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Estimation of sorghum seedling
number from drone image
based on support vector
machine and YOLO algorithms
Hongxing Chen1,2, Hui Chen1,2, Xiaoyun Huang1,2,
Song Zhang1,2, Shengxi Chen1,2, Fulang Cen3, Tengbing He1,2,
Quanzhi Zhao3 and Zhenran Gao1,2*

1College of Agriculture, Guizhou University, Guiyang, China, 2Institute of New Rural Development,
Guizhou University, Guiyang, China, 3Institute of Rice Industry Technology Research, Guizhou
University, Guiyang, China
Accurately counting the number of sorghum seedlings from images captured by

unmanned aerial vehicles (UAV) is useful for identifying sorghum varieties with

high seedling emergence rates in breeding programs. The traditional method is

manual counting, which is time-consuming and laborious. Recently, UAV have

been widely used for crop growth monitoring because of their low cost, and their

ability to collect high-resolution images and other data non-destructively.

However, estimating the number of sorghum seedlings is challenging because

of the complexity of field environments. The aim of this study was to test three

models for counting sorghum seedlings rapidly and automatically from red-

green-blue (RGB) images captured at different flight altitudes by a UAV. The three

models were a machine learning approach (Support Vector Machines, SVM) and

two deep learning approaches (YOLOv5 and YOLOv8). The robustness of the

models was verified using RGB images collected at different heights. The R2

values of the model outputs for images captured at heights of 15 m, 30 m, and 45

m were, respectively, (SVM: 0.67, 0.57, 0.51), (YOLOv5: 0.76, 0.57, 0.56), and

(YOLOv8: 0.93, 0.90, 0.71). Therefore, the YOLOv8 model was most accurate in

estimating the number of sorghum seedlings. The results indicate that UAV

images combined with an appropriate model can be effective for large-scale

counting of sorghum seedlings. This method will be a useful tool for

sorghum phenotyping.
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1 Introduction

Sorghum is among the five major cereal grains globally (Ritter

et al., 2007; Motlhaodi et al., 2014), Sorghum growth (e.g., the number

and size of seedlings and mature plants) is routinely monitored

through manual measurements, which are less accurate and require

substantial inputs in terms of labor, material resources, and time (Jiang

et al., 2020). Modern agriculture urgently requires methods for the

rapid assessment of crop emergence across large areas. Accurate

estimates of crop populations, the number of plants in a stand, and

evenness are essential for modern agriculture. Acquiring high-

resolution remote sensing images using unmanned aerial vehicle

(UAV) platforms allows for the rapid identification of seedling

emergence and counting of plant numbers. The use of drones is a

rapidly advancing technique in the field of agricultural observation

(Maes and Steppe, 2019). Compared with low-altitude drone images,

satellite remote sensing images are expensive to obtain and easily

affected by weather factors (Dimitrios et al., 2018). Drones are

inexpensive, can collect high-resolution images, and can carry a

variety of sensors, such as red-green-blue (RGB), multispectral, and

hyperspectral sensors. Therefore, the use of images collected by UAV

can effectively solve the difficulty of obtaining crop phenotypic

information (e.g., seedling identification and leaf area index (LAI)

identification) from satellite images (Lin, 2008; Bagheri, 2017). Crop

phenotype monitoring based on UAV images mainly uses image color

segmentation (Zhao et al., 2021b; Serouart et al., 2022), machine

learning (Lv et al., 2019; Ding et al., 2023), and deep learning (Qi

et al., 2022; Zhang et al., 2023b) algorithms. The identification of crop

seedlings through image color segmentation relies on color space

transformation, employing threshold segmentation to differentiate

between the foreground and background (Cheng et al., 2001) to

extract the seedlings. Several studies have compared different data

processing methods for images obtained by drones. For example, Gao

et al. (2023) processed images of maize seedlings obtained by drones

using color comparison, morphological processing, and threshold

segmentation, and obtained accurate estimates of seedling numbers.

Liu et al. (2020) extracted plant information from UAV images based

on a threshold segmentationmethod combined with a corner detection

algorithm, and obtained accurate estimates of the number of corn

plants. Lei et al. (2017) used a threshold method to binarize images,

followed by erosion and dilation processes, to optimize the recognition

of cotton seedlings at 10 days post-planting in images captured by a

drone at a flight altitude of 10 m. Image segmentation can be used to

monitor crop growth indicators, but the height at which images are

captured significantly affects the accuracy of image color segmentation

(Liu, 2021). Threshold segmentation methods are susceptible to factors

such as plant occlusion, weed growth, light intensity, and small target

crops, and so their ability to separate the plants from the background is

limited (Zhou et al., 2018).

In recent years, with the rapid development of big data

technology and high-performance computers, machine learning

technology has been widely used (Tan et al., 2022; Tseng et al.,

2022). In traditional machine learning algorithms, features such as

color and texture are extracted from RGB and multispectral images

processed using different algorithms such as Nearest Neighbor,

Random Forest, and Support Vector Machine (SVM) algorithms.
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Ahmed et al. (2012) used an SVM algorithm to distinguish six types

of weeds and crops, and achieved an accuracy rate of 97%. Siddiqi

et al. (2014) applied global histogram equalization to reduce the

effect of illumination, and used an SVM algorithm for weed

detection, achieving an accuracy of 98%. Saha et al. (2016) used

an open-source dataset and applied an SVM algorithm to detect

crop weeds, achieving an accuracy rate of 89%. Because machine

learning features rely on manual extraction, in complex

environments, particularly for small sample sizes and tasks with

unclear local features, the learning efficiency is low, generalization is

weak, and achieving satisfactory recognition results is challenging.

The availability of big data is promoting the rapid development of

smart agriculture, and digital transformation has become an inevitable

choice for agricultural modernization. Using deep learning technology

to identify crops has become a research hotspot (Asiri, 2023; Feng et al.,

2023). Compared with traditional machine learning algorithms, deep

learning algorithms rely entirely on data, without human intervention,

and use all of the information contained in the data for object detection.

YOLO is a fast object detection algorithm using convolutional neural

networks. It has the advantage of directly performing regression to

detect objects in images (Redmon et al., 2016). Using the object

detection model YOLOv5, Li et al. (2022) counted corn plants with

an average accuracy (mAP@0.5) of 0.91. Su (2023) used YOLOv3,

YOLOv4, and YOLOv5 models to detect rapeseed seedlings in images

captured at different heights, and achieved the best detection

performance using images collected at 6 m with a low degree of

overlap. Korznikov et al. (2023) used YOLOv8 to identify plants of two

evergreen coniferous species in remote sensing images, with an overall

accuracy of 0.98. These examples show that the YOLOmodel has great

potential in object detection. Among them, YOLOv5 is widely used due

to its high detection accuracy and fast inference speed (Zhang et al.,

2022). YOLOv8, as the most advanced version of the YOLO series, not

only retains the advantages of the older version, i.e., good recognition

accuracy and fast recognition speed, but also shows improved model

performance. The sorghum seedlings in images collected by drones are

present in a small area, have a high density, show severe overlapping,

and are sometimes obstructed, and all of these factors contribute to

false or missed detection. Therefore, it is of great significance to

evaluate the suitability of the YOLOv5 and YOLOv8 models for the

recognition and counting of sorghum seedlings in images collected

by UAV.

In summary, machine learning and deep learning algorithms

can process remote sensing image data with small targets and

complex backgrounds, and make accurate predictions and

decisions. Therefore, they are crucial methods for modern

agriculture. In this study, we tested three different models for

counting sorghum seedlings in UAV images captured at different

heights. The objectives of this study were to: (1) combine a color

vegetation index and maximum interclass variance (Otsu) method

with an appropriate threshold for sorghum target recognition and

image segmentation; (2) compare three models [a machine learning

approach (SVM) and two deep learning approaches (YOLOv5 and

YOLOv8)] to count the number of sorghum seedlings in the images;

and (3) to compare and discuss the applicability of each method.

The results of our study have potential applications for accurate

field management.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1399872
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Chen et al. 10.3389/fpls.2024.1399872
2 Materials and methods

2.1 Study area and experimental design

The research area was located in the village of Lianxing, near the

town of Jichang, Xixiu District, Anshun City, Guizhou Province

(105°44′–106°21′ E, 25°56′–26°27′ N). The sorghum varieties

planted in the experimental area were Qiangao 8 and Hongyingzi.

The experiment used a two-factor split-plot design, with variety as

the main plot and fertilizer application as the secondary plot. The

field experiment included six nitrogen concentration treatments,

with nitrogen application ranging from 0 kg/hm2 to 300 kg/hm2

[including N1 (0 kg/hm2), N2 (60 kg/hm2), N3 (120 kg/hm2), N4

(180 kg/hm2), N5 (240 kg/hm2) and N6 (300 kg/hm2)]. Each

experimental plot was 5 m long and 4 m wide, with a plot area of

20 m2 and a row spacing of 0.6 m. For each variety, there were three

replicates of each nitrogen treatment. The seedlings were planted on

April 16, 2023, and transplanting was carried out on May 7. The

drone image data of the sorghum seedlings were collected on June

11. The experimental site is shown in Figure 1.
2.2 Data acquisition and preprocessing

To capture images, the lens in the drone was pointed vertically

downwards and images were acquired at 2-second intervals. The flight

altitudes were 15 m, 30m, and 45 m, with a lateral overlap of 80% and a
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heading overlap of 70%. The camera parameters were as follows: DFOV

82.9°C, focal length 4.5 mm, aperture f/2.8, effective pixel of wide-angle

camera sensor 12 million, image format TIFF, image type RGB. The

collected images were spliced into orthophoto images using Photoscan

software. The spliced orthophoto images were stored in TIFF format.
2.3 Statistical analysis

2.3.1 Color feature analysis
In the visible light images of sorghum seedlings collected by the

UAV, the soil was brown and the vegetation was green. To interpret

UAV images, it is necessary to find a color feature that highlights the

difference between the plants and the background, and then use

threshold segmentation to successfully extract the target, in this case,

sorghum plants. Commonly used plant extraction algorithms are

segmentation methods based on vegetation color (Wang et al., 2019),

In this study, we selected eight color indices that are widely used for

analyses of UAV image data, namely the EXG index (Soontranon

et al., 2014), the Cg index in the YCrCb color space (Lu et al., 2016),

the EXR index (Zheng et al., 2017), the EXG-EXR index (Zheng et al.,

2017), the GBDI index (Turhal, 2022), the NGBDI index (Song et al.,

2022), the NGRDI index (Gitelson et al., 2002), and the S component

in the HSV color space (Zhao et al., 2016). Based on analyses of color

features and the ability of each index to extract the sorghum target,

the optimal color indices were selected. The formula for each

candidate color index is shown in Table 1.
FIGURE 1

Location Map of the Study Area.
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2.3.2 Image segmentation based on
Otsu threshold

Image segmentation algorithms extract and segment regions of

interest based on the similarities or differences of pixel features,

such as typical threshold segmentation, region segmentation, and

edge segmentation. The Otsu method (Xiao et al., 2019) is a typical

thresholding method that segments images based on the differences

between pixels. According to the differences in image pixels, the

image content is divided into target and background. Using

statistical methods, a threshold is selected to maximize the

difference between the target and background. Suppose the image

size of the sorghum field is M×N, and the threshold value for

separating the sorghum target from the background is T. Among

them, the proportion of the number of pixels N0 in the target area

out of the total number of pixels in the image is denoted as w0, and

the average gray value is denoted as m0. The proportion of the

number of pixels N1 of the background area out of the total number

of pixels in the image is denoted as w1, and the average gray level is

denoted as m1. The average gray level of the sorghum field image is

denoted as m, and the interclass variance is denoted as S. The larger

the variance, the more obvious the difference between the target and

background in the image, and the better the segmentation effect.

The optimal threshold is the one that maximizes S. The specific

implementation is described in the following sections.

w0 =
N0

M � N
(1)

w1 =
N1

M � N
  (2)

N0 + N1 = M � N (3)

w0 + w1 = 1 (4)
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m = w0 � m0 + w1 � m1   (5)

S = w0(m0 − m)2 + w1(m1 − m)2 (6)
2.3.3 Machine learning - support
vector machines

The SVM algorithm a generalized linear classifier that performs

binary classification on data using supervised learning. Its decision

boundary is a maximum-margin hyperplane that is solved for the

learning samples. Compared with logistic regression and neural

networks, SVM provides a clearer and more powerful approach for

learning complex non-linear equations.

2.3.4 Image marking
First, the puzzle software Photoscan was used to stitch the

collected drone images into an orthophoto, and the stitched

orthophoto was stored in TIFF format. The second step was to

crop the RGB image obtained using ENVI5.3. This cropping

operation eliminated the distortion and abnormal edge data

generated during the stitching process, thereby reducing the

impact on related algorithm design and model construction. The

third step was to label the sorghum seedlings using labeling software

Labelme. In total, 108 segmented images were opened for labeling,

and 12,755 sorghum seedlings were labeled (each labeling box had

two beads). The marked RGB image was stored in JSON format,

and a script written using PyCharm was used to convert the JSON

file into TXT format for storage of the dataset. The dataset was

divided into a training set and a validation set (ratio, 2:1) is shown

in Table 2.

2.3.5 Deep learning algorithms (YOLOv5
and YOLOv8)

The YOLO series is a single-stage object detection algorithm

proposed by Redmon et al. (2016). Essentially, the entire image is

used as the input of the network and the target location coordinates,

and category are the outputs. YOLOv5 is the most classic and stable

version of the YOLO series. Its advantages in terms of maintaining

detection accuracy are the smaller-weight files, shorter training

time, and faster speed. The network structure model of YOLOv5 is

shown in Figure 2.

The YOLOv8 object detection algorithm inherits the thinking of

YOLOv1 series, and is a new end-to-end object detection algorithm.
TABLE 1 Color index list.

Color Vegetation
Indices

Abbreviation Formula

Excess green index
(Soontranon et al., 2014)

EXG 2g − r − b

YCrCb–green difference index
(Lu and Yang, 2016)

Cg 0.4g − 0.3r − 0.1b

Excess green minus excess red
index (Zheng et al., 2017)

EXG-EXR 3g − 2.4r − b

Excess red index
(Zheng et al., 2017)

EXR 1.4r − g

Green–blue difference index
(Turhal, 2022)

GBDI g − b

Normalized green minus blue
difference index (Song et al., 2022)

NGBDI (g − b)/(g + b)

Normalized green minus red
difference index

(Gitelson et al., 2002)
NGRDI (g − r)/(g + r)

HSV–S-component
(Zhao et al., 2016)

S –
TABLE 2 Partitioning the training set and validation set based on
different criteria.

Height Train Set Val Set Total

15 m 24 12 36

30 m 24 12 36

45 m 24 12 36

Total 72 36 108
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The network structure of YOLOv8 is shown in Figure 3. In

YOLOv8, the C3 backbone feature extraction module of YOLOv5

is replaced by the richer C2f module based on gradient flow. This

adjusts the number of channels for different scale models, thereby

reducing model computation and improving convergence speed

and convergence efficiency.
2.4 Verification of accuracy

The models were evaluated on the basis of three performance

indicators: accuracy P (precision), R (recall rate), and mAP (mean

average precision). The equations used to calculate P, R, and mAP

are listed below:

P =
TP

TP + FP
(7)

R =
TP

TP + FN
(8)
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The F1-score is expressed as in Equation 9:

F1 =
2� P � R
P + R

(9)

mAP = o
n
i=1APi
n

(10)

TP is the number of targets correctly detected by the model; FP

is the number of targets incorrectly detected by the model; FN is the

number of targets not detected by the model; and n is the number

of categories.

The performance of each model in terms of counting sorghum

seedlings was determined on the basis of the determination

coefficient (R2), root mean square error (RMSE), and relative root

mean square error (RRMSE) as evaluation metrics.

R2 = 1 −o
n
1(Yi − Xi)

2

on
1(Yi − �Yi)

2 (11)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

1(Yi − Xi)
2

n

s
(12)
FIGURE 2

YOLOv5 model structure.
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RRMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
n

i=1
(Yi − Xi)

2 � 1
n

s
� 1

�Yi
(13)

Where Yi, �Yi, and Xi are the number of sorghum seedlings in

the image marked by the i-th person, the average number of

sorghum seedlings marked by the i-th person, and the predicted

number of sorghum seedlings, respectively, and n is the number of

test images.
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3 Results

3.1 Identification and segmentation of
sorghum seedlings from images

To analyze the relationship between the sorghum target and

background pixels under different color indices, 36 images of

sorghum fields were selected for feature analysis. First, sorghum and
FIGURE 3

YOLOv8 model structure.
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soil sample points were extracted from the sorghum field images. The

sample size was set to 20 × 20 pixels. Then, the sample images were

converted using eight color indices, and the color histograms of

sorghum plants and soil were statistically analyzed, as shown in Figure 4.

As shown in Figure 4A, there was a clear separation between soil

and sorghum using the EXG index, consistent with the Otsu threshold

segmentation characteristic. As shown in Figures 4D–H, image

segmentation using some of the other indexes resulted in common

areas between the target, sorghum, and non-target (soil) areas.

Therefore, if all the soil in the image was removed, some of the

sorghum would also be removed, resulting in poor segmentation. As

shown in Figures 4B and C, some color indices resulted in clear

separation between soil and sorghum, but the areas were separated by

large gaps with multiple segmentation points, resulting in poorer

segmentation performance. A comparison of segmentation using all

eight indexes is shown in Figure 5. Through comparative analysis, it

was found that the segmentation effects of EXG, EXR, EXG-EXR, and

Cg were good. Analyses of the actual segmentation results revealed that

the sorghum target segmentation was less contaminated and more

complete when using the EXG color index. Therefore, we selected the

EXG color index for sorghum target extraction and segmentation.
3.2 Comparison of machine learning and
deep learning model analysis

An example of SVM detection and counting of the sorghum

seedlings from the dataset is shown in Figure 6. Figures 6A, D, G
Frontiers in Plant Science 07
show the original images captured at heights of 15m, 30m, and 45 m,

Figures 6B, E, H show the segmentation results using the EXG index

at heights of 15 m, 30 m, and 45 m, and Figures 6C, F, I show the

recognition results obtained using the SVM algorithm for images

captured at heights of 15 m, 30 m, and 45 m. In the images captured

at 15 m, 30 m, and 45 m, manual counting identified 121, 126, and

125 sorghum seedlings, respectively, while the SVM algorithm

detected 120, 127, and 112 seedlings, respectively.

Figure 7 shows examples of the use of YOLOv5 and YOLOv8 to

detect and count sorghum seedlings from the dataset. Figures 7A, D,

G show the original images captured at heights of 15 m, 30 m, and

45 m, respectively. Figures 7B, E, H show the recognition effect

diagrams of YOLOv5 at heights of 15 m, 30 m, and 45 m,

respectively. Figures 7C, F, I show the recognition effect diagrams

of YOLOv8 at heights of 15 m, 30 m, and 45 m, respectively. Visual

counting from images captured at heights of 15 m, 30 m, and 45 m

indicated that there were 121, 126, and 125 sorghum seedlings,

respectively. YOLOv5 and YOLOv8 detected 118 and 123 sorghum

seedlings, respectively, in images captured at 15 m height; 110 and

122 sorghum seedlings, respectively, respectively, in images

captured at 30 m height; and 112 and 125 sorghum seedlings,

respectively, in images captured at 45 m height. The background of

the tested sorghum field images was very complex, with partial

overlap, object occlusion, and soil agglomerates. All of these factors

can reduce the accuracy of predictions, so the algorithm must be

very effective to counter these sources of error. Despite the difficult

background, the experimental results were still very accurate and

achieved the experimental purpose.
FIGURE 4

Color histogram of sorghum, soil in sorghum fields: (A) EXG index segmentation, (B) EXR index segmentation, (C) EXG-EXR index segmentation, (D) Cg index
segmentation, (E) GBDI index segmentation, (F) NGBDI index segmentation, (G) NGRDI index segmentation, (H) S-component color segmentation.
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The performance evaluation results of sorghum seedling

detection based on SVM, YOLOv5, and YOLOv8 algorithms are

shown in Table 3. For the images collected at three heights, the

results predicted using YOLOv8 had the highest R2 and the lowest

RMSE; while the results predicted using SVM had the lowest R2 and

those predicted using YOLOv5 had the highest RMSE. According to

the evaluation criteria, the larger the R2 value and the smaller the

RMSE, the better the model. Our results show that deep learning

was superior to machine learning for analyses of these image data.

The YOLOv8 model showed good recognition of sorghum seedlings

in images collected at different flight altitudes.

When training YOLOv5 and YOLOv8 networks after dividing

the dataset, the Epoch was set to 150. The Epoch refers to one

complete traverse of the model over the entire training dataset, and

increasing its value can improve the performance of the model.

However, it may result in overfitting if it is increased too much.

Figure 8 shows the changes in the P, R, and mAP of the YOLOv5

and YOLOv8 network models as the Epoch value was increased

during training. As shown in the figure, the P, R, and mAP of the

YOLOv5 model outputs based on images collected at three different

heights tended to stabilize after Epoch=100, whereas those of the

YOLOv8 model outputs tended to stabilize after Epoch=120.

Figure 9 shows a fitting analysis of the predicted values of the

number of sorghum seedlings in the validation set using the SVM,

YOLOv5, and YOLOv8 models against the actual number of

sorghum seedlings. For the results predicted using the SVM,

YOLOv5, and YOLOv8 models, at a height of 15 m, the R2 values
Frontiers in Plant Science 08
were 0.67, 0.76, and 0.93, respectively; at a height of 30 m, the R2

values were 0.57, 0.57, and 0.90, respectively; and at a height of 45

m, the R2 values were 0.51, 0.56, and 0.71, respectively. These results

show that, as the height of image capture increased, the R2 of the

three models decreased.
3.3 Estimation of the number of seedlings

The number of sorghum seedlings estimated using the SVM,

YOLOv5, and YOLOv8 models was plotted as the number of

seedlings per plot (Figure 10). By comparing and analyzing the

SVM, YOLOv5, and YOLOv8 models, we found that the YOLOv8

algorithm provided the most accurate estimate of seedling number

from images captured at three different flight altitudes, compared

with the actual (manually counted) number. The SVM and

YOLOv5 models overestimated the number of sorghum seedlings,

possibly because of duplicate detection of some leaf information.
4 Discussion

Presently, numerous scholars have utilized low-altitude aerial

remote sensing technology employing drones for the purpose of

estimating crop quantities (Zhao et al., 2018; Zhou et al., 2018;

Fu et al., 2020). Fu et al. (2020) employed drone-based remote

sensing imagery along with an object-oriented multi-scale
FIGURE 5

Otsu segmentation results under different color characteristics: (A) Threshold segmentation under EXG index, (B) Threshold segmentation under EXR
index, (C) Threshold segmentation under EXG-EXR index, (D) Threshold segmentation under Cg index, (E) Threshold segmentation under GBDI
index, (F) Threshold segmentation under NGBDI index, (G) Threshold segmentation under NGRDI index, (H) Threshold segmentation under EXG
S-component.
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segmentation algorithm for automated extraction of sword grass

plant counts, yielding a recognition accuracy of 87.1%. While this

approach demonstrates favorable segmentation outcomes and

straightforward implementation, it is important to note that the

use of multi-scale segmentation may lead to over-segmentation,

potentially impacting the precision of plant count recognition.

Zhou et al. (2018) converted the RGB images captured by drones

to grayscale images, applied threshold segmentation to separate

corn seedlings from the soil background, and subsequently

extracted the skeleton of the corn seedlings for counting

purposes. The correlation between the recognition results and

manual counting ranged from 0.77 to 0.86. However, this method
Frontiers in Plant Science 09
of crop quantification through skeleton extraction or multivariate

linear fitting exhibits limited estimation accuracy. Zhao et al. (2018)

employed thresholding for rapeseed plant segmentation and

extraction of area, aspect ratio, and ellipse fitting shape features,

subsequently establishing a regression model correlating with the

number of seedlings. The R-squared values for the regression

models were 0.845 and 0.867. However, this image processing

method utilizing shape features combined with thresholding is

susceptible to influences such as plant occlusion, weed

interference, and variations in light intensity, thereby limiting its

general applicability. This study employed color features for the

extraction and estimation of sorghum targets. The findings
FIGURE 6

SVM model detection and counting of sorghum seedlings. (A, D, G) Original images at heights of 15 m, 30 m, and 45 m. (B, E, H) The segmentation
results of EXG at heights of 15 m, 30 m, and 45 m. (C, F, I) The recognition results of SVM at heights of 15 m, 30 m, and 45 m.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1399872
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Chen et al. 10.3389/fpls.2024.1399872
indicated that: (1) The combination of the EXG color index with the

Otsu threshold segmentation method accurately and completely

segmented the background and plant targets in the image. (2)

Estimation of the plant target using SVM resulted in a high false

positive rate and a high root mean square error. Therefore,

threshold segmentation and machine learning algorithms for crop

count estimation are most suitable for scenarios with limited sample

sizes or when rapid identification results are imperative.

The YOLO series of single-stage object detection, characterized

by faster processing speeds, has demonstrated its efficacy in the

detection and quantification of crop targets in complex
Frontiers in Plant Science 10
environments. Zhao et al. (2021a) enhanced the accuracy of

wheat spike detection in drone images by incorporating

additional detection layers into YOLOv5 and optimizing the

confidence loss function, resulting in an average detection

accuracy of 94.1% for identifying small and highly overlapping

wheat spikes. Barreto et al. (2021) utilized unmanned aerial vehicles

equipped with RGB cameras and employed deep learning image

analysis techniques to achieve fully automated counting of sugar

beet, corn, and strawberry seedlings. The identified crop numbers

were compared with ground truth data, resulting in an error rate of

less than 5%. Korznikov et al. (2023) utilized YOLOv8 for the
FIGURE 7

YOLOv5 and YOLOv8 model detection and counting of sorghum seedlings. (A, D, G) Original images at heights of 15 m, 30 m, and 45 m. (B, E, H):
The recognition effect diagrams of YOLOv5 at heights of 15 m, 30 m, and 45 m. (C, F, I) The recognition effect diagrams of YOLOv8 at heights of 15
m, 30 m, and 45 m.
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identification of two perennial coniferous species, achieving an

overall accuracy of 0.98. This study utilized deep learning models

algorithm (YOLOv5, YOLOv8) for the extraction and estimation of

sorghum targets. The findings revealed that: (1) At a height of 15m,

YOLOv5 achieved a detection accuracy of 0.76, while YOLOv8

reached 0.93. (2) At heights of 30m and 45m, the accuracy and

recall rates of YOLOv8 on the test set were higher by 15.380% and

10.980% compared to those of YOLOv5 at 30m, and by 10.470%
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and 8.990% at 45m, respectively. (3) The prediction errors for the

number of emerged seedlings at three different flight heights were

observed as follows: for YOLOv5: 1.630%, 12.070%, and 7.650%; for

YOLOv8: 0.020%, 0.10%, and 2.95%. This indicates that seedling

detection is a challenging task if images are collected at

different heights.

Therefore, the effect of the flight altitude of UAV on the

detection of plant seedling numbers using the various models was
TABLE 3 Model performance evaluation.

Models

Performance evaluation

P R mAP@0.5 F1 R2 RMSE RRMSE
Time of training (min) Time of testing

(sec)

15m

SVM – – – – 0.67 1.16 0.95% 2.19 6

YOLOv5 0.88 0.88 0.86 0.88 0.76 1.33 1.09% 230. 40 61

YOLOv8 0.85 0.87 0.80 0.86 0.93 0.12 0.10% 241. 80 72

30m

SVM – – – – 0.57 6.32 5.26% 2.16 5

YOLOv5 0.78 0.82 0.79 0.80 0.57 14.77 12.31% 190.70 42

YOLOv8 0.90 0.91 0.89 0.90 0.90 0.40 0.33% 198.90 51

45m

SVM – – – – 0.51 5.99 4.95% 2.05 4

YOLOv5 0.86 0.89 0.89 0.79 0.56 7.71 6.37% 178.60 36

YOLOv8 0.95 0.97 0.96 0.96 0.71 2.82 2.33% 185.40 43
FIGURE 8

YOLOv5 and YOLOv8 Model results. The Epoch refers to one complete traverse of the model over the entire training dataset.
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FIGURE 9

The R2 results of SVM, YOLOv5, and YOLOv8 at heights of 15 m, 30 m, and 45 m: (A) The R2 results for the three models at a height of 15 m, (B) The
R2 results for the three models at a height of 30 m, (C) The R2 results for the three models at a height of 45 m.
FIGURE 10

Estimation of the number of seedlings emerging.
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significant. The altitude at which a UAV flies has a direct impact on

the quality and accuracy of the data it acquires. Images captured at

lower flight altitudes have higher spatial resolution, so lower heights

allow UAV to capture more detailed information, which is critical

for identifying and counting plant seedlings.

The model used to process the data acquired by the UAV will

affect the final detection results. Some studies have used vegetation

index models such as the Normalized Difference Vegetation Index

to estimate biomass or leaf area index, but these models are subject

to saturation when estimating plant populations, and that limits

their accuracy (Zhang et al., 2023a). Therefore, it is important to

develop and test new models, to improve the application of UAV in

plant population detection. Both the flight altitude and model

selection need to be fine-tuned to the specific characteristics of

the farmland and the monitoring objectives. Errors in the labeling

process can also affect the accuracy of the model. For instance, some

sorghum seedlings might not be labeled correctly, leading to false

negatives or positives. On the other hand, image processing time is a

critical aspect of machine learning and deep learning algorithms.

The training time for deep learning models is significantly longer

than that for SVM models. The training time for deep learning

models primarily depends on factors such as the number of images

used and the hardware utilized.

In summary, in this study, the performance of deep learning

algorithms significantly surpassed that of a traditional machine

learning algorithm, consistent with the results of another study

(Tan et al., 2022). Deep learning algorithms can be used for real-

time monitoring of field-grown seedlings, particularly in large-scale

planting scenarios (Garcıá-Santillán et al., 2017). Our results provide

a technical reference for using images from UAV, combined with an

appropriate model, to count field-grown sorghum seedlings. This has

potential applications in precision breeding, phenotype monitoring,

and yield prediction of sorghum. However, the complexity of the

YOLO network is still high, and the image quality needs to be

improved. In future research work, it will be important to develop a

high-performance, lightweight network and optimize image quality

to achieve accurate real-time detection.
5 Conclusions

We tested three detection models to count the number of

sorghum seedlings in UAV images captured at different heights.

The three models were a machine learning approach (SVM) and

two deep learning approaches (YOLOv5 and YOLOv8). The main

results were as follows:
Fron
1. The R2 of the three methods decreased as the height of

image capture increased. The R2 values for results obtained

from images captured at heights of 15 m, 30 m, and 45 m

were, respectively, (SVM: 0.67, 0.57, 0.51), (YOLOv5: 0.76,

0.57, 0.56), and (YOLOv8: 0.93, 0.90, 0.71).

2. On the basis of the accuracy, recall, and F1 scores of the

YOLO series, the detection performance of YOLOv8 was

better than that of YOLOv5 with the increase in

drone altitude.
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3. The YOLO algorithm outperformed the SVM algorithm.

The YOLOv8 model was more suitable for identifying and

estimating the number of sorghum seedlings in a field.
The results demonstrated that the proposed method can be

effective for large-scale counting of sorghum seedlings. Compared

with field observation by humans, the UAV-based approach can

obtain growth information of crop seedlings more efficiently and

accurately, so it is an important method for precision agriculture

under field conditions.
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