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Liang Yu1,2,3, Weiguo Liu1,2,3* and Wenyu Yang1,2,3
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Introduction: Soybeans are an important crop used for food, oil, and feed.

However, China’s soybean self-sufficiency is highly inadequate, with an annual

import volume exceeding 80%. RGB cameras serve as powerful tools for

estimating crop yield, and machine learning is a practical method based on

various features, providing improved yield predictions. However, selecting

different input parameters and models, specifically optimal features and model

effects, significantly influences soybean yield prediction.

Methods: This study used an RGB camera to capture soybean canopy images

from both the side and top perspectives during the R6 stage (pod filling stage) for

240 soybean varieties (a natural population formed by four provinces in China:

Sichuan, Yunnan, Chongqing, and Guizhou). From these images, the

morphological, color, and textural features of the soybeans were extracted.

Subsequently, feature selection was performed on the image parameters using a

Pearson correlation coefficient threshold ≥0.5. Five machine learning methods,

namely, CatBoost, LightGBM, RF, GBDT, and MLP, were employed to establish

soybean yield estimation models based on the individual and combined image

parameters from the two perspectives extracted from RGB images.

Results: (1) GBDT is the optimal model for predicting soybean yield, with a test set

R2 value of 0.82, an RMSE of 1.99 g/plant, and an MAE of 3.12%. (2) The fusion of

multiangle and multitype indicators is conducive to improving soybean yield

prediction accuracy.

Conclusion: Therefore, this combination of parameters extracted from RGB

images via machine learning has great potential for estimating soybean yield,

providing a theoretical basis and technical support for accelerating the soybean

breeding process.
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1 Introduction

Soybeans, a crucial oilseed economic crop, serve as a significant

source of plant protein and fat in human diets. In addition,

soybeans are second only to cash food crops such as wheat, rice

and corn, and their trade is the largest among all agricultural

products (Zhou and Yang, 2021). In recent decades, China has

faced severe soybean self-sufficiency. According to statistics from

the U.S. Department of Agriculture, China’s annual soybean

imports exceed 100 million tons, with an average yield per unit

area of only 132.4 kg/mu, which is significantly lower than the

global average of 188.7 kg/mu. The economic returns from soybean

cultivation are notably lower than those from summer crops such as

corn, leading to a lack of enthusiasm among farmers for soybean

cultivation (Ren et al., 2021). This situation perpetuates a negative

cycle for soybean cultivation, emphasizing the importance of

developing high-yield soybean varieties. Yield monitoring is a

crucial parameter for assessing soybean productivity during the

harvesting process. Traditional yield survey methods rely on the

experience of farmers or professionals, primarily through

destructive sampling, which is time-consuming, labor-intensive,

and inherently uncertain. Therefore, nondestructive and accurate

yield monitoring is highly important for soybean production. Yield

is a comprehensive indicator influenced by factors such as genotype,

the environment, and their interactions, making yield estimation

highly challenging. To promote efficient soybean breeding, the

following question arises: how can soybean yield be accurately

and efficiently predicted?

In precision agriculture, a recent hotspot, nondestructive

estimation technologies have been developed, providing new

methods and means for crop growth estimation and

demonstrating promising applications in crop yield estimation.

Previous studies have shown that images captured by sensors

such as RGB cameras (Ji et al., 2022), thermal infrared cameras

(4), hyperspectral cameras (Chiozza et al., 2021), and computed

tomography (CT) scanners (Hughes et al., 2017) can be used to

extract multiple image traits. These traits can be used to establish

predictive models for estimating crop yield. Among these sensors,

thermal infrared (TIR) cameras operating under field conditions are

strongly influenced by environmental temperature (Hu et al., 2017)

and have very low resolution. Hyperspectral cameras, with multiple

continuous bands, can acquire spectral images in various bands.

However, due to the large amount of information, imaging is time-

consuming, and image processing is slow. However, CT scanners

are expensive and challenging to operate. In comparison, RGB

cameras, as image acquisition devices, have the advantages of low

information acquisition costs, small size, high resolution, and

simple operation. These scanners have been widely used in crop

monitoring (Yamaguchi et al., 2020). RGB images can record

brightness values (DNs) of the red, green, and blue bands and,

based on this, undergo color space conversion to calculate

vegetation indices. Compared to spectral images or multisource

data fusion, RGB images are correlated with a small amount of data

and are easy to handle. Therefore, over the past decade, efforts have

been made to develop the application of RGB cameras in crop

yield estimation.
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Machine learning (ML) is a significant branch of computer

science, and with the continuous advancement of sensor technology

and image-processing techniques, ML has found extensive

applications in various aspects of precision agriculture research,

including yield estimation. In 2021, Saul Justin Newman et al.

demonstrated the potential of ML algorithms for robustly

predicting important agronomic traits, including yield, and

developing and testing new interpretable models in crop biology

(9). As an emerging and more complex statistical model, ML can

better describe the nonlinear relationship between input variables

and predicted outcomes. Recent studies have consistently shown the

significant advantages of this approach over linear models in yield

prediction (Cao et al., 2022). ML algorithms have been widely used

to establish predictive models relating image features to biological

parameters. ML algorithms exhibit greater accuracy and efficiency

than simple linear regression models (Wang et al., 2021).

Various methods have been proposed and applied to estimate

crop yield (Li et al., 2021). employed the random forest method to

achieve dynamic yield prediction for three crops in China—winter

wheat, corn, and rice. They explored the optimal lead time for yield

prediction for different crops and assessed the importance of

various predictive factors. Minghan Cheng et al. conducted

research on a prediction algorithm for Chinese corn yield using

two machine learning methods, random forest regression (RFR)

and gradient boosting decision trees (GBDTs). Their results showed

that earlier lead times resulted in lower prediction accuracy, but the

accuracy remained relatively high within at least 24 days before

maturity (coefficient of determination (R2)>0.77, relative root mean

square error (rRMSE)<16.92%) (Cheng et al., 2022, Jin et al., 2017).

developed a method for winter wheat yield estimation by combining

the AquaCrop model with optical and radar imaging data using a

location and orientation system algorithm, which showed a high

correlation between the predicted and measured yields (Gilliot et al.,

2020). demonstrated the potential of predicting corn yield based on

extracted plant height from images (Feng et al., 2020). used

ensemble machine learning models for in-season alfalfa yield

estimation (Sun et al., 2020). developed six mainstream machine

learning models to estimate potato tuber yield and obtained

satisfactory results. Maitiniyazi Maimaitijiang et al (Cao et al.,

2022). demonstrated that using low-cost drones for multimodal

data fusion under a deep neural network (DNN) framework can

provide relatively accurate and robust soybean yield estimates.

However, the predictive performance of models varies for

different crops and environmental parameters, and limited

research has explored the effects of different machine learning

models on the prediction of individual soybean plant yields for

multiple varieties.

The gradient boosting decision tree (GBDT) model is an

additive model and a form of boosting in ensemble learning

(Shi et al., 2018). This model reduces the residuals during

training by continually combining linear combinations of

functions to achieve regression. The light gradient boosting

machine (LightGBM) is another popular gradient boosting

method known for reducing errors, thereby improving accuracy

and speed. However, this approach does not support string-type

data and requires special algorithms for splitting categorical data, as
frontiersin.org
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it requires integer values (such as indices) instead of column string

names (Brinkhoff et al., 2023; Seireg et al., 2023). The categorical

boosting (CatBoost) algorithm, an open-source machine learning

library released by the Russian search giant Yandex in 2017, is also

part of the boosting algorithm series. CatBoost is a novel machine

learning algorithm framework based on the gradient boosting

decision tree (GBDT). In contrast to LightGBM, CatBoost can

automatically convert strings into index values and handle

missing numerical values. Unlike traditional neural network

models, CatBoost does not require many samples for training; it

adapts well to training with small-scale samples and provides high-

precision diagnostics. The advantages of CatBoost include

overcoming gradient bias, effectively addressing prediction bias,

improving algorithm accuracy, enhancing generalizability, and

preventing overfitting (Huang, 2020; Liu, 2020; Lu et al., 2022).

The random forest (RF) algorithm was proposed by Breiman in

2001 and is an ensemble machine learning method based on

multiple classification regression trees (Breiman, 2001). The basic

concept involves creating homogeneous subsets through

bootstrapping and growing decision trees in each subset (number

of trees: ntree) from the training dataset. The final result of RF

regression is obtained by averaging all the decision trees (Breiman,

2001). Due to repeated sampling, RF regression can effectively

reduce overfitting (Breiman, 2001).

The multilayer perceptron (MLP) model is a simple neural

network and one of the earliest models in artificial intelligence. This

model is the most widely used artificial intelligence model in all

scientific numerical modeling fields (Paswan and Begum, 2013;

Khalifani et al., 2022). MLPs typically include a set of sensory units

(basic neurons) and consist of an input layer, one to several hidden

layers, and an output layer. This method creates nonlinear

mappings between input target samples, and input signals from

the input layer to the output layer propagate forward (Aghelpour

and Varshavian, 2021).

The development of nondestructive estimation techniques

enables efficient and accurate monitoring of soybean yield,

significantly shortening the time required for soybean breeding,

meeting the needs of breeders, and facilitating efficient breeding.

Therefore, the purpose of this study was to evaluate the accuracy of

soybean yield estimation using five machine learning algorithms

(CatBoost, LightGBM, RF, GBDT, and MLP) and to determine the

optimal model for early soybean yield estimation using phenotypic

features extracted from multiangle RGB images. This approach

aims to increase the efficiency of obtaining soybean biological traits

and accelerate the soybean breeding process.
2 Materials and methods

2.1 Experimental site overview

The experiment was conducted during 2022–2023 at the

Chongzhou Experimental Base of Sichuan Agricultural University

(103°39’E, 30°33’N), as depicted in Figure 1A. This region has a

subtropical monsoon climate, with an average temperature of 16.2°

C, an annual total sunshine duration of 1400 hours, and an annual
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total rainfall of 918 mm. The basic chemical properties of the 0–20

cm soil layer at the experimental site were as follows: organic matter

content, 24.3 g·kg-1; total potassium, 15.2 g·kg-1; total nitrogen, 1.6

g·kg-1; total phosphorus, 1.3 g·kg-1; available potassium, 169.4

mg·kg-1; available nitrogen, 299.5 mg·kg-1; and available

phosphorus, 36.5 mg·kg-1.
2.2 Experimental design

The experimental materials consisted of 240 soybean varieties (a

natural population formed by four provinces in China: Sichuan,

Yunnan, Chongqing, and Guizhou) (Appendix 3). As shown in

Supplementary Figure S1, the genetic diversity of this population is

extremely extensive, and all of these populations were planted in

2022. In 2023, based on the previous year’s yield, extremely low-

performing varieties were excluded, resulting in the final cultivation

of 202 soybean varieties. Over the two years of field experiments,

each variety was subjected to three replications and two planting

methods to increase yield differences (sole cropping and strip

intercropping with corn). In the strip intercropping system with

corn, the corn variety used was Zhongyu 3, a semicompact spring

corn. The planting materials used were provided by the Crop Strip

Composite Planting Engineering Technology Research Center of

the College of Agronomy, Sichuan Agricultural University. The

field layout is shown in Figures 1B, C. In the corn–soybean strip

intercropping system, two rows of corn (corn strip) were

intercropped with two rows of soybean (soybean strip), with a

length of 20 m and a width of 2 m (the row spacing for both the

corn-corn and soybean-soybean systems was 40 cm, and the

spacing between the corn and soybean strips was 60 cm). Both

corn and soybean were single-hole planted, with a hole spacing of

20 cm for corn. For soybean, pots were planted with a diameter of

25 cm, a diameter of 20 cm, and a height of 25 cm; the pots were

filled with 10 kg of soil. Under the intercropping treatment, the

potted soybeans were placed in wide rows of corn, with two pots

placed side by side in each strip. The soybean plant density and row

spacing under the monocropping treatment were consistent with

those under the intercropping treatment. The base fertilizer for corn

was compound fertilizer (N:P:K = 13:5:7) applied at a rate of 923

kg·hm-2. At the jointing and tasseling stages, urea (N ≥ 46%) was

applied at rates of 98 kg·hm-2 and 163 kg·hm-2, respectively. No

fertilizer was applied throughout the entire growth period of

the soybeans.
2.3 High-throughput phenotypic
data acquisition

The flowchart depicted in Figure 2 illustrates the methodology

employed in this study for obtaining high-throughput soybean

phenotypic data. This process included image acquisition, image

segmentation (offline model training and online image

segmentation), and parameter extraction. The details of this

flowchart are discussed below. In this study, a total of three

categories of parameters were extracted from two shooting angles,
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including 6 color parameters each for the top and side views, 17

textural parameters each for the top and side views, and 16 and 30

morphological parameters for the top and side views, respectively

(refer to Appendix 1). In this research, the color, texture, and

morphological parameters from the top and side views were

individually or collectively used to estimate soybean yield.

2.3.1 Image acquisition
In 2022–2023, we utilized a self-developed single soybean plant

imaging platform from Sichuan Agricultural University as the

capture platform. This platform, centered on an automatic

rotating table, is equipped with industrial cameras on both the

top and side of the table. The table rotation speed and number of

cycles are controlled by a programmable logic controller (PLC). The
Frontiers in Plant Science 04
selected Hikvision industrial cameras (MV-CH250–90GC, China)

paired with Hikvision robot lenses (MVL-KF1624M-25MP, focal

length 16 mm, maximum aperture F2.4, 1.2 C, Hangzhou, China)

were used as sensors for capturing images. During the capture

process, the camera parameters were set as follows: focal lengths for

the side and top cameras were 2.3 mm and 2.4 mm, respectively;

shooting distances were 2.6 m and 1.8 m, respectively; and the

camera mode was set to aperture priority (AV) with an aperture size

of 2.4 and automatic white balance, ensuring a camera frame rate

≥4.5 fps. The side and top images were stored in JPG format with

resolutions of 4000*4000 and 4604*4604, respectively. A white

standard board with a diameter of 30 cm was used as the scale,

and a scale image of both the top and side views was collected to

calculate the values of the extracted image features.
B CA

FIGURE 1

Study area and experimental design. (A) Geographic location of the Sichuan Agricultural University Modern Agriculture Research and Development
Base; (B) sole cropping of soybeans; and (C) strip intercropping of corn and soybeans.
FIGURE 2

High-throughput phenotyping of soybeans.
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RGB images were collected during the R6 stage (pod filling

stage) of soybeans. Each time, images were captured by randomly

selecting 3 pots from each treatment. The soybean plants were

placed on the turntable, and every 60° rotation, a side image was

obtained. Additionally, a random overhead view was captured. In

total, one overhead view and six side views were collected for each

soybean plant. A total of 18,564 images were captured, 15,912 of

which were collected in 2022 (8,640 side views and 1,440 top views),

and 8,484 were captured in 2023 (7,272 side views and 1,212 top

views). The specific imaging process is illustrated in Figure 2.

2.3.2 Image segmentation
The soybean plant segmentation model utilized the U-Net

neural network. In this study, 2000 images were used as the

training set to train U-Net. The images were divided into

training, testing, and validation sets at a ratio of 8:1:1. The U-net

network was pretrained using the VOC 2012 dataset to enhance its

feature extraction capability, and the obtained weights were utilized

for model training. Subsequently, transfer learning was performed

using the pretrained weights to conduct formal training on U-Net.

The training was conducted on a computer with a Windows 10

system using a resolution of 2048×2048 and an NVIDIA GeForce

RTX 3090 with 48 GB of memory. The training was implemented

based on the PyTorch framework. The training process comprised

two stages: the first stage involved freezing the main feature

extraction network and enhancing the weights of the feature

extraction network, training only the classification network. The

parameters were adjusted as follows: learning rate = 110^-4,

epochs = 60, batch size = 4, and learning rate decay = 0.92. In the

second stage, the feature extraction network was unfrozen, and the

entire network was trained. The parameters were adjusted as

follows: learning rate = 110^-5, epochs = 50, batch size = 1, and

learning rate decay = 0.95.

2.3.3 Image parameter extraction
2.3.3.1 Color features

Extraction was performed on the three channels (R, G, and B) of

the finely segmented color image to calculate color trait values. The

color parameters extracted in this study included the blue, green,

red, blue-green, blue-red, and green-red ratios, comprising six

indicators. The calculation formulas are as follows Equations (1–3):

R  =  on
i=1Ri

n
(1)

G  =  on
i=1Gi

n
(2)

B  =  on
i=1Bi

n
(3)

In the formulas, Ri represents the pixel value of the red channel

for the i-th pixel of the plant, R denotes the red mean, Gi represents

the pixel value of the green channel for the i-th pixel of the plant, G

denotes the green mean, Bi represents the pixel value of the blue

channel for the i-th pixel of the plant, and B denotes the blue mean.

n represents the number of pixels in the plant.
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For each image, a set of R, G, and B values can be obtained, and

the values of the side color parameters for each plant are the

averages of these values from six images. The blue-green ratio,

blue-red ratio, and green-red ratio are then calculated as the ratios

of the blue mean to the green mean, the blue mean to the red mean,

and the green mean to the red mean, respectively.
2.3.3.2 Textural features

Image parameter extraction was conducted using Python 3.7

(Python Software Foundation, https://www.python.org/) and the

scikit-learn library v0.21.3. Textural processing is a common

method for extracting information from digital images, and

although it lacks a formal definition, an intuitive description of

textural information captures its properties well. Textural

computation involves two main approaches: spectral methods

based on the properties of the Fourier spectrum and detection of

the global periodicity of the image by identifying high-energy

narrow peaks in the spectrum (Bharati et al., 2004). On the other

hand, statistical methods can extract the directionality, roughness,

and degree of order in images. Textural traits were calculated using

the gray-level co-occurrence matrix (GLCM), which was initially

proposed by Hong Jiguang (Hong, 1984). By combining the overall

soybean textural gray-level division, the color space of the color

image was converted to the HIS color space, with the I channel

serving as the grayscale image. The specific calculation formula is as

follows Equation (4):

I  =  
R + G + B

3
(4)

The element H(i, j) in the gray-level co-occurrence matrix is

defined as the total number of pixels with a normalized grayscale of

i in the grayscale image and a normalized gradient of j in the

gradient image. The probability of having a grayscale value of i and

a gradient value of j is calculated as follows Equation (5):

p(i : j) = H(i, j)=oNf

i=1H(i, j) (5)

where i = 0, 1, 2…, Nf represents the normalized maximum

grayscale value and j = 0, 1, 2…; a total of 15 textural traits were

obtained. In addition, two histogram traits were included in this

study. The textural parameters on the side were the averages of six

images. The specific calculation formulas are provided in Table 1.

2.3.3.3 Morphological features

The number of binary image pixels was calculated, and the side

data represent the average of six sideview images. Definitions for

each indicator are provided in Appendix 2.
2.4 Yield data collection

After the soybeans matured, manual collection and recording of

individual soybean yields were conducted. The yield distribution is

depicted in Figure 3, and the data for both years follow a

normal distribution.
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2.5 Broad-sense heritability calculation

We evaluated the broad-sense heritability (H2) of the data over

the two years using the formula H2 = Vg/(Vg + Vll/n + Vly/n + Vr/

n2). Here, Vg represents the genotypic variance, Vll represents the

variance between varieties and locations, Vly represents the variance

between varieties and years, and Vr represents the residual variance,

with n denoting the number of replicates. Means and standard
Frontiers in Plant Science 06
deviations were calculated using BLUP values, and the statistical

significance of P values was determined using paired t tests.
2.6 Construction and evaluation of
soybean yield estimation models

To further investigate the estimation accuracy of the yield

prediction models, data preprocessing was performed using R

Version 4.1.1 (R Foundation, Vienna, Austria). The outlier test

function from the car package was utilized to remove outliers. A

total of 149 outliers were eliminated from the 1440 datasets for

2022, and 121 outliers were removed from the 1212 datasets for

2023. Subsequent analyses were based on the remaining 2382

datasets. The statistical modeling was conducted using Python

3.7. In this study, five different regression methods were

employed: CatBoost, LightGBM, RF, GBDT, and MLP. All the

input parameters were normalized. The two years of data were

divided into training and testing datasets based on the years. The

samples from 2022, totaling 1291, were used as the training set,

while those from 2023, totaling 1091, were used as the testing set.

Tenfold cross-validation was also performed. All the numerical data

were plotted using Origin 2019 and SPSS 2018. The data analysis

methods employed in this study are illustrated in Figure 4.

2.6.1 Machine learning parameter adjustment
In this study, the loss functions for all five models were set to

‘friedman_mse ’ , and a grid search was employed for

hyperparameter tuning. The final settings for the GBDT model

were a learning rate of 0.1, a maximum depth of 5, and a maximum

iteration count of 800. For the CatBoost model, the final setting was

a learning rate of 0. 05, a maximum tree depth of 10, and a

maximum iteration count of 2000. In the LightGBM model, the

final settings were a learning rate of 0.1 and a maximum tree depth

of 10. In the RSF model, the optimal number of trees (ntree) for

soybean yield estimation was determined by testing ntree values

from 100 to 500 in increments of 50. The value 300 was chosen

because it achieved stable and relatively low mean absolute error

(MAE) and high R2 in the soybean yield estimation model. Other

hyperparameters in the RF regression were set to the default values

using the regressor function in the scikit-learn library. For the MLP

model, the activation function was set to ‘relu,’ regularization

coefficient to 0.01, two hidden layers were established with 100

neurons in the first layer and 50 neurons in the second layer, the

learning_rate was set to ‘adaptive’, and the solver was set to ‘sgd.’

2.6.2 Modeling evaluation
To reduce the impact of data partitioning on model estimation

errors, the root mean square error (RMSE), MAE, and R2 were

calculated to assess the performance of each estimation method.

The specific calculation formulas are as follows Equation (6–8):

RMSE = −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
mo

m
i=1(yi − ŷi)

2

r
    (6)
TABLE 1 Formulas for Textural Parameter Calculations.

Number Full name Calculation formula

1
Small
gradient
advantage

T1 = o16
i=1o16

j=1

H(i, j)
j2

� �
=½o16

i=1o16
j=1H(i, j)�

2
Large
gradient
advantage

T2 = ½o16
i=1o16

j=1j
2H(i, j)�=½o16

i=1o16
j=1H(i, j)�

3 energy T3 =o16
i=1o16

j=1½P(i, j)�
2

4

The gradient
distribution
has
inhomogeneity

T4 = o16
i=1½o16

i=1H(i, j)�2
n o

=½o16
i=1o16

j=1H(i, j)�

5
Gradient
average m2 =o

16

j=1

j ∗½o
16

j=1

P(i, j)�

6
Gradient
entropy T5 = − o16

j=1½o16
i=1P(i, j)�* log½o16

i=1P(i, j)�
n o

7
Grayscale
entropy T6 = − o16

i=1½o16
j=1P(i, j)�* log½o16

j=1P(i, j)�
n o

8 Mixed entropy T7 = −o16
i=1o16

j=1P(i, j)*logP(i − j)

9
Differential
moment

T8 =o16
i=1o16

j=1P(i, j)(i − j)2

10 Deficit moment T9 =o16
i=1o16

j=1

1

1 + (i, j)2
P(i, j)

11
Gradient
standard
deviation

s2 = o
16

j=1

(j − m2)
2½o
16

i=1

P(i, j)�g1=2
(

12 Correlation T10 =
1

s1s2
o16

i o16
j (i − m1)(j − m2)P(i, j)

13
Grayscale
histogram
variance

S2 = o
255
i=0 (xi − x−)2

255

14
Grayscale
histogram
entropy

H =o255
i=0Pi log Pi

15
The grayscale is
unevenly
distributed

T11 = o16
i=1½o16

j=1H(i, j)�2g=½o16
i=1o16

j=1H(i, j)�
n

16 Gray average m1 =o
16

i=1

i*½o
16

j=1

P(i, j)�

17
Grayscale
standard
deviation

s1 = o
16

i=1

(i − m1)
2½o
16

j=1

P(i, j)�g1=2
(

frontiersin.org

https://doi.org/10.3389/fpls.2024.1395760
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2024.1395760
MAE =
1
mo

m
i=1 (yi − ŷi)
�� �� (7)

R2 = 1 −o
i
1(ŷi − yi)2

oi
1(�yi − yi)2

  (8)

Here, yi − ŷi represents the difference between the actual values

and predicted values on the test set.
3 Results

3.1 Correlations between color, texture,
and morphological parameters and yield

The red area indicates a negative correlation, while the blue area

indicates a positive correlation. Lighter colors represent weaker

correlations. As shown in Figure 5, there were a total of 23 image
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indicators in the sideview that were absolute correlations

(hereinafter referred to as correlations) with a yield greater than

0.5. Among the sideview color parameters, all the indicators were

correlated with a yield less than 0.5 (Figure 5A). Among the

sideview morphological parameters, 13 indicators had a

correlation with a yield greater than 0.5, and except for SPA2 and

SCA, the other 11 indicators were positively correlated with yield

(Figure 5B), indicating that an increase in these 11 indicators leads

to an increase in soybean yield. Among the sideview textural

parameters, 10 indicators were correlated with a yield greater

than 0.5. Among them, SGD, SIG1, SE, and SDM were negatively

correlated with yield, while SG, SGA, SGE1, SGE2, SME, and SHE

were positively correlated with yield (Figure 5C).

In the top view, a total of 16 image indicators were correlated

with a yield greater than 0.5. According to the top-view color

parameters, all the indicators were correlated with a yield less than

0.5 (Figure 5D). Among the top-view morphological parameters, 9

were correlated with a yield greater than 0.5, and all the indicators
B CA

FIGURE 3

Normal distribution plot of manually measured individual soybean yields (A) 2381 trial materials. (B) 1291 training set materials. (C) 1091 test
set materials.
FIGURE 4

Data analysis workflow.
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were positively correlated with yield (Figure 5E). Among the top-

view textural parameters, 7 indicators exhibited a correlation with a

yield greater than 0.5. Among them, TE, TDM, and TGH had

negative correlations with yield, while TG, TGE1, TME, and THE

had positive correlations with yield (Figure 5F).

An interesting phenomenon was observed here: the relationship

between the image parameters and yield was quite similar between

the side and top views. For example, SE and SDM exhibited a high

negative correlation with yield, corresponding to TE and TDM,

which also exhibited a high negative correlation with yield in the

top-view image parameters. Similarly, SG, SGE1, SME, and SHE

exhibited a high positive correlation with yield, corresponding to

TG, TGE1, the TME, and the, which also showed a high positive

correlation with yield in the top-view image parameters. Therefore,

further exploration of the relationships between side- and top-view

image parameters and soybean yield is particularly intriguing.
3.2 Prediction of yield based on sideview
image parameters

The sideview image parameters with Pearson coefficients greater

than 0.5 were selected for soybean yield estimation. In this study, the

CatBoost, LightGBM, GBDT, RF, and MLP models were used to

estimate soybean yield, and three combinations were trained and

evaluated. The three combinations of input variables were named

m1-m3, where m1 consists of morphological parameters (SPA1,

SCA1, 1/5MW, 2/5MW, 3/5MW, 4/5MW, SMW, TC2, SMIW,

SRA, SSC, SPA2, and SCA), m2 consists of textural parameters
Frontiers in Plant Science 08
(SMG, SGD, SIG1, SE, SG, SGA, SGE1, SGE2, SME, and SDM),

and m3 consists of morphological and textural parameters.

As shown in Table 2, the R2 value on the training set was

generally greater than that on the test set, and the RMSE and MAE

were generally lower than those on the test set. For m1, the

prediction accuracy of the five models on the test set fluctuated

greatly, with 0.42 ≤ R2 ≤ 0.77, and the GBDT and LightGBMmodels

achieved the best prediction accuracy, both with R2 values of 0.77.

The performance accuracy of RF was the lowest, and the prediction

accuracies of CatBoost and MLP were the lowest (R2 ≤ 0.52), with

the highest errors. For m2, the overall prediction accuracy of the five

models was lower than that for m1, but the GBDT model still

achieved the highest prediction accuracy, with R2 = 0.73, while

CatBoost and MLP yielded the lowest prediction accuracies, with R2

values of 0.49 and 0.44, respectively. For m3, after combining

textural parameters with morphological parameters, the overall

prediction accuracy of the five models slightly improved, with

the MLP model showing the most significant improvement.

According to Figures 6A–I, the error order is m2 > m1 > m3, and

the R2 order is m3 > m1 > m2. With the enrichment of indicators,

the prediction accuracy increased, and the error decreased, with

morphological parameters leading to better estimation performance

than textural parameters. Overall, in the prediction of soybean yield

based on sideview image parameters, the optimal predictive model

was GBDT.

Figure 6 shows the statistical results of cross-validation for

soybean yield prediction based on side-image parameters. It can be

seen that m3 still performed the best overall, with the highest

prediction accuracy for the GBDT model, followed by LightBoost.
B C

D E F

A

FIGURE 5

Correlation between three types of image parameters and yield. (A) Correlations between sideview color parameters and yield; (B) correlations
between sideview morphology and yield; (C) correlations between sideview textural parameters and yield; (D) correlations between top-view color
parameters and yield; (E) correlations between top-view morphology and yield; and (F) correlations between top-view textural parameters and yield.
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However, compared to the prediction results in Table 2, the overall

prediction accuracy improved.
3.3 Yield prediction based on top-
image parameters

The soybean yield was estimated using top-image parameters

with a correlation greater than 0.5. The three combinations of input

variables were named M1-M3; M1 consisted of morphological

parameters (TPA1, TCA1, TRW, TRH, TCR, TRA, TCA2, TSC,

and TCA3), M2 consisted of textural parameters (TGD, TE, TG,

TGE1, TME, TDM, and TGH), and M3 consisted of a combination

of morphological and textural parameters.

As shown in Table 3, the R2 value on the training set was generally

greater than that on the test set, and the RMSE andMAEwere generally

lower than those on the test set. For M1, the GBDT and LightGBM

models achieved the best prediction accuracy, with R2 values of 0.71

each. RF had an R2 value of 0.67, while CatBoost and MLP had the

lowest prediction accuracies (R2 ≤ 0.45). For M2, the overall prediction

accuracy of the five models was greater than that for M1 (except for

CatBoost). However, the GBDT and LightGBM models still achieved

the highest prediction accuracies, each with an R2 value of 0.76, while

CatBoost and MLP had the lowest prediction accuracies (R2 ≤ 0.40),

with the highest errors. For M3, the combination of textural and

morphological parameters did not significantly improve the

prediction accuracy of the five models. According to Figures 7A–I,

the error order is m2 > m1 > m3, and the R2 value order is m3 > m2 >

m1. With an increase in the richness of the indicators, the prediction

accuracy increased, and the error decreased. The textural parameters led

to better performance than the morphological parameters in estimating

yield. Figure 7 shows the statistical results of cross-validation for soybean

yield prediction based on the top-image parameters. M3 still performed

the best overall, with the highest prediction accuracy for the GBDT

model. Overall, in predicting soybean yield based on the top-image
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parameters, the best predictive model was GBDT, which was consistent

with the conclusion in Section 3.2.
3.4 Yield prediction based on side- and
top-image parameters

Building on the results from the previous sections, the side- and

top-image parameters were combined to estimate the soybean yield.

The three combinations of input variables were named S1-S3: S1 (m1

+ M1), S2 (m2 + M2), and S3 (m3 + M3). The prediction accuracies

of the CatBoost, RF, and MLP models improved compared to those

presented in the previous sections. Notably, the MLP model

demonstrated the most significant improvement, with higher

prediction accuracy as the input indicators became more diverse,

reaching a maximum of 0.74. The GBDT model also exhibited

improved prediction accuracy and reduced errors compared to

those in the previous sections, with RMSE = 3.12 and MAE = 1.99

on the test set. Moreover, the GBDT model consistently performed

well. According to Figures 8A–I, the fusion of multiangle information

contributed to reducing errors and enhancing the model prediction

accuracy. In summary, the GBDT model is the optimal model for

predicting soybean yield based on RGB image parameters. Figure 8

shows the statistical results of cross-validation for soybean yield

prediction based on the side- and top-image parameters. The

fusion of multiangle information helps reduce errors and improve

the model’s prediction accuracy.
3.5 Importance of input parameters

Based on the results presented above, GBDT emerged as the

best predictive model, achieving the highest R2 value with the S3

combination while maintaining relatively low RMSE and MAE

values. To further explore the contribution of each indicator and
TABLE 2 Prediction of yield based on sideview image parameters.

m1 m2 m3

RMSE
(%)

MAE
(g/per)

R2 RMSE
(%)

MAE
(g/per)

R2 RMSE
(%)

MAE
(g/per)

R2

CatBoost Val 5.18 3.93 0.65 5.72 4.36 0.58 4.93 3.79 0.71

Cal 5.98 4.49 0.52 6.19 4.68 0.49 5.78 4.38 0.58

LightBoost Val 1.49 1.03 0.91 2.56 1.88 0.88 1.17 0.82 0.94

Cal 3.88 2.56 0.77 5.05 3.48 0.66 3.85 2.46 0.78

GBDT Val 1.58 1.46 0.9 1.62 1.57 0.89 1.49 1.55 0.92

Cal 4.02 2.48 0.77 3.12 2.85 0.73 4.10 2.32 0.78

RF Val 1.35 1.02 0.91 2.01 1.35 0.91 1.24 0.81 0.95

Cal 3.49 2.15 0.71 5.10 3.65 0.71 3.5 2.41 0.77

MLP Val 6.05 4.44 0.54 6.40 4.83 0.49 4.49 3.31 0.75

Cal 6.82 4.96 0.42 6.72 5.07 0.44 5.89 4.39 0.59
fro
Val for the validation set, Cal for the test set. The bold font represents the optimal predicted values.
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TABLE 3 Prediction of yield based on top-image parameters.

m1 m2 m3

RMSE
(%)

MAE
(g/per)

R2 RMSE
(%)

MAE
(g/per)

R2 RMSE
(%)

MAE
(g/per)

R2

CatBoost
Val 5.99 4.44 0.53 6.14 4.61 0.52 5.84 4.38 0.56

Cal 6.35 4.84 0.45 6.39 4.91 0.45 6.25 4.79 0.47

LightBoost
Val 1.88 1.47 0.89 2.12 1.68 0.89 1.63 1.27 0.91

Cal 4.38 2.85 0.71 3.29 2.75 0.75 4.05 2.61 0.75

GBDT
Val 1.88 1.47 0.87 2.12 1.68 0.89 1.63 1.27 0.90

Cal 4.38 2.85 0.71 3.83 2.74 0.76 4.05 2.61 0.75

RF
Val 0.60 1.90 0.89 0.56 2.12 0.9 0.66 1.74 0.90

Cal 0.49 4.43 0.67 0.58 3.21 0.70 0.71 3.06 0.67

MLP
Val 6.84 5.15 0.40 6.82 5.15 0.42 6.72 5.03 0.43

Cal 6.95 5.07 0.38 6.90 5.08 0.40 6.59 4.84 0.47
F
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Val for the validation set, Cal for the test set. The bold font represents the optimal predicted values.
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D E F
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A

FIGURE 6

Presents the statistical results of yield prediction cross-validation based on side image parameters. (A–C) represent the RMSE of combinations m1-
m3 across five machine learning models. (D–F) represent the MAE of combinations m1-m3 across five machine learning models. (G–I) represent the
R2 of combinations m1-m3 across five machine learning models.
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achieve high predictive accuracy with minimal input parameters, an

analysis of the importance of each indicator with respect to the S3-

GBDT combination was conducted.

As shown in Figure 9, the importance of the SME far exceeded

that of the other indicators. This heightened importance could be

attributed to its association with texture and photosynthesis

(Heckmann et al., 2017). In addition to the SME, indicators such

as SGD, SG, SDM, and TSC also exhibited considerable importance.
3.6 Selection of optimal input parameters

In the process of estimating crop yield based on remote sensing

data, the selection of model variables is crucial (Ji et al., 2022). A

comparison of the estimated soybean yield under the different numbers

of input parameters (Figures 10A–C) revealed that the RMSE, MAE,

and R2 values stabilized when the number of input parameters was

equal to or greater than 15. To achieve high prediction accuracy with

the most lightweight set of input parameters, we identified the 15 most

common indicators (6 side textural indicators, 6 side morphological

indicators, 1 top textural indicator, and 2 topmorphological indicators)

as the final selection of predictive parameters.
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Using these 15 indicators as input parameters for the five

models, the prediction results are shown in Figure 11. The

prediction accuracy significantly decreased in the MLP model,

while the other four models showed no significant changes. In

fact, the GBDT model exhibited a slight improvement in R2 values.

These results further emphasize that the effective selection of input

indicators can greatly reduce the computational load while

maintaining the prediction accuracy. Filtering out irrelevant

information is advantageous for constructing a lightweight model.

According to Table 4, the broad-sense heritability of the 15

input parameters ranges from 0.68 to 0.84, with SME and SRA

exhibiting the highest broad-sense heritability.
4 Discussion

4.1 Extraction of image parameters

There has been extensive research on the use of RGB cameras to

extract image parameters for predicting crop yields. However,

previous studies have often had relatively narrow shooting angles,

mostly capturing images from the top, leading to significant
B C

D E F

G H I

A

FIGURE 7

Presents the statistical results of yield prediction cross-validation based on top image parameters. (A–C) represent the RMSE of combinations M1-M3
across five machine learning models. (D–F) represent the MAE of combinations M1-M3 across five machine learning models. (G–I) represent the R2

of combinations M1-M3 across five machine learning models.
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information loss. Moreover, in previous research, the focus was

primarily on morphological indicators (Ma et al., 2022). reported a

significant correlation between vegetation indices extracted from

RGB images and cotton yield, suggesting that selecting optimal

parameter features for cotton yield monitoring is feasible. However,

from the perspective of model accuracy, there is room for
Frontiers in Plant Science 12
improvement. Therefore, there is a need to extract more textural

features or other color information from RGB images to enhance

the model accuracy. Research by (Bai et al., 2022) also demonstrated

that textural information has high potential for yield estimation.

Building on previous studies, in this study, not only were the

shooting angles expanded from the top and side, but three major
FIGURE 9

Importance of optimal input parameters.
B C

D E F

G H I

A

FIGURE 8

Presents the statistical results of yield prediction cross-validation based on top image parameters. (A-C) represent the RMSE of combinations S1-S3
across five machine learning models. (D–F) represent the MAE of combinations S1-S3 across five machine learning models. (G–I) represent the R2 of
combinations S1-S3 across five machine learning models.
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categories of image parameters were also extracted—morphology,

color, and textural parameters. This approach significantly enriched

the variety of image parameters, providing a broader selection for

identifying the optimal image indicators in subsequent analyses.
4.2 Discussion on optimal
input parameters

Indicator selection is a crucial step in machine learning. While

algorithms determine the lower bounds of a model, input

indicators set the upper bounds (Ma et al., 2022). The inclusion

of a large amount of irrelevant input information can adversely

affect model training, thereby impacting model accuracy.

Therefore, a correlation analysis was initially conducted between
Frontiers in Plant Science 13
all images and soybean yields, and only indicators with a Pearson

correlation coefficient greater than 0.5 were obtained.

This preliminary screening filtered out a significant amount of

ineffective information.

After identifying GBDT as the optimal predictive model, further

efforts were made to streamline the input indicators. Based on their

importance, indicators were incrementally added to the model. As

shown in Figure 10, using 15 important parameters as input led to

the desired results. With an increase in the input parameters, the

RMSE, MAE, and R2 values no longer exhibited significant changes,

which might be due to the substantial collinearity among the input

parameters, as the information coverage did not significantly

improve with additional input indicators. Early analysis of input

variables to reduce autocorrelation effects appears to have positive

effects on model prediction (Han et al., 2019).
B C

D E

A

FIGURE 11

Predictive performance of the five models with 15 input indicators. (A) CatBoost model; (B) LightBoost model; (C) GBDT model; (D) RF model; and
(E) MLP model. T_Yield represents the manually measured actual yield, and P_Yield represents the predicted value. The black dashed line represents
a 1:1 relationship, where red indicates the training set and blue indicates the test set.
B CA

FIGURE 10

RMSE, MAE, and R2 values with different single seed weight input indices. (A) represent the RMSE. (B) represent the MAE. (C) represent the R2. The
indicators are sequentially accumulated based on their importance. For instance, 1 item represents SME, 2 items represent SME + SGD, 3 items
represent SME + SGD + SG, 4 items represent SME + SGD + SG + SDM, 5 items represent SME + SGD + SG + SDM + TSC, and so forth until all 39
indicators are included. The gray background indicates that, from the 15th item onward, the predictive performance of subsequent parameter
combinations is comparable.
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Moreover, an in-depth analysis of the final selection of 15

indicators, as shown in Figure 9, revealed that the importance of

SMEs was the highest, exceeding 30%. Previous research has

indicated an association between textural parameters and plant

photosynthesis (Heckmann et al., 2017). Our experimental design

included two planting modes, soybean monoculture and strip

intercropping, which magnified the impact of light conditions on

soybean yield. Consequently, the importance of textural parameters

became more prominent, further confirming our hypothesis.

Additionally, the number of selected sideview image indicators far

exceeded that of the top-view indicators. This dataset included 12

sideview image indicators (6 textural indicators and 6

morphological indicators) and 3 top-view image indicators (1

textural indicator and 2 morphological indicators). From Tables 1

and 2, it is evident that predictions based on sideview images were

better than those based on top-view images, and the selected

indicators explain this predictive performance.
4.3 Discussion on the performance of the
five models

As a branch of artificial intelligence, machine learning technology

has found widespread application due to its remarkable ability to

integrate complex and dynamic biological knowledge with large-scale

omics data (Shahhosseini et al., 2020; Van Klompenburg et al., 2020;

Paudel et al., 2021). Machine learning technologies enable the

construction of various prediction models and decision algorithms

(Yan and Wang, 2022). As evident from Tables 2, 3, and 5, the GBDT
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model achieved superior predictive accuracy compared to that of the

other four models, consistently exhibiting the same pattern in terms of

prediction errors. Therefore, the GBDTmodel is the optimal model for

soybean yield estimation. The inherent advantage of GBDT, which is

composed of numerous decision trees, lies in its continuous feature

selection and partitioning process, which enhances its fitting capacity to

the data (Zhang et al., 2023). GBDT achieves sample data classification

by progressively reducing the residuals generated during the training

process, significantly improving the data-fitting capabilities (Zhang

et al., 2023).

The overall prediction performance of the MLP model is

relatively poor. This is attributed to the model’s network

structure, which includes multiple hidden layers, and each

“neuron” is connected to all nodes in the preceding layer. This

structure results in many parameters, making training challenging.

However, with sufficient computational power and training data,

the MLP performance can be significantly enhanced. This finding

aligns with the results of our study, where an increase in the input

parameters led to a noticeable improvement in the MLP prediction

performance, reaching a maximum R2 value of 0.74.

In this study, there are likely two reasons for the low predictive

accuracy of the CatBoost model. First, due to the soybeans being

grown in the field and influenced by field conditions, the growth

status of each soybean plant is not very standardized (it may tilt,

bend, break at the top, etc.; see Supplementary Figure S2), leading to

many outliers. Although this study used the outlier test function in

the car package to remove outliers, there is still a possibility of

incomplete removal, which affects the predictive accuracy of the

CatBoost model. Second, this study referred to the methods of
TABLE 4 The broad-sense heritability of the 15 input indicators.

Indicators
TRH TSC TG

2_5_
MW

3_5_MW 4_5_MW SRA SSC SPA2 SGD SE SG SGE1 SME SDM

H2 0.81 0.80 0.68 0.76 0.80 0.77 0.84 0.78 0.77 0.82 0.70 0.78 0.68 0.84 0.73
front
TABLE 5 Prediction of yield based on side- and top-image parameters.

S1 S2 S3

RMSE
(%)

MAE
(g/per)

R2 RMSE
(%)

MAE
(g/per)

R2 RMSE
(%)

MAE
(g/per)

R2

CatBoost
Val 5.00 3.80 0.69 5.34 4.10 0.65 4.75 3.66 0.75

Cal 5.89 4.43 0.55 5.91 0.49 0.54 0.69 4.26 0.61

LightBoost
Val 1.25 0.86 0.95 1.86 1.30 0.92 0.98 0.65 0.99

Cal 4.17 2.52 0.77 4.46 2.90 0.73 4.26 2.26 0.79

GBDT
Val 1.20 0.92 0.93 1.32 1.20 0.91 0.92 0.72 0.97

Cal 3.01 2.11 0.8 2.88 2.04 0.78 3.12 1.99 0.82

RF
Val 0.71 1.28 0.94 0.69 1.78 0.93 0.79 1.21 0.97

Cal 0.60 4.11 0.75 0.55 4.51 0.74 0.65 4.25 0.79

MLP
Val 5.00 3.80 0.69 6.02 4.64 0.55 3.42 2.59 0.87

Cal 5.89 4.43 0.55 5.75 4.37 0.59 4.84 3.55 0.74
Val for the validation set, Cal for the test set. The bold font represents the optimal predicted values.
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predecessors and conducted preliminary screening of input

parameters using absolute correlation (Yu and Liu, 2003; Cui

et al., 2010; Ma et al., 2022; Li et al., 2023). However, it is possible

that setting the screening threshold too low (Cor > 0.5) retained

some indicators with weaker relationships, which had a certain

impact on the predictive accuracy of the model. Therefore, in future

research, more screening criteria should be added on the basis of

correlations to enhance the initial screening of indicators. In the

context of machine learning, heritability may not be a direct factor

influencing algorithm selection, but it does affect the nature of the

data and the structure of the feature space, thereby indirectly

influencing the selection and performance of machine learning

algorithms. In this study, the broad-sense heritability of soybean

yield was 0.621. Therefore, when selecting machine learning

algorithms, features with complex genetic mechanisms may have

more diverse and nonlinear distributions. Algorithms capable of

handling nonlinear relationships and complex patterns, such as

support vector machines or decision trees, may be more suitable.

In general, as the richness of the indicators increases, the prediction

accuracy improves, and the errors decrease. When using single-angle

indicators as the input parameters, sideview indicators lead to

significantly better performance than top-view indicators. When

single-type indicators are used as the input parameters, the

morphological parameters lead to better performance than the

textural parameters from the sideview, while the textural parameters

lead to better performance than the morphological parameters from

the top view. We speculate that this phenomenon is due to the

abundance of effective morphological parameters extracted from

sideview images, whereas the top view provides a more intuitive view

of young and tender soybean leaves. Therefore, sideviewmorphological

parameters and top-view textural parameters are more critical for

estimating soybean single-plant yield.
4.4 Future directions

In this study, five machine learning algorithms were employed

to estimate soybean yield. The results indicate that RGB images can

be used to accurately estimate soybean yield. This research

contributes to the identification of a high-throughput and

nondestructive method for estimating soybean yield, accelerating

the screening of germplasm and breeding materials.

Despite extracting as many indicators as possible in this study to

estimate the final yield parameters, the information inherently

contained in RGB images is limited, leaving room for further

improvement in terms of the estimation accuracy. However, this

study, which was based on data from 240 soybean varieties, two

treatments, and two years of field data, benefitted from a large

dataset, making our conclusions more applicable to real-world

scenarios and highly credible. Future research could consider adding

sensor types and enriching phenotypic parameters, thereby enhancing

the prediction accuracy and reducing errors. Additionally, due to

limited throughput and substantial workload, only images from the

R6 stage were collected for analysis in this study. Subsequent research

could involve image collection throughout the entire growth period to
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determine the earliest stage for accurate soybean yield estimation,

further shortening the breeding process.

Finally, it is worth noting that selecting the best predictive model

requires considering multiple factors comprehensively. Key factors

include data characteristics such as scale, number and type of features,

distribution, problem nature such as regression or classification, order

or unordering, model characteristics such as interpretability, training

speed, overfitting and underfitting, and resource constraints such as

computation and time. For example, when dealing with many

features, tree-based algorithms (such as GBDT and RF) may

perform well because they can effectively handle high-dimensional

data. For features with complex relationships, neural networks may be

more effective. For regression problems, linear regression, decision tree

regression, or GBDT may be good choices; for classification problems,

logistic regression, support vector machine (SVM), RF, or deep neural

networks may be more suitable. Additionally, it is important to

evaluate model performance and select appropriate metrics through

cross-validation. Therefore, there is no universally best model, and it is

necessary to try multiple models and optimize them based on

specific circumstances.

5 Conclusions

This study concludes with two main findings: (1) The optimal

input parameters were determined to be SME, SGD, SG, SDM, TSC,

SPA2, SGE1, SSC, 4/5MW, TG, SRRA, SE, 3/5MW, TRH, and 2/5MW,

totaling 15 indicators. (2) Among the five machine learning models,

GBDT emerged as the best model for predicting soybean yield,

achieving a maximum accuracy of 0.82. Therefore, this combination

of parameters extracted from RGB images and machine learning has

significant potential for estimating soybean yield parameters.
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