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1Department of Biology, York University, Toronto, ON, Canada, 2National Center for Ecological
Analysis and Synthesis (NCEAS), Santa Barbara, CA, United States
Introduction: The impacts of climate change can be profound in many

ecosystems worldwide, including drylands such as arid and semi-arid

scrublands and grasslands. Foundation plants such as shrubs can provide

microclimatic refuges for a variety of taxa. These shrubs can directly influence

micro6 environmental measures, and indirectly increase the local environmental

heterogeneity as a result. We examined the hypothesis that, in comparison to an

open gap, foundation shrubs improve the microclimate beneath their canopy

and that microclimate is in turn a significant predictor of annual vegetation. The

following predictions were made: 1) mean air temperature (NSAT), ground

temperature (SGT), and vapour pressure deficit (VPD) will be significantly lower

under the shrubs than in the open microsites; 2) shrub canopy size predicts

microclimate; 3) site-level aridity estimates and percent shrub cover influence

annual plant abundance and richness; and 4) the site13 level mean of NSAT and

VPD predict annual plant abundance and richness.

Methods: Our study took place in Southwestern California, U.S.A. We used a

handheld device with a probe to measure microclimatic variables such as near-

surface air temperature (NSAT), near-surface relative humidity (NSRH), and

surface ground temperature (SGT) at the shrub species Ephedra californica and

in the open gap, across six sites in California, United States. Air temperature and

RH were then used to calculate VPD. The mean number of vascular plant species

across each site was also recorded.

Results & discussion: Only SGT was significantly reduced under shrub canopies.

Canopy volume was not a significant predictor of all three microclimatic

variables, demonstrating that even small, low-stature shrubs can have

facilitative effects. Furthermore, total shrub cover and aridity at sites

significantly predicted mean plant richness and abundance. There were

significantly more plants associated with shrubs and there were significantly

more species associated with the open. Mean air temperature and VPD at the
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site-level significantly predicted vegetation abundance and richness, though

microsite-level differences were only significant for richness. Foundation

shrubs are a focal point of resiliency in dryland ecosystems. Understanding

their impact on microclimate can inform us of better management,

conservation, and restoration frameworks.
KEYWORDS
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Introduction

Facilitation, defined as an interaction where one or more species

(beneficiary) benefit from another species (benefactor) while none

are harmed (Bertness and Leonard, 1997), is well-studied in

community ecology (Brooker et al., 2007; McIntire and Fajardo,

2014). This interaction is often present in relatively high-stress

environments, such as drylands, and generally, the magnitude of

this interaction also increases with an increase in abiotic pressures

(Bertness and Callaway, 1994). Foundation species like shrubs can

act as structural agents of facilitation through many mechanistic

pathways, one of which is microclimatic amelioration (Filazzola

et al., 2017). Shrub understories provide more favorable

environments for plants and animals by buffering against extreme

temperatures, offering refuge from direct solar radiation, and

increasing soil moisture (Filazzola and Lortie, 2014; Flores and

Jurado, 2003; Holzapfel andMahall, 1999). Thus, foundation shrubs

are critical for community structure and diversity in many dryland

ecosystems (Ivey et al., 2020; Zuliani et al., 2021).

Foundation shrubs are key components of environmental

heterogeneity. Foundation shrubs physically ameliorate the

understory microclimate compared to the open gap (Anthelme

et al., 2014; Filazzola et al., 2017; Zuliani et al., 2021); thus, resulting

in environmental heterogeneity as a byproduct of this microclimatic

difference. Environmental heterogeneity (EH), defined as non-

uniformities in physical and ecological landscape characteristics

(Dronova, 2017), can be divided into many subcomponents

including climatic, vegetation, land cover, soil, and topography

heterogeneity (Stein and Kreft, 2015). ‘Microclimate’ is the

climate experienced in the lower 2m of the atmosphere and the

upper 0.5-1m of the soil and is dependent on local topography, soil

type, and vegetation (Stoutjesdijk and Barkman, 2014). Foundation

plans provide resilience and microclimatic heterogeneity in

drylands (Lortie et al., 2022), where elevated mean temperatures,

fluctuations in temperature and precipitation, and prolonged

drought episodes are on the rise (Maestre et al., 2021). Resiliency

is a concept that refers to the ability of a system to resist changes in

response to perturbations (Van Meerbeek et al., 2021). Plants can

buffer perturbations that are the result of harsh climatic conditions
02
(De Frenne et al., 2019). The impacts of plants in buffering climate

have been primarily tested through landscape-level analyses, such as

NDVI (Normalized Difference Vegetation Index) or vegetation land

cover (Bagley et al., 2017); however, the structure of foundation

species offers significant ecological functions that are crucial for

offering climatic refuge at finer scales (Milling et al., 2018).

Like plant canopies in other systems, shrub canopies can,

directly and indirectly, buffer climatic regimes. Plant canopies

offer mediation from harsh climates by increasing environmental

heterogeneity and cover (De Frenne et al., 2019). The quantity,

quality, and temporal distribution of incoming sunlight are

governed by the canopy’s structure, which also affects air

movement, which in turn affects temperature and precipitation

regimes via boundary layer effects (Jennings et al., 1998). Shrub

volume is directly associated with micro-environmental conditions,

with larger shrubs showing a greater environmental heterogeneity

in their understory (Alday et al., 2014). Similar to other studies with

plants (Yang et al., 2017), this is likely due to the greater

heterogeneity of conditions beneath larger plant canopies. Many

dryland organisms are vulnerable to small, fine-scale oscillations in

addition to large-scale changes (Shrode and Gerking 1977; Hadley

1970), which can further push species past the point of no return.

Thus, foundation shrubs, including Ephedra californica, can help

facilitate some of these species (Lortie et al., 2018) through small-

scale climatic amelioration. The idea of vegetation and microclimate

in arid systems is well-explored (El-Bana et al., 2002; Jankju, 2013;

Xue et al., 2019) but not necessarily concerning the size of the

foundation species at multiple arid sites. Shrub volume measured

and reported to such an extent at multiple arid sites in addition to

its impact on annual plant richness and abundance is where the

novelty of this study lies.

Ephedra Californica (Mormon Tea) is a foundation shrub native

to the Southwestern regions of California that can occur dominantly

or co-dominantly with Larrea tridentata (Sawyer et al., 2009), a

flowering shrub that is often found in sandy soils, desert pavements,

and the well-developed cryptogram layer of the Mojave (Braun

et al., 2021; Sawyer et al., 2009). In this study, we measured

microclimatic variables, including near-surface air temperature

(NSAT), near-surface relative humidity (NSRH), and surface
frontiersin.org
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ground temperature (SGT) using a handheld device across six sites

in California. NSAT is a point-station, air temperature measure that

differs from a direct land surface measure of temperature and is a

critical factor in the process of energy exchange between the land

and the atmosphere (Xu et al., 2012). SGT (also referred to as Land

Surface Temperature in the literature) is the measure of

temperature directly on land as opposed to NSAT (Good et al.,

2017). Similar to NSAT, NSRH refers to the measurement of the air

moisture content near the surface (Pfahl and Niedermann, 2011).

We used NSAT and NSRH to calculate vapor pressure deficit

(VPD). We tested the hypothesis that foundation shrubs

ameliorate the microclimate underneath their canopy relative to

the open gap and that microclimate is a significant predictor of

annual vegetation. The following predictions were made: 1) mean

air temperature (NSAT), ground temperature (SGT), and vapor

pressure deficit (VPD) will be significantly lower under the shrubs

than in the open microsites; 2) shrub canopy size predicts

microclimate; 3) site-level aridity estimates and percent shrub

cover influence annual plant abundance and richness; and 4) the

site-level mean of NSAT and VPD predict annual plant abundance

and richness. Shrubs and vegetation improve microclimate and can

thus provide key environmental heterogeneity that is crucial to the

persistence of many dryland species given the current trajectory of

climate change.
Materials & methods

Site description

We surveyed a total of six sites across arid and semi-arid areas

during the winter of 2023 (Table 1). The sites were located in

Southwestern California, United States, and divided into two main

ecological areas: Cuyama Valley and Carrizo Plain National

Monument. The surveys took place between February 13 and 23,

2023. We surveyed a total of three sites in Cuyama Valley and three

sites in the Carrizo Plain. Sites were always surveyed in the morning

at approximately 9:00 AM. The year this study took place was

considered a high precipitation year, characterized by a

‘superbloom’ and winter rainfall exceeding the long-term means by

≥70% (Jennings and Berry, 2023).We chose this study period because
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the early species of annuals normally begin germinating in March

(Jennings and Berry, 2023), but because of the superbloom and high

rainfall periods, they germinated earlier in late January (Jennings,

2001). We retrieved daily min and maximum temperatures (F) and

precipitation (in) for each day of the study period from the National

Oceanic and Atmospheric Administration (NOAA) (https://

www.noaa.gov/; Supplementary Appendix C) using the nearest

satellite located in New Cuyama, Cuyama Valley. Moreover, site-

level mean annual temperature (MAP) and mean annual

precipitation (MAP) were obtained from WorldClim (https://

www.worldclim.org/data/index.html) at a 1km resolution. We

further calculated DeMartonne’s aridity values using the following

formula: aridity = P/(T + 10) where P = annual precipitation and T

= mean annual temperature and classified the climate gradient

according to Croitoru et al. (2013).
Vegetation sampling & microclimate

We selected 30 pairs of shrub-open microsites at each study site.

Ephedra californica was the dominant shrub across all these sites and

there were no other dominant or co-dominant shrub species present.

The length (at longest axis), width (perpendicular to length), and

height to the tallest vegetation branch that had green tissue (Mormon

tea is a shrub with many branches) were measured for every shrub

(Lortie et al., 2018). We used the equation for the volume of a

hemisphere (v = 2
3   pr

3) to calculate canopy volume and the equation

for the area of a circle (a =   pr2) to calculate the canopy area (Liczner
et al., 2016; Lortie et al., 2018). We recorded the percent shrub cover

at each site within a 20m radius at the center of the site via Google

Earth composite satellite images at a spatial resolution of 30cm

(Hestrio et al., 2021; Owen et al., 2024). Within each circular plot

(20m in radius), the length at the longest axis of every shrub was

measured and used to calculate the individual shrub cover area using

a formula of a circle (Liczner et al., 2016; Lortie et al., 2018). Shrub

covers were then summed and divided by the total area of the circular

plot to produce percent shrub cover estimates of each site

(Supplementary Appendix D, L).

We used the Mengshen Digital Temperature and Humidity

Meter (Mengshen, 2023) to record near-surface air temperature

(NSAT, °C) and near-surface relative humidity (NSRH, %). To
TABLE 1 Sites. List of study sites in California, United States surveyed for this study and their respective geographical coordinates.

Site Code Semi-arid
Region

Latitude Longitude MAT
(°C)

MAP
(mm)

Aridity Regional
Gradient

Classification

Cuyama_1 San Joaquin 34.849 -119.483 14 136 5.67 Arid

Cuyama_2 San Joaquin 34.854 -119.486 14.1 137 5.69 Arid

Cuyama_3 San Joaquin 34.938 -119.481 14.2 139 5.74 Arid

Carrizo_3 San Joaquin 35.163 -119.675 14.5 149 6.08 Arid

Carrizo_4 San Joaquin 35.116 -119.621 14.7 147 5.95 Arid

Carrizo_soda_shrub San Joaquin 35.119 -119.629 14.7 148 5.99 Arid
Mean annual temperature (MAT) and mean annual precipitation (MAP) were extracted from WorldClim and used to calculate DeMartonne’s aridity index.
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record these microclimatic variables, the handheld probe was

positioned at approximately ∼10-15cm above the soil at the north

side of the shrub, immediately within the canopy dripline (inside),

and 1m away from a shrub in the adjacent, interstitial open area

(outside). We used a cover to stop direct sunlight on the probe bulbs

when air temperature and RH were being recorded. Furthermore, we

also used the Etekcity Laser Thermometer Gun (Etekcity, 2023) to

record surface ground temperature (SGT, °C) both underneath the

shrub canopy at the north side of the shrub, and in the open area

located adjacently 1m away from a shrub. We then used air

temperature and RH to calculate the vapor pressure deficit (VPD)

as vegetation structure and microtopography, directly and indirectly,

impact this measurement (Novick et al., 2024).We used the following

equation: VPD = SVP*(1 −
RH
100 ) where saturation vapor pressure

(SVP) is the maximum amount of water vapor that air can hold as

a certain recorded temperature and RH = relative humidity.

To further explore if microclimate changes depending on the site-

level differences in vegetation, we conducted vegetation surveys in

shrub and open microsites at each study site. We identified all

vascular plant species present in four paired 1 m2 quadrats at each

microsite (8 total per site). In shrub microsites, one of the paired

quadrats was placed under the drip line of randomly selected shrubs

on the south-facing side and the paired open quadrat was placed due

south with 1m spacing between the two quadrats. In open microsites,

each pair of quadrats was randomly placed in what we deemed as the

center of the site. We summarized the results of the eight plots to

determine the mean annual plant abundance and richness.
Statistical analyses

All statistical analyses were done using R version 4.3.1 (R Core

Team, 2024). Data and codes are publicly available on Zenodo

(Ghazian and Lortie, 2023). Data distribution was examined using

Q-Q plots, and homoscedasticity and normality were tested

(Schützenmeister et al., 2012). The relationship between NSAT,

SGT, NSRH, and VPD was examined using Pearson’s correlation

(Benesty et al., 2009). The relationship between canopy area and

volume was also examined using Pearson’s correlation, as well. We

fit Generalized Linear Models (GLM) to test for differences in shrub

volume and its effects on air temperature, VPD, and ground

temperature for the open versus the shrub. GLM dispersion

parameters with AIC scores were used to compare and select the

appropriate family to fit to models (Richards et al., 2011). Post-hoc

tests were done using the function emmeans from the emmeans R

package (Lenth and Herve, 2019). We then used Generalized Linear

Mixed Models (GLMM) to model shrub volume as a predictor of

each microclimatic variable, with microsite nested in site to serve as

a covariate. We further explored if mean plant richness and

abundance were predicted by percent shrub cover, aridity, mean

NSAT, and mean VPD using GLMs. We included predictors in

these models by testing multicollinearity using the Performance

package and excluded those that lead to high variance inflation

factors (VIF) (Daoud, 2017), and hence high collinearity

(Supplementary Appendix A, B).
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Results

A total of 180 shrub-open microsites were surveyed for

microclimatic measures (n = 180). Mean shrub volume and area

for E. californica were 39.64 ± 27.80 m3 and 37.16 ± 22.06 m2,

respectively (Supplementary Appendix F). Shrub area and canopy

volume were significantly, and positively related (Pearson’s

product-moment correlation = 0.92, p<0.01; Supplementary

Appendix G); thus, we used shrub volume as a proxy for size in

all our models. Percent shrub cover at study sites ranged from 6.68-

31.18% (Supplementary Appendix D). Table 2 provides the mean

air temperature and VPD under the shrub and in the open at each

site. The lowest mean air temperature was recorded in the open at

Carrizo_soda_shrub (15.06 ± 3.48 °C) and the lowest mean VPD

was recorded under the shrub (0.55 ± 0.16 kPa) in Cuyama_3.

Figure 1 depicts the frequency distribution of change in air

temperature between the open and the shrub in Kelvin. Mean

ground temperature was the only microclimatic parameter

significantly lower under the shrub than in the open (Estimated

Marginalized Mean (EMM) 13.5 ± 0.39 °C, p<0.01; Figure 2).

Overall, shrub volume did not have a significant effect on air

temperature in fixed-effect models (GLMM estimated b = 0; Table 3).

The same was observed for VPD (GLMM estimated (b = 0) and

ground temperature (GLMM estimated b = -0.01). The confidence

intervals for all three estimates were also narrow, which further

confirms the weak effects of shrub volume on these

microclimatic variables.

A total of 27 different annual plant species were found under

shrubs and in the open (Supplementary Appendix E). Bromus

madritensis rubens (red brome) was the most abundant species

observed under the shrubs, while Lasthenia gracilis (needle

goldfield) was the most abundant species in the open. Astragalus

lentiginosus nigricalycis (spotted locoweed), Brassica nigra (black

mustard), Lactuca serriola (prickly lettuce), Lupinus microcarpus

(chick lupine) were the equally the least abundant species under

the shrub. Lupinus microcarpus (chick lupine) was also the least

abundant species in the open. There were four species exclusively

found under shrubs, including Brassica nigra (black mustard),

Eremalche exilis (white mallow), Lactuca serriola (prickly lettuce),

Pholistoma membranaceum (white fiesta flower). Both site-level

shrub cover and aridity were significant predictors of plant

abundance and richness (Figure 3 and Table 4). Mean plant

abundance was significantly greater under the shrubs (EMM 23 ±

1.82, p<0.01), while mean richness was significantly greater in the

open (EMM6.82 ± 0.16, p<0.01). Site-level mean air temperature and

mean VPD were significant predictors of plant richness both under

the shrub and in the open, but not abundance (Figure 4, Table 5).
Discussion

Abiotic amelioration via foundation shrubs is a key component of

many dryland ecosystems. Herein, we examined the microclimate of

the foundation shrub species, Ephedra californica in order to

determine the relative significance of shrub volume on
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microclimate and the role of microclimate in predicting vegetation

richness and abundance. These were tested across six sites in the

drylands of California. We hypothesized that, in comparison to an

open gap, foundation shrubs improve the microclimate beneath their

canopy and that microclimate is in turn a significant predictor of

annual vegetation. Despite our prediction that all microclimatic

variables under the shrub would be significantly lower than in the

open, we only observed significantly lower ground temperature under

the shrub. Shrub volume was not a significant predictor of air
Frontiers in Plant Science 05
temperature, ground temperature, and VPD. Thus, we propose that

E. californica is a good benefactor species when it comes to facilitating

some micro-environmental measures compared to the open gap;

though, its role in microclimatic amelioration is weakly dependent on

size. Furthermore, we concluded that site-level percent shrub cover

and aridity are significant predictors of vascular plant abundance and

richness. Mean air temperature and VPD at the site level significantly

predicted vegetation richness and abundance, however, microsite-

level differences were only significant to plant richness. Mean plant
TABLE 2 Air temperature & VPD summary.

Site Code Semi-arid Region Microsite Mean ± SD
NSAT
(°C)

Mean ± SD
VPD
(kPa)

Cuyama_1 San Joaquin open 29.14 ± 2.59 1.67 ± 0.41

Cuyama_1 San Joaquin shrub 19.73 ± 1.98 1.59 ± 0.25

Cuyama_2 San Joaquin open 20.78 ± 1.32 1.76 ± 0.22

Cuyama_2 San Joaquin shrub 21.08 ± 1.69 1.81 ± 0.23

Cuyama_3 San Joaquin open 8.46 ± 1.91 0.56 ± 0.18

Cuyama_3 San Joaquin shrub 8.45 ± 1.97 0.55 ± 0.16

Carrizo_3 San Joaquin open 17.24 ± 1.21 1.66 ± 0.16

Carrizo_3 San Joaquin shrub 17.62 ± 1.40 1.70 ± 0.19

Carrizo_4 San Joaquin open 17.34 ± 0.54 1.62 ± 0.08

Carrizo_4 San Joaquin shrub 17.33 ± 1.10 1.61 ± 0.13

Carrizo_soda_shrub San Joaquin open 15.06 ± 3.48 1.35 ± 0.34

Carrizo_soda_shrub San Joaquin shrub 15.12 ± 3.74 1.39 ± 0.38
Mean near-surface air temperature (NSAT) and vapor pressure deficit (VPD) with their standard deviations are provided across each site, under the shrub, and in the open.
FIGURE 1

Frequency distribution. The frequency distribution of temperature differences between the open and shrub is presented. The x-axis represents the
difference in temperature in Kelvin while the y-axis represents the particular frequency DT that was observed. Dashed red line is the mean of
temperature changes.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1396004
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ghazian et al. 10.3389/fpls.2024.1396004
abundance was greater under shrubs suggesting that shrub cover has

an impact on microclimate, and the environmental heterogeneity

induced by shrubs that may act on different spatial scales, hence

altering the dynamics of distribution and establishment of the

herbaceous plant community (Madrigal et al., 2008). We suggest

that one factor may be microclimatic amelioration, such as cooler

ground temperatures, by foundation species that allow for the
Frontiers in Plant Science 06
presence of species that would otherwise be absent. This is

consistent with the results of Soliveres and Maestre (2014) who

observed 29% more species associated with shrubs in drylands

compared to the open. Furthermore, we observed that mean plant

richness was higher in the open. We believe that this may be due to

the fact some shrubs restrict the establishment and survivorship of

certain annual plants because the reduction of light by shrub canopy
TABLE 3 Model summary I.

Predictors Estimates CI p-value Standard Error
(SE)

NSAT (°C) (Intercept) 16.44 12.82-20.07 0.01 1.85

shrub_volume 0 -0.01-0.02 0.57 0.0059

Number of Observations: 180
Marginal R2: 0
Nsites: 6

VPD (kPa) (Intercept) 1.43 1.06-1.80 0.01 0.19

shrub_volume 0 -0.01-0.04 0.59 0.001

Number of Observations: 180
Marginal R2: 0
Nsites: 6

SGT (°C) (Intercept) 14.09 10.5-17.67 0.01 1.83

shrub_volume -0.01 -0.03-0.01 0.17 0.01

Number of Observations: 180
Marginal R2: 0.005
Nsites: 6
Contrast of microclimatic measurements estimated using Generalized Linear Mixed Models (GLMM). Microsite was nested within the site code. Significant p-values are in bold. CI represents the
95% confidence interval.
FIGURE 2

Shrub volume vs. microclimatic measures. The relationship between shrub volume (m3) and microclimatic measures including NSAT (°C), NSRH (%),
and SGT (°C) are presented using points. Smoothed means are fitted using the linear method. Colors represent the different key
microclimatic variables.
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can limit the photosynthetic activity of annuals (Swank and Oechel,

1991). Semi-arid annual plants attain high net photosynthetic rates by

having very high light saturation levels (Werk et al., 1983). A

reduction in radiation by shrubs can reduce resource acquisition

(Jackson and Caldwell, 1992). Thus, we suggest that plant-plant

interactions and their responses to ongoing climate change are

more complex than previously thought (Seiferling et al., 2014), but

these interactions are nonetheless crucial in maintaining biodiversity

in dryland ecosystems, particularly given the number of species that

exclusively associate with shrubs. Though beyond the scope of our
Frontiers in Plant Science 07
study, we suggest that future experiments consider plant traits as a

tool to understand why some species are more benefited than others.

More than 30% of the total land area in California is defined as a

semi-arid ecoregion (Syphard et al., 2022). Shrubs create

heterogeneity in these regions by creating variation in physical

structure and thus provide a generalized facilitation function of

ameliorating microclimate (Braun et al., 2021). Shrub canopies

create micro-environmental benefits including increasing shade,

reducing radiation load, increasing night-time winter temperature,

and increasing soil moisture, and canopy structure play an
FIGURE 3

Vegetation measures (I) Mean plant abundance and richness regressed against percent shrub cover (%) (A, B) and aridity (C, D). Smoothed means are
fitted using the linear method.
TABLE 4 Model summary II.

Predictors df Deviance Residuals df residuals Residual
Deviation

p-value

Mean richness NULL 107 227.87

shrub_cover 1 35.57 106 192.30 0.01

microsite 1 8.89 105 183.4 0.01

aridity 1 66.72 104 117.13 0.01

Mean
abundance

NULL 107 51383

shrub_cover 1 20589.9 106 30793 0.01

microsite 1 1633.3 105 29160 0.01

aridity 1 6803.6 104 22356 0.01
Analysis mean annual plant richness and abundance are shown using a Generalized Linear Model (GLM). Significant p-values are bolded. Given model has the lowest AIC for the family of fit.
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important role in differences observed in these micro-

environmental parameters (Jankju, 2013). In this study, we

observed the facilitative effects of E. californica are not dependent

on size. This shows that even the canopy of smaller, low-stature,

long-lived ancient shrubs can nonetheless provide fine-scale

climatic refuges for other species (Ivey et al., 2020; Lortie et al.,

2018, 2020). Maintaining the biodiversity of semi-arid regions is

crucial as it translates to the overall biodiversity of the entire region

of California. There is a direct relationship between environmental

heterogeneity (EH) and biodiversity, with species richness

increasing with greater EH (Agra et al., 2021). Maintaining E.

californica presence and promoting its persistence in the region

through conservation, restoration, and management will result in
Frontiers in Plant Science 08
greater heterogeneity in the region and thus higher regional

biodiversity. Shrubs and annual plants enable small areas in the

species niche that can allow species persistence in a shifting climate

(Brooker et al., 2018). Thus providing animal species with the

option to move around and behaviorally mitigate climate change

effects. Hence, management and restoration efforts need to focus on

not only protecting existing shrub species but also restoring and

managing disturbed scrubland and they are key to the persistence of

biodiversity. Supporting the persistence of other taxa through

foundation shrubs like E. californica that both directly and

indirectly influence microclimatic heterogeneity is crucial in the

future well-being of dryland ecosystems under the current climate

change paradigms.
FIGURE 4

Vegetation measures II. Mean plant abundance and richness regressed against mean NSAT (°C) (A, C) and mean VPD (kPa) (B, D). Smoothed means
are fitted using the linear method. Color represents the microsite.
TABLE 5 Model summary III.

Predictors df Deviance
Residuals

df residuals Residual Deviation p-value

Mean richness NULL 107 227.87

mean_NSAT 1 9.75 106 218.12 0.01

microsite 1 9.15 105 208.96 0.01

mean_VPD 1 38.31 104 170.65 0.01

Mean
abundance

NULL 107 51383

mean_NSAT 1 14719.1 106 36664 0.01

microsite 1 419.5 105 36244 0.08

mean_VPD 1 21743.3 104 14501 0.01
Analysis mean annual plant richness and abundance are shown using a Generalized Linear Model (GLM). Significant p-values are bolded. Given model has the lowest AIC for the family of fit.
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