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Precision weed management (PWM), driven by machine vision and deep learning

(DL) advancements, not only enhances agricultural product quality and optimizes

crop yield but also provides a sustainable alternative to herbicide use. However,

existing DL-based algorithms on weed detection are mainly developed based on

supervised learning approaches, typically demanding large-scale datasets with

manual-labeled annotations, which can be time-consuming and labor-intensive.

As such, label-efficient learning methods, especially semi-supervised learning,

have gained increased attention in the broader domain of computer vision and

have demonstrated promising performance. These methods aim to utilize a small

number of labeled data samples along with a great number of unlabeled samples

to develop high-performing models comparable to the supervised learning

counterpart trained on a large amount of labeled data samples. In this study,

we assess the effectiveness of a semi-supervised learning framework for multi-

class weed detection, employing two well-known object detection frameworks,

namely FCOS (Fully Convolutional One-Stage Object Detection) and Faster-

RCNN (Faster Region-based Convolutional Networks). Specifically, we evaluate a

generalized student-teacher framework with an improved pseudo-label

generation module to produce reliable pseudo-labels for the unlabeled data.

To enhance generalization, an ensemble student network is employed to

facilitate the training process. Experimental results show that the proposed

approach is able to achieve approximately 76% and 96% detection accuracy as

the supervised methods with only 10% of labeled data in CottonWeedDet3 and

CottonWeedDet12, respectively. We offer access to the source code (https://

github.com/JiajiaLi04/SemiWeeds), contributing a valuable resource for ongoing

semi-supervised learning research in weed detection and beyond.
KEYWORDS
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1 Introduction

Weeds pose a significant risk to global crop production, with

potential losses attributed to these unwelcome plants estimated at

43% worldwide (Oerke, 2006). Specifically, in the context of cotton

farming, inefficient management of weeds can result in a staggering

90% reduction in yield (Manalil et al., 2017). Traditional weed

control methods typically involve the use of machinery, manual

weeding, or application of herbicides. These weed management

approaches, while commonly utilized, require significant labor and

cost considerations. Manual and mechanical weeding methods are

especially labor-intensive, a predicament that has been intensified

by recent global labor shortages triggered by public health crises

(e.g., the COVID-19 pandemic) and geopolitical conflicts (e.g., the

Russia-Ukraine War) (Laborde et al., 2020; Ben Hassen and El

Bilali, 2022). Furthermore, the use of herbicides brings about

significant environmental harm and potential risks to human

health, and contributes to the emergence of herbicide-resistant

weed species (Norsworthy et al., 2012; Chen et al., 2022b).

PWM, integrating sensors, computer systems, and robotics into

agricultural practices, has emerged as a promising and sustainable

approach for efficient weed management (Young et al., 2013). It

allows for targeted treatment based on specific site conditions and

weed species, thereby significantly minimizing the use of herbicides

and other resources (Gerhards and Christensen, 2003). To achieve

successful implementation of PWM, it is essential to accurately

identify, localize, and monitor weeds, which requires robust

machine vision algorithms for weed recognition (Chen et al.,

2022b). Traditional image processing techniques, often

encompassing edge detection, color analysis, and texture feature

extraction, along with subsequent steps such as thresholding or

supervised modeling, are widely utilized in the field of weed

classification and detection (Meyer and Neto, 2008; Wang et al.,

2019). For instance, a weed classification algorithm that relies on

extracted texture features was developed by (Bawden et al., 2017).

Ahmad et al. (2018) used local shape and edge orientation features

to differentiate between monocot and dicot weeds. However, despite

promising results, these conventional machine vision techniques

often necessitate manual feature engineering for specific weed

detection or classification tasks, which requires extensive domain

knowledge and can be error-prone and time-consuming. Moreover,

these methods may struggle with complex visual tasks and be

sensitive to variations in lighting conditions and occlusion

(O’Mahony et al., 2020).

Recently, DL-based advanced computer vision has been

recognized as a promising approach for sustainable weed

management (Farooq et al., 2019; Yu et al., 2019; Parra et al.,

2020; Chen et al., 2022b; Coleman et al., 2023; Rahman et al., 2023;

Rai et al., 2023; Sportelli et al., 2023). For example, four different

YOLO (You Only Look Once) object detectors were evaluated for

weed detection in different turfgrass scenarios in Sportelli et al.

(2023). Additionally, in Chen et al. (2022b), 35 state-of-the-art deep

neural networks (DNNs) were examined and benchmarked for

multi-class weed classification within cotton production systems,

with nearly all models attaining high classification accuracy,

reflected by F1 scores exceeding 95%. Despite their proven
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effectiveness, these DL-based approaches are notoriously data-

hungry, and their performance is heavily dependent on large-

scale and accurately labeled image datasets (Lu and Young, 2020;

Rai et al., 2023), whereas manually labeling such large-scale image

datasets is often error-prone, tedious, expensive, and time-

consuming (Li et al., 2023).

To address these challenges, label-efficient learning algorithms

(Li et al., 2023) have emerged as promising solutions to reduce the

high labeling costs by harnessing the potential of unlabeled samples.

Specifically, in dos Santos Ferreira et al. (2019), the efficacy of two

popular unsupervised learning algorithms, namely Joint

Unsupervised Learning of Deep Representations and Image

Clusters (JULE, Yang et al. (2016)) and Deep Clustering for

Unsupervised Learning of Visual Features (DeepCluster, Caron

et al. (2018)), were evaluated in the context of weed recognition

utilizing two publicly available weed datasets. In addition, the semi-

supervised learning for weed classification was studied in (Liu et al.,

2023, 2024; Benchallal et al., 2024). Furthermore, a semi-supervised

learning strategy called SemiWeedNet was introduced in Nong et al.

(2022); this method was designed for the segmentation of weeds

and crops in challenging environments characterized by complex

backgrounds. Moreover, the study presented in Hu et al. (2021)

employed the cut-and-paste image synthesis approach and semi-

supervised learning to address the issue of insufficient training data

for weed detection. This approach was evaluated on an image

dataset consisting of 500 images across four categories: “cotton”,

“morningglory”, “grass”, and “other”, which culminated in an mAP

of 46.0. Although the results were intriguing, their methodology was

tested only on a two-stage object detector [i.e., Faster-RCNN (Ren

et al., 2015)] and a four-category image dataset, which does not

sufficiently substantiate the efficacy of semi-supervised learning for

weed detection. Therefore, our research aims to further probe the

potential of semi-supervised learning in weed detection, and

comparatively assess a variety of object detectors and multi-class

weed species. The key contributions of this study are as follows:
• We rigorously evaluate the semi-supervised learning

framework utilizing two open-source cotton weed

datasets. These datasets include 3 and 12 weed classes

commonly found in U.S. cotton production systems.

• We further analyze and compare the performance of one-

stage and two-stage object detectors within the semi-

supervised learning framework.

• In the spirit of reproducibility, we make all our training and

evaluation codes1 freely accessible.
The remainder of this paper is organized as follows: Section 2

details the dataset and technical aspects pertinent to this study.

Section 3 presents experimental results and provides a

comprehensive analysis, followed by further discussions and

limitations in Section 4. Lastly, Section 5 offers concluding

remarks and outlines potential future research directions.
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2 Materials and methods

In this section, we begin by introducing the two datasets

employed in our study. Then, we provide an overview of two

representative object detectors: the two-stage Faster R-CNN and

the one-stage FCOS detector, along with the details of our semi-

supervised framework. Lastly, we present the evaluation metrics and

describe the experimental setups.
2.1 Weed datasets

To assess the performance and efficacy of our semi-supervised

framework, we conducted evaluations on two publicly available

weed datasets tailored specifically to the U.S. cotton production

systems: CottonWeedDet3 (Rahman et al . , 2023) and

CottonWeedDet12 (Dang et al., 2023).

CottonWeedDet32 (Rahman et al., 2023) comprises 848 high-

resolution images (4442 × 4335 pixels) annotated with 1532

bounding boxes. It contains three distinct classes of weeds

commonly found in southern U.S. cotton fields, primarily in

North Carolina and Mississippi. These images include three types

of weeds: carpetweed (mollugo verticillata), morning glory (ipomoea

genus), and palmer amaranth (amaranthus palmeri). For

adaptability, the annotations for each image were saved in both

YOLO and COCO formats. Notably, around 99% of the images

contain less than 10 bounding boxes, with only a small portion (9

out of the 848 images) containing a more substantial quantity of

bounding boxes, even up to 93 in some cases. Additionally,

carpetweed is the most frequently annotated, while palmer

amaranth is the least. Visual examples of the three-class weed

images can be found in Figure 1.

CottonWeedDet12 dataset3 (Dang et al., 2023) contains 5648

images of 12 weed classes, annotated with a total of 9370 bounding

boxes (saved in both YOLO and COCO formats). These images,

with a resolution exceeding 10 megapixels, were captured under

natural lighting conditions and across various weed growth stages

in cotton fields. Each weed class is represented by more than 140

bounding boxes. Moreover, waterhemp and morning glory have the

highest number of bounding boxes while goose grass and cutleaf

ground cherry have the least. In terms of image volume, the

CottonWeedDet12 dataset surpasses the CottonWeedDet3 dataset

(Rahman et al., 2023) by more than tenfold. Moreover, it represents

the most extensive public dataset currently available for weed

detection in cotton production systems. Figure 2 shows sample

annotated images where a single weed class in each image is present,

despite that each image may include multiple weed classes in

the dataset.
2 CottonWeedDet3 dataset: https://www.kaggle.com/datasets/

yuzhenlu/cottonweeddet3

3 CottonWeedDet12 dataset: https://zenodo.org/record/7535814
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2.2 DL-based object detectors

DL-based object detectors are typically structured around two

primary components: a backbone and a detection head (Bochkovskiy

et al., 2020). The backbone is responsible for extracting features from

high-dimensional inputs and is commonly pre-trained on ImageNet

data (Deng et al., 2009). Conversely, the head is leveraged to predict

the classes and bounding boxes of objects. Existing detectors consist

of anchor-based detectors (Ren et al., 2015; Cai et al., 2016; Lin et al.,

2017) and anchor-free detectors (Law and Deng, 2018; Tian et al.,

2022; Zhou et al., 2019). Anchor-based detectors utilize pre-defined

anchor boxes, adjusting them for position shifts and scaling to align

with the ground-truth boxes, primarily based on their intersection-

over-union (IoU) scores. Conversely, the pre-defined anchor boxes

are discarded in the detection head for the anchor-free object

detection models.

2.2.1 Anchor-based detectors
Anchor-based object detectors utilize pre-defined anchor boxes

to efficiently localize and classify objects in images, being a

representative approach in object detection methodologies. These

methods have led to significant advancements and impressive

outcomes in object detection (Ren et al., 2015; Cai et al., 2016;

Lin et al., 2017). The most notable embodiment of this framework is

Faster-RCNN (Ren et al., 2015), which was built upon the earlier

Fast RCNN model (Girshick, 2015). Deviating from the selective

search methods utilized in Fast RCNN, Faster RCNN employs

CNNs to generate region proposals via an efficient Region Proposal

Network (RPN). The features from the final shared convolutional

layer are then harnessed for both RPN’s region proposal task and

Fast RCNN’s region classification task. In this study, we use Faster

RCNN as one of the detectors in our semi-supervised framework.

2.2.2 Anchor-free detectors
While anchor-based detectors have demonstrated impressive

outcomes, their application to novel datasets necessitates expertise

in tuning hyperparameters (Jiao et al., 2019) associated with anchor

boxes. This constraint limits the adaptability of these detectors to

new datasets or environments (Zhang et al., 2020). Furthermore,

anchor-based approaches are often proved to be computationally

expensive for current mobile/edge devices used in agricultural

applications, which typically have constrained storage and

computational capacity. Alternatively, these limitations are

addressed in anchor-free detectors by getting rid of the need for

pre-defined anchor boxes in detection models. These methods can

directly predict class probabilities and bounding box offsets from

full images using a single feed-forward CNN without necessitating

the generation of region proposals or subsequent classification/

feature resampling, thereby encapsulating all computation within a

single network (Liu et al., 2020). YOLO (Redmon et al., 2016), one

of the most representative one-stage detectors, transforms the task

of object detection into a regression problem by directly mapping

image pixels to spatially separated bounding boxes and

corresponding class probabilities. YOLO is designed for speed,

capable of operating in real-time at 45 frames per second (FPS)

by eliminating the region proposal generation process. On the other
frontiersin.org
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hand, FCOS (Tian et al., 2022) is an anchor box-free and proposal-

free one-stage object detector. By eliminating the anchor box

designs, FCOS avoids the complicated computation related to

anchor boxes such as calculating overlapping during training and

all hyper-parameters related to anchor boxes. In this study, FCOS

serves as one of our base object detection models, chosen for its

accessibility and extensive adoption within the field as evidenced by

previous research (Zhang et al., 2020; Li et al., 2021).
2.3 Semi-supervised Learning

Semi-supervised learning, a form of label-efficient learning,

leverages unlabeled samples to augment the learning process (Van
Frontiers in Plant Science 04
Engelen and Hoos, 2020; Li et al., 2023). Most existing semi-

supervised learning works (Tarvainen and Valpola, 2017;

Berthelot et al., 2019; Xie et al., 2020; Sohn et al., 2020a; Xu et al.,

2021) can be categorized into consistency regularization where the

prediction is consistent with different perturbations, and self-

training that involves an iterative update process.

The teacher-student framework is one of the mainstream ways

for semi-supervised object detection (Sohn et al., 2020a; Xu et al.,

2021; Liu et al., 2021b; Li et al., 2022; Chen et al., 2022a) using the

self-training approach, which is illustrated in Figure 3. Initially, a

“teacher” model is trained on the labeled samples using supervised

learning. This trained “teacher”model is duplicated into a “student”

model and employed to generate pseudo-labels for the unlabeled

samples. Subsequently, a mixture of the most confidently selected
FIGURE 1

Weed samples in the CottonWeedDet3 dataset (Rahman et al., 2023). Each column represents the image samples for one weed class.
FIGURE 2

Weed samples in the CottonWeedDet12 dataset (Dang et al., 2023).
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pseudo-labeled samples and the original labeled samples are utilized

to train a “student” model. Subsequently, the “teacher” model is

updated with the “student” model using an Estimated Moving

Average (EMA) strategy (Tarvainen and Valpola, 2017) according

to the Equation 1:

qteacher = a · qteacher + (1 − a) · qstudent, (1)

where qteacher and qstudent represent the parameters of the

“teacher” and “student” models, respectively. The factor a
determines the extent of the update. An a of 1 retains the

original “teacher” model parameters, while an a of 0 fully

replaces the “teacher” model with the “student” model. In this

study, we use cross-validations and find that a = 0.99 is the optimal

choice for the designed semi-supervised learning framework. The

EMA strategy serves as a crucial mechanism to reduce variance

(Tarvainen and Valpola, 2017). We apply weak augmentation

approaches (e.g., horizontal flip, multi-scale training with a

shorter size range [400, 1200], and scale jittering) to the student

learning process and strong augmentation methods (e.g., randomly

added gray scale, Gaussian blur, cutout patches (DeVries and

Taylor, 2017)) to the teacher learning processes, respectively, to

enhance the performance during training process (Xie et al., 2020;

Xu et al., 2021). Figure 3 provides a visual representation of the

described process.

This iterative process (steps 1-3) is repeated until the model

achieves satisfactory performance. Upon completion of the model

training, the “student” model is discarded, and only the “teacher”

model is retained for inference. The versatility of self-training

methods allows them to be integrated with any supervised

learning-based approach, including one-stage and two-stage

object detectors. In this study, we employ a self-training-based

semi-supervised learning framework and assess two representative

object detectors, Faster RCNN (Ren et al., 2015) and FCOS (Tian et

al., 2022).
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2.3.1 Pseudo-labeling on detectors
It is important to obtain the most confident and accurate

pseudo-labels in semi-supervised learning. Published works (Sohn

et al., 2020b; Zhou et al., 2021a; Liu et al., 2021b) exploit the pseudo-

labeling method to address semi-supervised object detection, and

the majority of them concentrated on anchor-based detectors. Our

focus, however, lies in introducing the generalization approach for

both anchor-free and anchor-based detectors, drawing inspiration

from (Liu et al., 2021b, 2022).

We take the widely used FCOS model (Tian et al., 2022) as an

example to demonstrate the semisupervised object detection tasks.

FCOS comprises three prediction branches, classifier, centerness, and

regressor, where the centerness score/branch dominates the

bounding boxes score. However, the reliability of centerness scores

in distinguishing foreground instances is questionable, particularly

under conditions of limited label availability, as there is no

supervision mechanism to suppress the centerness score for

background instances within the centerness branch (Li et al., 2020;

Liu et al., 2022). Consequently, although the centerness branch

improves the anchor-free detector performance for the supervised

training, it proves ineffective or even counterproductive for semi-

supervised training scenarios (Li et al., 2020; Liu et al., 2022). To

address this issue, our approach prioritizes pseudo-boxes based solely

on classification scores (Liu et al., 2022). The classifier is trained with

the hard labels (i.e., one-hot vector) with the box localization

weighting. Finally, we use the standard label assignment method

instead of center-sampling, which designates all elements within the

bounding boxes as foreground and everything outside as background.

2.3.2 Unsupervised regression loss
Confidence thresholding has proven effective in prior studies

(Tarvainen and Valpola, 2017; Sohn et al., 2020b; Liu et al., 2021b).

However, depending solely on box confidence is insufficient for

effectively eliminating misleading instances in box regression, since
FIGURE 3

Pipeline of the proposed semi-supervised weed detection framework.
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the “teacher” may still provide a contradictory regression to the

ground-truth direction (Chen et al., 2017; Saputra et al., 2019). To

address this challenge, we categorize the pseudo-labels into two groups:

beneficial instances and misleading instances. We then leverage the

relative prediction information between the “student” and the “teacher”

to identify beneficial instances and filter out misleading ones during the

training of the regression branch. We define the unsupervised

regression loss by selecting beneficial instances where the “teacher”

exhibits lower localization uncertainty than the Student by a margin of

s, as shown in the Equation 2:

Lunsupreg = oi jj ~dit − ~dis jj;  if   d i
t + s   ≤  d i

s

  0,                       otherwise :

(
(2)

The parameter s ≧ 0 represents a margin between the

localization uncertainties of the “teacher” and the “student”,

where the localization uncertainty is loosely associated with the

deviation from the ground-truth labels. Specifically, d i
t represents

the teacher’s localization uncertainty, while d i
s represents the

student’s localization uncertainty. Furthermore, edit and edis are the

regression predictions for “teacher” and “student”, respectively. For

more details of the design for the unsupervised regression loss,

please refer to Liu et al. (2022).
2.4 Performance evaluation metrics

In this evaluation, we rely on Average Precision (AP) as a

primary metric, a measure derived from precision (P) and recall (R).

AP summarizes the P(R) Curve to one scalar value. However, since

AP is traditionally evaluated for each object category separately, we

employ the mean Average Precision (mAP) metric (Liu et al., 2020)

to provide a comprehensive assessment across all object categories.

The mAP is calculated as the average of AP scores over all object

categories, and both AP and mAP are determined using the

following Equations 3, 4:

AP =
Z 1

0
P(R)dR, (3)

mAP =
1
no

n

i=1
APi, (4)

where n represents the number of weed classes, and mAP

signifies the average AP across these classes. A higher area under

the Precision-Recall (PR) curve indicates improved object detection

accuracy. Moreover, we consider mAP@[0.5:0.95], reflecting the

mean average precision across IoU thresholds ranging from 0.5 to

0.95. These metrics collectively offer a representative evaluation of the

model’s performance across varying detection thresholds, ensuring a

comprehensive understanding of its object detection capabilities.
2.5 Experimental setups

In the process of model development and evaluation, the cotton

weed dataset was partitioned into three subsets randomly.
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Specifically, for a comprehensive evaluation, the CottonWeedDet3

dataset was randomly partitioned into training, validation, and

testing sets following a ratio of 65%, 20%, and 15%, resulting in

subsets comprising 550, 170, and 128 images. Similarly, the

CottonWeedDet12 dataset was also divided into training,

validation, and testing subsets, with a distribution ratio of 65%,

20%, and 15%, respectively. This results in subsets comprising 3670,

1130, and 848 images. The validation set is used to select the

optimal trained model, while the test set is utilized to evaluate the

model’s performance.

To expedite the model training process, we leveraged transfer

learning (Zhuang et al., 2020) for all object detectors backbone, fine-

tuning them with pre-trained weights obtained from the ImageNet

dataset (Deng et al., 2009). The model was implemented based on

Detectron2 (Wu et al., 2019). All models underwent training for 80k

iterations, a duration deemed sufficient for effective modeling of the

weed data. Stochastic Gradient Descent (SGD) was adopted as the

optimizer, maintaining a momentum of 0.9 throughout the training

process. The learning rate was selected as 0.01, and each batch

contains 4 labeled images and 4 unlabeled images. We adopted the

weak augmentation (horizontal flip, multi-scale training with a

shorter size range [400, 1200] and scale jittering) for the “student”,

and randomly add gray scale, Gasussian blur, cutout patches

(DeVries and Taylor, 2017), and color jittering as the strong

augmentation for the “teacher”. The computational setup

included a server running Ubuntu 20.04, equipped with two

Geforce RTX 2080Ti GPUs, each with 12 GB of memory,

ensuring efficient model training and testing.
3 Results

In this section, we first evaluate the performance of various

object detectors within the context of a semisupervised learning

framework. Subsequently, we will delve into a detailed analysis of

the performance exhibited by individual weed classes.
3.1 Semi-supervised object
detector comparison

Figure 4 illustrates the training curves for FCOS and Faster

RCNN, utilizing various proportions of labeled samples on the two

cotton weed datasets: CottonWeedDet3 and CottonWeedDet12.

We evaluated each algorithm in both supervised and semi-

supervised learning contexts. For example, the configuration

represented as Faster RCNN-sup-5% refers to the Faster RCNN

trained with supervised learning using 5% of labeled samples.

Conversely, Faster RCNN-semi-5% is the same detector trained

with semi-supervised learning using 5% of the labeled samples and

95% of the unlabeled samples.

It is evident from the results that semi-supervised learning

outperforms its supervised counterparts on both datasets, given the

exploitation of a large volume of unlabeled samples to bolster the

training process. As an example, Faster RCNN-semi-5% achieves

superior training performance compared to Faster RCNNsup-5%.
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Moreover, it is noteworthy that FCOS-semi-50% manages to attain

performance comparable to that of FCOS-100% (where all samples

are labeled) on the CottonWeedDet3 dataset. FCOS-semi-50% even

surpasses FCOS-100% on the CottonWeedDet12 dataset,

suggesting that with only half the labeling effort, we can achieve

improved performance, which also showcases that semi-supervised

learning can be more robust compared with the supervised learning

(Liu et al., 2021a). Furthermore, CottonWeedDet12 shows

significant performance superiority over CottonWeedDet3, largely

due to the latter’s smaller image dataset and the greater complexity

of scenes within each image.

Tables 1, 2 summarize the test performance (measured by

mAP@[0.5:0.95]) comparison between the supervised and semi-

supervised learning approaches based on the Faster-RCNN and

FCOS models on the CottonWeedDet3 and CottonWeedDet12

datasets, respectively. Across both datasets, FCOS consistently

outperforms Faster-RCNN in both the semi-supervised and

supervised learning contexts. These findings are in agreement

with the observations drawn from the training curves illustrated

in Figure 4. For any given proportion of labeled samples, the semi-

supervised learning approaches are found to enhance the test

performance. For instance, on the CottonWeedDet3 dataset, the

Faster RCNN model using a semisupervised learning approach

attains 86.70% and 93.73% of the performance of its supervised

approach with only 20% and 50% of the samples labeled,

respectively. Furthermore, it is worth highlighting that on the

CottonWeedDet12 dataset, the FCOS model trained using semi-
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supervised learning with only 50% of labeled samples outperforms

the test performance of the fully supervised approach, which uses

100% of the samples manually labeled. That is because semi-

supervised learning can effectively leverage the vast amount of

unlabeled samples, which may capture the inherent distribution

of the data better than a limited set of labeled samples.

Figures 5, 6 show selected images predicted using both

supervised and semi-supervised FCOS for CottonWeedDet3 and

CottonWeedDet12, respectively. In both figures, only 5% and 10%

of labeled samples are utilized for training. Remarkably, the semi-

supervised FOCS exhibits visually compelling predictions,

especially for images featuring diverse and/or cluttered

backgrounds, as well as those with densely populated weed

instances. Notably, the semi-supervised learning approach

demonstrates superior performance compared to the supervised

learning approach. For instance, in Figure 5, the semi-supervised

FOCS with 5% labeled samples produces better predictions than the

supervised learning approach with only 5% labeled samples. This

underscores the ability of semi-supervised learning to leverage

valuable information from a large volume of unlabeled data.
3.2 Class-specific performance

Tables 3, 4 present the class-specific performance of the

FCOS model on the CottonWeedDet3 and CottonWeedDet12

datasets, respectively. The instance count reflects the number of
FIGURE 4

Training curves for FCOS and Faster RCNN with different proportions of labeled samples for two cotton weed datasets: CottonWeedDet3 and
CottonWeedDet12. (A) Training curves for CottonWeedDet3 dataset (B) Training curves for CottonWeedDet12 dataset.
TABLE 1 Testing performance (mAP@[0.5:0.95]) comparison between the supervised and semi-supervised based on Faster-RCNN and FCOS models
on the CottonWeedDet3 dataset.

Algorithms Supervision type
Proportion of labeled data for training

5% 10% 20% 50% 100%

Faster-RCNN
Supervised 21.14 31.90 42.65 50.51

56.75
Semi-supervised 29.33 40.14 49.20 53.19

FCOS
Supervised 27.37 42.20 52.42 59.84

62.80
Semi-supervised 38.17 47.93 55.79 61.32
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bounding boxes associated with each weed category within the test

images. It is evident that the CottonWeedDet12 dataset exhibits a

considerable imbalance, as indicated by the significantly uneven

distribution of instances across various weed classes.
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On the CottonWeedDet3 dataset, the semi-supervised learning

approaches demonstrate promising performance. Notably, the

semi-supervised model trained with 50% of the labeled samples

surpasses the performance of the fully supervised learning model,
TABLE 2 Testing performance (mAP@[0.5:0.95]) comparison between the supervised and semi-supervised based on Faster RCNN and FCOS models
and CottonWeedDet12 dataset.

Algorithms
Supervision

type

Proportion of labeled data for training

5% 10% 20% 50% 100%

Faster-RCNN
Supervised 45.02 61.18 68.29 75.97

80.47
Semi-supervised 53.08 70.21 75.15 78.83

FCOS
Supervised 62.28 72.99 79.14 83.87

86.47
Semi-supervised 76.91 83.43 85.28 87.26
FIGURE 5

Examples of images annotated with ground truth labels (A) and predicted labels (B) using semi-supervised FOCS for CottonWeedDet3.
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FIGURE 6

Comparing method results on CottonWeedDet12: (A, C) - supervised baseline, (B, D) semi-supervised FCOS.
TABLE 3 Test performance (mAP@[0.5:0.95]) on a specific category of weeds on CottonWeedDet3.

Weeds # of instances Proportion of labeled data for training

5% 10% 20% 50% 100%

PalmerAmaranth 100 48.33 52.18 60.82 63.25 62.70

MorningGlory 101 46.82 55.47 63.56 65.97 70.83

Carpetweed 93 19.38 36.14 42.99 54.73 54.87
F
rontiers in Plant S
cience
 09
TABLE 4 Test performance (mAP@[0.5:0.95]) on the specific category of weeds on CottonWeedDet12.

Weeds #
of instances

Proportion of labeled data for training

5% 10% 20% 50% 100%

Waterhemp 352 85.25 86 88.52 89.78 88.10

MorningGlory 201 83.82 85.75 87.40 89.71 88.03

Purslane 161 74.89 78.58 80.10 81.40 83.68

SpottedSpurge 122 77.12 81.49 83.59 85.79 82.78

Carpetweed 137 63.04 69.62 68.64 71.34 68.18

Ragweed 144 78.08 78.26 81.88 83.11 81.83

Eclipta 117 90.28 90.69 91.34 93.58 95.19

PricklySida 60 78.26 82.91 83.75 83.48 84.01

PalmerAmaranth 42 86.76 89.09 87.82 91.31 93.55

Sicklepod 31 94.27 96.56 97.09 97.01 96.43

Goosegrass 31 78.83 81.69 85.58 90.02 85.31

CutleafGroundcherry 15 32.33 80.59 87.70 90.59 90.50
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particularly for palmer amaranth weeds. However, the detection

accuracy for carpetweed remains relatively low, attributed to its

small size which poses an inherent challenge for recognition. A

similar trend is observed in the performance metrics presented in

Table 4 for the CottonWeedDet12 dataset.

Remarkably, on the CottonWeedDet12 dataset, the semi-

supervised FCOS model trained with 50% and 20% of labeled

samples outperforms the fully supervised model for 8 out of 12

and 6 out of 12 weed classes, respectively. Impressively, for the top 3

minority weed classes — cutleaf groundcherry, goosegrass, and

sicklepod — the FCOS model delivers superior performance even

with only 50% of the labeling costs compared to the supervised

learning approach. This underscores the potential of semi-

supervised learning models to effectively address class imbalance

and provide superior performance even with fewer labeled samples.
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3.3 Comparative analysis: semi-supervised
learning vs. ground truth inaccuracies

In the preceding discussions, we demonstrate the remarkable

performance improvement achieved by semi-supervised learning,

even with a limited number of labeled samples, surpassing the

results of traditional supervised learning approaches. In Figure 7, we

present image samples from CottonWeedDet12, showcasing both

ground truth annotations and the predicted results obtained

through the semi-supervised FCOS-10%. Notably, a discernible

observation is the presence of inaccuracies and mislabels in the

ground truth annotations, highlighting the challenges associated

with manual labeling by human experts, including instances of

noise and incorrect labels. The application of a semi-supervised

learning approach demonstrates to be a potent solution in
FIGURE 7

Image samples from CottonWeedDet12 with ground truth annotations (A) and predicted results with semi-supervised FCOS-10% (B).
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mitigating the above challenges, and effectively enhancing accuracy

and rectifying ground truth inaccuracies.
4 Discussions

4.1 Key contributions

The field of multi-class weed detection and localization remains

largely unexplored in the existing literature (Dang et al., 2023;

Rai et al., 2023). In the transition to the next-generation machine

vision-based weeding systems, the focus is progressively shifting

towards attaining higher precision and instituting weed-specific

controls. Concurrently, the capability to differentiate between

various weed species and identify individual weed instances

emerges as an increasingly critical requirement within these

vision tasks. While significant progress has been made in the

development of DL-based weed detection (dos Santos Ferreira

et al., 2017; Wang et al., 2019; Wu et al., 2021; Dang et al., 2022,

2023), these approaches typically rely heavily on expansive and

manually-labeled image datasets, which makes these processes

costly, prone to human error, and laboriously time-consuming. In

our previous review on label-efficient learning in agriculture (Li

et al., 2023), we presented various techniques aiming at reducing

labeling costs and their respective applications in agricultural

applications, including crop and weed management. Nevertheless,

label-efficient technologies remain largely unexplored in the field of

multi-class weed detection and localization. In this regard, this

study stands as a unique contribution to the research community,

specifically in the area of weed detection and control. By

implementing semi-supervised learning, we introduce an

innovative approach to alleviate the burden of labor-intensive

labeling costs. Our evaluation includes both one-stage and two-

stage object detectors on two open-source weed datasets,

demonstrating that semi-supervised learning can significantly

reduce labeling costs without substantially compromising

performance. Additionally, it can even generate enhanced

performance metrics.

The results of this study have positive implications for the use of

phytosanitary products and precision agriculture. By improving the

efficiency and accuracy of weed detection and localization, our

approach can contribute to more targeted and effective use of

phytosanitary products, thereby enhancing overall agricultural

productivity and sustainability.
4.2 Limitations

While this research provides valuable insights, it does

acknowledge certain limitations that pave the way for potential

future enhancements. Although the primary objective of this

research is not to evaluate all DL-based object detectors for weed

detection within the semi-supervised learning framework, there are

indeed several high-performing object detectors that are not
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evaluated in this study. These include one-stage detectors such as

SSD (Liu et al., 2016), RetinaNet (Lin et al., 2017), EfficientDet (Tan

et al., 2020) and YOLO series (Dang et al., 2023; Terven and

Cordova-Esparza, 2023), as well as two-stage detectors like DINO

(Zhang et al., 2022), CenterNetv2 (Zhou et al., 2021b), RTMDet

(Lyu et al., 2022), and etc. We intend to test and incorporate these

models into our continually updated benchmark as we refine and

improve the semi-supervised learning framework through

future efforts.

In the scope of this study, we work under the assumption that

all unlabeled samples are drawn from the same distribution as the

labeled samples. It is important to acknowledge that unlabeled data

might include instances from unknown or unseen classes,

presenting a challenge commonly known as the open-set

challenge (Chen et al., 2020). This scenario may substantially

compromise the efficacy of label-efficient learning. Consequently,

we highlight a future investigation to delve into addressing out-

ofdistribution (OOD) issues, employing advanced sample-specific

selection strategies. The aim is to identify and subsequently

downplay the significance or utilization of OOD samples (Guo

et al., 2020). This planned exploration intends to enhance the

generalization and robustness of our approach, ensuring its

effectiveness in scenarios where the dataset contains samples from

classes not encountered during the training phase, thereby

contributing to a more resilient and versatile semi-supervised

learning framework.
5 Conclusion

In this study, we conducted an extensive evaluation of semi-

supervised learning in the context of multi-class weed detection.

Leveraging a set of labeled data alongside the unlabeled data for

model training, our investigation focused on evaluating the efficacy

of both one-stage and two-stage object detectors. The two datasets,

CottonWeedDet3 and CottonWeedDet12, chosen for our study

were meticulously curated to align with U.S. cotton production

systems, ensuring the relevance of our findings to real-world

agricultural scenarios. By leveraging semi-supervised learning,

the labeling costs were significantly reduced, while only minimal

impacts on the detection performance were observed. Additionally,

by using the abundant unlabeled samples, the semi-supervised

learning approach produced a more robust and accurate model,

and it demonstrated the capability of mitigating noise and

incorrect labels in the ground-truth annotations. The outcomes

underscore the potential of semi-supervised learning as a cost-

effective and efficient alternative approach for developing

agricultural applications, particularly those requiring extensive

data annotations.

In our future work, we will refine and improve the semi-

supervised learning framework for weed detection by testing and

incorporating more high-performing object detectors into our

continually updated benchmark. In addition, we will address the

open-set challenge, where unlabeled data may include instances
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from unknown or unseen classes, potentially compromising the

efficacy of label-efficient learning. Future investigations will delve

into addressing out-of-distribution (OOD) issues by employing

advanced sample-specific selection strategies.
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