask_AP). The detection accuracy of the

test datasets in all stages showed more than 90% and generally
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showed stable patterns when the number of iterations patterns was

more than 1,000. The loss value decreases as the number of

iterations increases and finally approaches the lowest values of

0.018 (Box Loss) and 0.040 (Mask Loss) in the fourth stage (Table 1,

Figure 7). These results indicate that the adopted model learns

efficiently and has the potential to produce the desired outcomes.

The prediction performance of the deep learning model was

also evaluated based on accuracy and error rates. They indicate the

relationship between the actual and predicted values of the

proposed model. Accuracy is a measure of how well a model

correctly predicts a class label, while the error rate indicates the

proportion of incorrect predictions by the model. For a better

understanding of the model, performance evaluation metrics such

as precision, recall, specificity, and F1-score were also used to

evaluate it. The true and false counts were obtained within

training, validation, and test datasets using a minimum score

threshold greater than 0.5. The results indicate that the elaiosome

prediction accuracy of the model is 99.9% for training, validation,

and test datasets (Table 2). Mask R-CNN was employed for

elaiosome detection and segmentation for comparative analysis

with our method. The evaluation metrics show almost similar

patterns in both models (Table 2).

Recently, the application of Detectron2 for object detection has

gained attention due to its speed and accuracy compared to other

deep learning algorithms. For instance, Wang et al. (2023)

demonstrated that a system built on Detectron2 outperformed

YOLO v8, the latest version of the YOLO model in terms of both

speed and accuracy for segmentation of pods in Rapeseed.

Detectron2 was also found to be more effective for forest fire

detection than other detection algorithms, such as Dilated CNN,

AlexNet, Faster R-CNN, ResNet, and VGG (Abdusalomov et al.,

2023). As Detectron2 integrates various commonly used deep

learning models designed for object detection and instance
A

B

D

C

FIGURE 6

Visualization of elaiosome detection using Detectron2. (A) Original seed image. (B) Representative images of incorrect elaiosome segmentation by
image processing. (C) Predicted bounding box of the corresponding images showing the precise detection of elaiosome by Detectron2. (D)
Predicted segmentation mask images of elaiosome by Detectron2.
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segmentation, its capabilities suggest the potential for adapting to a

wider array of agricultural situations in the future.

The prediction results of the fourth stage were manually

confirmed and were more than 99% accurate. Hence, the

prediction results of the fourth stage were used as a reference to

compare the prediction results of models at different stages using

the Jaccard similarity index. The similarity index ranges from 0 to 1,

where values closer to 1 indicate the highest similarity. For

Detectron2, the similarity index values of the first, second, and

third models compared to the fourth model were 0.87, 0.92, and
Frontiers in Plant Science 09
0.98, respectively. The similarity index of 0.98 between the third and

fourth stages indicates very high similarity between the prediction

results of these models.

The Jaccard similarity index for Mask R-CNN was calculated

using the prediction results of Detectron2’s fourth stage as a

reference. A Jaccard similarity index of 0.88 between the

segmentation results of Detectron2 and Mask R-CNN at the

fourth stage indicates a relatively high level of agreement between

the segmentation masks produced by the two models. This means

that both models are consistent in their segmentation results, with
FIGURE 7

Evaluation of elaiosome detection model Detectron2 using average precision (AP), loss, and accuracy curves during 10,000 iterations.
TABLE 1 Summary of evaluation metrics for the performance of elaiosome detection model.

Training
stage

Box_Loss Mask_Loss Accuracy
Bounding Box Mask

AP50 AP75 AP50:95 AP50 AP75 AP50:95

1st 0.006 0.102 0.955 100 100 76.585 90.149 81.089 54.4

2nd 0.007 0.112 0.949 100 100 76.053 100 88.22 60.533

3rd 0.022 0.136 0.937 100 99.01 79.137 99.007 94.817 63.964

4th 0.018 0.04 0.983 99.995 99.01 93.907 99.995 99.995 89.694
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only 12% of the union consisting of images that are not mutually

agreed upon (Table 3). Although both models showed similar

performance in terms of evaluation metrics, manual checking of

prediction results confirmed that Detectron2 produces more precise

segmentations and is more reliable for elaiosome segmentation than

Mask R-CNN (Figure 8).
3.3 High-throughput phenotyping of
various morphological traits in milk
thistle seed

Seed morphological traits were analyzed for 397 milk thistle

germplasm. We employed our previously developed image-based

high-throughput phenotyping method using ImageJ (Baek et al.,

2020) to analyze seed morphological traits of milk thistle. Ten seed

phenotypes including area, perimeter, major axis, minor axis,

solidity, circularity, roundness, solidity, AR, elaiosome area, and

the ratio of elaiosome area were measured for a total of ~39,700

seeds using image-based high-throughput phenotyping. In this
Frontiers in Plant Science 10
study, new quantifiable phenotypes of milk thistle seeds, namely,

the measurement of elaiosome area and the ratio of elaiosome to the

total seed area, were successfully added. Manual measurement and

conventional image analysis were not able to extract these

phenotypes, indicating the power of deep learning applications in

plant phenomics.

One hundred seeds were analyzed for each line, and an average

was calculated. The frequency distribution of 397 milk thistle

germplasms for 10 seed morphological traits of milk thistle is

presented in Figure 9. The measured traits showed continuous

variation and normal distribution. The summary statistics including

range, mean, and standard deviation for the 10 morphological traits

are presented in Table 4. Image-based high-throughput

phenotyping is becoming an integral part of plant science studies

to measure morphological, physiological, biochemical, and stress

response traits in economically important crops (Sun et al., 2022;

Abebe et al., 2023). The seed phenotypic data produced in this study

can be used for breeding milk thistle cultivars with desirable traits.

Digital seed phenotyping represents a significant advancement

in precision agriculture, offering a more efficient and effective way to

enhance crop production and sustainability. The advantages of our

approach include reducing labeling time by enabling semi-

automatic labeling and reducing the learning time using a small

number of training data. Integrating a deep learning-based

elaiosome detection method into existing phenotyping workflows

has the potential to revolutionize agricultural practices by

enhancing efficiency, accuracy, and scalability. This can be

achieved by setting up imaging equipment in the laboratory for

collecting images of seeds and implementing image preprocessing
TABLE 3 Jaccard similarity index for different training stages of
Detectron2 and Mask R-CNN.

Algorithm

Training stage

1st 2nd 3rd 4th

Detectron2 0.87 0.92 0.98 –

Mask R-CNN 0.42 0.57 0.74 0.88
TABLE 2 Performance comparison of Detectron2 and Mask R-CNN for elaiosome detection.

Dataset
Algorithm Detectron2 Mask R-CNN

Training
stage

1st 2nd 3rd 4th 1st 2nd 3rd 4th

Training

Precision 0.99519 0.99542 0.99298 0.98874 0.978329 0.974487 0.968505 0.984312

Recall 0.95089 0.95005 0.91929 0.93423 0.959738 0.961088 0.957945 0.93943

Specificity 0.99997 0.99997 0.99996 0.99993 0.999843 0.999819 0.999785 0.999896

F1-score 0.97254 0.97221 0.95472 0.96071 0.968945 0.967741 0.963196 0.961347

Accuracy 0.99961 0.99961 0.9994 0.99948 0.99955 0.999542 0.999498 0.999481

Validation

Precision 0.97476 0.96633 0.99355 0.98802 0.95097 0.932799 0.95894 0.978402

Recall 0.93487 0.9523 0.9199 0.93269 0.934974 0.960577 0.947996 0.930996

Specificity 0.99982 0.99976 0.99996 0.99992 0.999634 0.999509 0.999722 0.999858

F1-score 0.9544 0.95927 0.95531 0.95956 0.942904 0.946484 0.953437 0.95411

Accuracy 0.99933 0.99943 0.99941 0.99946 0.999146 0.999234 0.99937 0.999385

Test

Precision 0.95905 0.97012 0.98606 0.98525 0.947285 0.954069 0.954173 0.976927

Recall 0.926 0.88811 0.91407 0.93174 0.891297 0.889488 0.943334 0.930324

Specificity 0.99972 0.99981 0.99991 0.9999 0.999645 0.999698 0.999685 0.999847

F1-score 0.94224 0.9273 0.9487 0.95774 0.918438 0.920648 0.948723 0.953056

Accuracy 0.99919 0.99903 0.99932 0.99943 0.998875 0.998924 0.999295 0.999368
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steps to enhance image quality before feeding them into the deep

learning model. Then, the images can be uploaded to the local

server, cloud server, or edge device where the elaiosome detection

model can run. The detailed seed phenotypic data can be linked

with other relevant data such as genomic information and

metabolic profile. Investigation of relationships between various
Frontiers in Plant Science 11
seed phenotypic traits with genomic and metabolic information will

be the focus of future work, and we are working in collaboration

with genomic and metabolic engineering divisions at the National

Institute of Agricultural Sciences.

Addressing potential limitations such as the need for manual

checking of model predictions and real-time processing limitations
FIGURE 8

Comparison of elaiosome prediction disagreements between Detectron2 and Mask R-CNN.
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is the focus of future research. Furthermore, we aspire to develop a

fully automated elaiosome labeling and detection method in the

future. Future research should also focus on extending the method

to other crops beyond milk thistle, demonstrating its applicability

and scalability across different species.
4 Conclusions

Our study presents a successful application of the Detectron2 deep

learning model for the automated detection and segmentation of

elaiosome in milk thistle seed. The developed method uses few

manually labeled images for training the first detection model and
Frontiers in Plant Science 12
retrains the model using correctly predicted images, thereby reducing

the cost of manually labeling a large number of training data. The

developed model exhibits high accuracy (99.9%) of detection and

precisely produced segmentation masks of elaiosome. The mask

images of elaiosome were used as input for image-based analysis of

elaiosome phenotypes in ImageJ. This enabled the successful addition

of new quantifiable traits to milk thistle seed phenotype, namely, the

elaiosome area and the ratio of elaiosome. Seed morphological traits of

397 milk thistle lines (39,700 seeds) including elaiosome area were

accurately analyzed by high-throughput method using image analysis.

The findings of this study will open avenues for innovative research in

milk thistle seed and offer promising solutions for automating labor-

intensive tasks in plant phenotyping studies.
TABLE 4 Summary of the descriptive statistics of seed morphological traits for 397 milk thistle germplasm.

Area Perimeter Major
axis

Minor
axis

Circularity AR Roundness Solidity Elaiosome
area

Elaiosome
area %

Average 16.517 17.060 6.740 3.117 0.712 2.170 0.463 0.962 0.962 5.824

Max. 18.859 18.124 7.238 3.482 0.761 2.405 0.526 0.966 1.303 7.878

Min. 14.143 15.786 6.224 2.859 0.672 1.910 0.417 0.956 0.651 3.959

Stdev. 0.815 0.420 0.178 0.114 0.014 0.087 0.019 0.001 0.087 0.497
AR, aspect ratio.
FIGURE 9

Frequency distribution of 397 milk thistle germplasm based on seed morphological traits (area, perimeter, major axis, minor axis, aspect ratio,
circularity, roundness, solidity elaiosome area, and percent elaiosome area). The trait measurements were extracted using ImageJ. The x-axis shows
the trait measurement value, and the y-axis shows the number of milk thistle lines.
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