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2-Heptanol inhibits Botrytis
cinerea by accelerating amino
acid metabolism and retarding
membrane transport
Fangfang Wu, Haibo Wang, Yankun Lin, Zesheng Qu,
Bin Zheng, Shun Feng* and Xinguo Li*

School of Tropical Agriculture and Forest, National Key Laboratory of Tropcial Crop Breeding, Hainan
University, Haikou, China
During the postharvest storage of tomatoes, they are susceptible to infection by

Botrytis cinerea, leading to significant economic losses. This study evaluated the

antifungal potential of 2-heptanol (2-HE), a volatile biogenic compound, against

B. cinerea and explored the underlying antifungal mechanism. The results

indicated that 2-HE effectively suppressed the growth of B. cinerea mycelia

both in vivo and in vitro and stimulated the activities of antioxidative enzymes,

including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in

tomatoes. Furthermore, 2-HE reduced spore viability, compromised membrane

integrity, and resulted in increased levels of extracellular nucleic acids, protein

content, and membrane lipid peroxidation. Transcriptomic analysis revealed that

2-HE disrupted the membrane transport system and enhanced amino acid

metabolism, which led to intracellular nutrient depletion and subsequent B.

cinerea cell death. Additionally, the 2-HE treatment did not negatively impact

the appearance or quality of the tomatoes. In conclusion, the findings of this

study offer insights into the use of 2-HE as a biocontrol agent in food and

agricultural applications.
KEYWORDS

gray mold, volatile organic compounds, antifungal mechanism, amino acid metabolism,
membrane transport system
1 Introduction

Postharvest decay of fruits and vegetables due to pathogen infection results in

significant economic losses (Leng et al., 2022; Hosseini et al., 2023). Botrytis cinerea is a

prevalent pathogen responsible for such decay, with the ability to infect over 200 plant

species (Yu et al., 2018). Tomatoes, being rich in carotene and vitamin C, are one of the
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most vital agro-industrial crops (Szabo et al., 2021). The infection of

B. cinerea is a primary factor impairing tomato quality postharvest

(Williamson et al., 2007; Jiao et al., 2022). Currently, chemical

fungicides are the most widespread agents used to control

postharvest decay in fruits and vegetables (Chen and Ying, 2015).

Nonetheless, the overuse of chemical fungicides has led to critical

issues, including threats to food safety, environmental pollution,

and increased resistance in fungi (Zhang X. et al., 2020; Zubrod

et al., 2019). Consequently, there is an urgent need for safe

biological antifungal agents to manage B. cinerea infections and

mitigate the economic losses associated with postharvest tomatoes.

Recent research has highlighted the efficacy of bio-derived

antifungal agents, deemed safe, in managing postharvest

pathogens. Examples include magnolol (Cui et al., 2021), 3-

methylthio-1-propanol (Feng et al., 2021), and curcumin (Hua

et al., 2019). 2-Heptanol (2-HE), a volatile organic compound

(VOC) produced by a range of microorganisms, plants, and

animals (Du et al., 2022; Chang et al., 2023), is notable for its

contribution to the aroma of gamma-aminobutyric acid white tea

(Li et al., 2023) and has been identified in Rubus coreanus fruits (Yu

et al., 2019), chicken sausages (Ozkara et al., 2019), and strains of

Aureobasidium pullulans (Shi et al., 2023). In agriculture, 2-HE

deters virulent green rice leafhoppers from colonizing rice plants

infected with the rice dwarf virus (RDV) due to its repulsive

properties (Chang et al., 2021). It also displays substantial

repellent activity against pests such as Tribolium castaneum and

Rhyzopertha dominica (Ukeh and Urnoetok, 2011). Moreover, 2-

HE has demonstrated antifungal effects, for instance, reducing

Fusarium crown and root rot incidence in tomato plants (Du

et al., 2022), though its antifungal mechanisms merit further

investigation. According to previous studies (Du et al., 2022; Shi

et al., 2023), 2-HE has great biocontrol potential for controlling

postharvest tomato diseases.

To our knowledge, the antifungal mechanisms of 2-HE have

remained uncharacterized until now. This study employed both in

vitro and in vivo experiments to assess the inhibitory effects of 2-HE

on B. cinerea. The antifungal mechanisms underlying these effects

were investigated using fluorescence microscopy, transcriptome

analysis, and quantitative PCR (qPCR). The outcomes of this study

will offer novel avenues for biological control and will serve as

essential references for formulating ecological management strategies.
2 Materials and methods

2.1 Reagents, strains, and tomato

2-Heptanol (2-HE) (purity = 98%; CAS. No. 543–49-7) was

commercially available from Macklin (Macklin Biochemical Co.,

Ltd., Shanghai, China). The fungal pathogen B. cinerea B05.10 was

provided by Prof. Fangjie Xiong, Southwest University (Chongqing,

China). Commercially mature tomatoes were harvested from

Lingshui Farm (Hainan Province, China) and transported to the

laboratory. Tomatoes with no damage and the same ripeness were

cleaned with sterile water and then dried naturally for later use.
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2.2 Antifungal activity of 2-HE against
B. cinerea in vitro

The inhibitory activity of 2-HE on B. cinerea mycelium growth

was evaluated using a non-contact assay. A B. cinerea mycelial plug

(5-mm diameter) was placed on the side of the two-part plates

containing potato dextrose agar medium, and 0, 5, 10, 15, and 20 µL

of 2-HE were added to the other side of the two-part plates with

filter paper (10 × 75 mm). The concentration conversion is shown

in Table 1 (Su and Liang, 2015). The 0 treatment was treated with

an equal volume of distilled water instead of the maximum dose of

the 2-HE treatment in the control group (0.21 mL cm-3). Then the

dichotomous Petri dish was quickly sealed and cultured at 25°C for

5 days. The cross method was used to measure the colony diameter

and calculate the inhibition rate. At each concentration, there are

three biological replicates.
2.3 Inhibitory efficacy of 2-HE against
B. cinerea in vivo

Disease-free tomatoes of uniform size were cleansed with sterile

distilled water and subsequently left to air-dry before further

experimentation. After scraping the tomato equator with a sterile

needle, the tomato wound was inoculated with a 3.0-mm B. cinerea

mycelium plug. A Petri dish containing 2-HE at concentrations of 0

(distilled water as a control), 0.02, 0.05, 0.10, or 0.16 mL cm-3 was

positioned at the base of a sealed glass chamber, with 20 inoculated

tomatoes arranged on the perforated partition in the center of the

chamber (Chen et al., 2022). After treatment, the diameter of the

lesions on each tomato was recorded daily and sampled. During

sampling, fruit tissue around the inoculation site (2 × 2 × 2 cm) was

collected after removing the mycelium plug on the tomato surface.

Each process was repeated three times.
2.4 Antioxidant enzyme activity and MDA
content measurement

The samples collected in Section 2.3 were measured for

antioxidant activity and malondialdehyde (MDA) content.

Catalase (CAT), peroxidase (POD), superoxide dismutase (SOD)

activity, and MDA content were determined by the CAT, POD,

SOD, and MDA assay kit (Nanjing Jiancheng Bioengineering
TABLE 1 Detailed concentration conversion.

Application
amount (mL)

Petri dish
volume (cm3)

Application concen-
tration (mL cm-3)

0

95.4

0

5 0.05

10 0.10

15 0.16

20 0.21
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Institute, China). The test was performed according to the

instructions of each kit, and the entire experiment was performed

at 4°C. Each treatment was subjected to triplicate measurements to

ensure experimental reliability.
2.5 Effects of 2-HE on tomato quality

To measure the effects of 2-HE on tomato quality, tomatoes

with uniform size and maturity and without disease were washed

and dried. A Petri dish containing 2-HE at concentrations of 0

(distilled water as a control), 0.02, 0.05, 0.10, or 0.16 mL cm-3 was

positioned at the base of a sealed glass chamber, with 20 tomatoes

arranged on the perforated partition in the center of the chamber

(Chen et al., 2022). Tomatoes were collected on days 1, 2, 3, and 4

for the assessment of total soluble solids (TSS) and titratable acidity

(TA). TSS content was quantified using a handheld refractometer

(Atago, Japan), and the TA was ascertained through titration of

tomato juice with a 0.01-M NaOH solution. Each treatment was

conducted in triplicate.
2.6 Fluorescence microscopy

Cell viability and membrane integrity were assessed using

fluorescein diacetate (FDA, Sigma) and propyl iodide (PI, Sigma)

(Wang et al., 2020). A 10-µL spore suspension was spotted onto the

inner surface of a Petri dish lid, followed by the introduction of

varying 2-HE concentrations (0, 0.05, and 0.16 mL cm-3) to the base

of the dish. The cultures were incubated at 25°C for 12 h. Post-

incubation, spores were stained with FDA for 5 min and with PI for

10 min, both in darkness, at 25°C. The spores were then washed

three times using phosphate-buffered saline (PBS) and examined

under a fluorescence microscope (Zeiss, Germany). For each

treatment, five random fields of view were chosen to quantify the

number of stained spores.
2.7 MDA content and cellular inclusion
leakage detection

Following a 5-day incubation of spores in potato dextrose broth

at 25°C, 2.0 g of mycelium was harvested and resuspended in sterile

water laced with 2-HE concentrations (0, 0.05, and 0.16 mL cm-3).

After incubation for different times (0, 3, 6, 9, and 12 h), the

supernatant and mycelium were collected, frozen with liquid

nitrogen for 10 min, and then put into the refrigerator at -80°C

for use. The amount of nucleic acid leakage was detected with

supernatant at 260 nm (OD260), and the protein leakage was

measured with a Bradford Protein Assay Kit (Nanjing Jiancheng

Bioengineering Institute, China). Membrane lipid peroxidation was

evaluated using MDA as an indicator (Ma et al., 2019). MDA

content was determined by the MDA assay kit (Nanjing Jiancheng

Bioengineering Institute, China). Each treatment was conducted

in triplicate.
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2.8 Transcriptomic analysis

To elucidate the global transcriptomic alterations induced by 2-

HE treatment in B. cinerea, mycelia exposed to 2-HE (0.05 µL cm-3)

and control groups treated with an equivalent volume of sterile

distilled water were submitted to Megge Biotechnology (Shanghai,

China) for transcriptome analysis. Transcriptome sequencing was

performed using the Illumina sequencing platform, and differential

expression genes (DEGs) were analyzed using the DESeq2 R

package (screening criteria: padj ≤ 0.05). All identified DEGs were

further analyzed by gene ontology (GO) and Kyoto Encyclopedia of

Genes (KEGG) enrichment.
2.9 qPCR

To validate the RNA-seq results, six differentially expressed

genes (DEGs) were chosen for qPCR verification. Mycelia total

RNA was isolated using the Fungal RNA Kit (Omega, USA). qPCR

amplification employed the RR820A and RR047A reagents from

Baori Medical Technology Co., Ltd. (Beijing, China). Reference

genes were selected based on Hua et al. (2019), and additional

primer sequences were designed via Primer Premier 6 software

(Premier, Canada), detailed in Supplementary Table S1. Bcactin

served as the internal reference gene, and relative gene expression

levels were calculated using the 2-DDCt method. The qPCR

operational parameters are provided in Supplementary Table S2.

Each experimental condition was replicated three times to

ensure consistency.
2.10 Statistical analysis

The experimental data in the manuscript were analyzed using

SPSS software (version 25.0) (IBM, New York, United States). Each

result was represented by means ± standard error (SE), followed by

variance analysis using Duncan’s multiple range test and T-test, and

a significant difference (P < 0.05) was indicated with different

lowercase letters.
3 Results

3.1 Effect of 2-HE on B. cinerea
mycelial growth

2-HE significantly inhibited B. cinerea mycelial growth in a

dose-dependent manner (Figure 1). At a concentration of 2-HE of

0.05 µL cm-3, the inhibition rate of growth was recorded at 18.35%.

Notably, mycelial expansion was entirely halted at the 0.21 µL cm-3

2-HE treatment, at which point the relative inhibition rate escalated

to 100%. These findings demonstrate the potent inhibitory effect of

2-HE on B. cinerea mycelial growth.
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3.2 Antifungal efficacy on
harvested tomatoes

In this study, tomatoes were chosen as the subject to investigate

the antifungal properties of 2-HE against gray mold in tomatoes. As

shown in Figure 2, with increasing doses of 2-HE, the antifungal

efficacy of 2-HE on tomatoes was significant in vivo, completely

inhibiting gray mold at a dosage of 0.05 mL cm-3. In addition, lesions

on tomatoes treated with 0.02 µL cm-3 of 2-HE were approximately

69.69% smaller in diameter than those on the control group by the

fourth day. These results indicate that 2-HE possesses antifungal

activity on postharvest tomatoes.
3.3 Effect of 2-HE on the antioxidant
enzyme activity in tomatoes

As shown in Figure 3A, throughout the entire storage period

monitored, catalase (CAT) activity in the tomato fruit treated with

0.16 µL cm-3 of 2-HE was significantly higher than that in the

control group. In contrast, at a 2-HE concentration of 0.05 µL cm-3,

the difference in CAT activity between the treated and control

groups was not statistically significant. These findings suggest a

concentration-dependent relationship between 2-HE and CAT

activity activation in tomato fruits. In addition, peroxidase (POD)

activity in samples treated with 2-HE at both 0.05 and 0.16 µL cm-3

was significantly higher than the control. Interestingly, on the first

day, POD activity was significantly reduced in the 0.16 µL cm-3 2-
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HE treatment compared to the control (Figure 3B). With regard to

superoxide dismutase (SOD) activity, treatment with 0.16 µL cm-3

of 2-HE resulted in significantly higher levels than the control at 1,

2, and 4 days; however, an unexpected decrease below control levels

was observed at 2 days (Figure 3C).

Malondialdehyde (MDA) content is a widely recognized marker

of lipid peroxidation in cell membranes. The study revealed that at a

2-HE concentration of 0.05 µL cm-3, the MDA levels were

significantly reduced compared to the control on the first day of

the storage period; however, no significant differences were

observed at 2–4 days. Conversely, with 2-HE at 0.16 µL cm-3,

MDA levels were substantially lower than those of the control at 1,

3, and 4 days (Figure 3D).
3.4 Effects of 2-HE on tomato quality

As storage duration increased, no significant impact of 2-HE on

tomato appearance was observed (Figure 4A). The influence of 2-

HE on total soluble solids (TSS) content in healthy tomatoes was

also evaluated. It was determined that 2-HE concentrations of 0.02,

0.05, and 0.08 µL cm-3 did not significantly affect TSS content at 1,

2, or 3 days of storage. Notably, during a 2-day storage period,

varying 2-HE concentrations did not significantly alter the TSS,

thereby effectively maintaining the TSS content in the tomato fruits

(Figure 4B). Regarding titratable acid (TA), the content in tomatoes

varied across different storage durations and 2-HE concentrations.

On the first day, TA content increased significantly when treated
B C

A

FIGURE 1

Varying concentrations of 2-HE (0, 0.05, 0.10, 0.16, and 0.21 mL cm-3) inhibited B. cinerea, in which 0 concentration was treated with an equal
volume of distilled water instead of the maximum dose of 2-HE treatment (0.21 mL cm-3 H2O) as the control group. (A) Effect of 2-HE on the colony
morphology of B. cinerea; (B) Colony diameter; (C) Relative of inhibiting. Duncan’s test was adopted, with different lowercase letters indicating
significant differences (P<0.05), and the error bar in the figure represents the standard error.
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B

A

FIGURE 2

2-HE diminished the incidence of gray mold on tomatoes. (A) Tomatoes inoculated with B. cinerea and subsequently treated with varying
concentrations of 2-HE (0, 0.02, 0.05, 0.10, and 0.16 mL cm-3, with the 0 µL cm-3 serving as the control); (B) Lesion diameter. Duncan’s test was
adopted, with different lowercase letters indicating significant differences (P<0.05) and the error bar in the figure represents the standard error.
B

C D

A

FIGURE 3

The antioxidant activities (SOD, POD, and CAT) and MDA content in tomatoes infected with B. cinerea were investigated at 2-HE concentrations of 0
(control), 0.05, and 0.16 mL cm-3. (A) CAT, (B) POD, (C) SOD, and (D) MDA content. Duncan’s test was adopted, with different lowercase letters
indicating significant differences (P<0.05) and the error bar in the figure represents the standard error.
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with 2-HE at 0.02, 0.05, and 0.08 µL cm-3. Similar to TSS, TA levels

did not change significantly on the second day and were not

influenced by 2-HE concentration (Figure 4C).
3.5 Effects of 2-HE on spore activity and
membrane integrity of B. cinerea

The proportion of conidia stained with fluorescein diacetate

(FDA) declined as the 2-HE concentration increased. At a 2-HE

concentration of 0.16 µL cm-3, only 2.45% of the conidia were stained

with FDA, suggesting a significant loss of viability (Figures 5A, B).

Conversely, the proportion of conidia stained with propidium iodide

(PI) increased inversely with the FDA results. With the 2-HE

concentration at 0.16 µL cm-3, 49.9% of conidia were stained with

PI, indicative of most conidia membrane disruption (Figures 5C, D).

These findings demonstrate that 2-HE treatment reduces conidial

viability and compromises membrane integrity.
3.6 Effect of 2-HE on cytoplasmic leakage
and membrane lipid peroxidation

Given the high proportion of conidia stained by PI, we

investigated nucleic acid and protein leakage as well as membrane

lipid peroxidation in B. cinereamycelia. As shown in Figure 6A, the
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control group exhibited lower levels of nucleic acid leakage than the

2-HE-treated group throughout the observation period.

Comparatively, the content of nucleic acid leakage was positively

correlated with the concentration of 2-HE; specifically, the group

treated with 0.05 µL cm-3 had significantly less leakage than the 0.16

µL cm-3 group. Protein leakage was consistently higher in all 2-HE-

treated groups than in the control group and peaked at 9 h of

treatment (Figure 6B). Similarly, MDA levels in 2-HE-treated B.

cinerea were significantly elevated compared to the control across

all time points (Figure 6C). These findings suggest that 2-HE

compromises the membrane integrity of B. cinerea, causing

cytoplasmic leakage and membrane lipid peroxidation.
3.7 RNA-Seq analysis of B. cinerea under
2-HE stress

To elucidate the molecular mechanism of 2-HE antifungal

activity, the transcriptome method was used to analyze the whole

gene of B. cinerea under 2-HE stress. Following treatment with 0.05

mL cm-3 of 2-HE, various RNA data for B. cinerea were obtained by

RNA-Seq analysis. Compared to the control, 1,642 transcripts (622

upregulated and 1,020 downregulated) exhibited significant

differential expression in the 2-HE-treated group (Figure 7A),

with the top 20 DEGs shown in Supplementary Table S3.

Through GO analysis, it was revealed that these DEGs were
B C

A

FIGURE 4

The appearance and contents of TSS and TA in healthy tomato fruits fumigated with varying 2-HE concentrations (0, 0.02, 0.05, 0.10, and 0.16 mL
cm-3; this 0 mL cm-3 treatment used an equal volume of distilled water as the control group) were evaluated over a storage period of 1, 2, 3, and 4
days. (A) Effects of 2-HE on the tomato appearance; (B) TSS and (C) TA content in tomato. Duncan’s test was adopted, with different lowercase
letters indicating significant differences (P < 0.05) and the error bar in the figure represents the standard error.
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predominantly associated with biological processes, including

metabolic and cellular processes. Within the cellular component

category, the DEGs were related to cell part, membrane part,

membrane, and organelle. In terms of molecular function, a

significant proportion of the DEGs were involved in catalytic

activity, binding, and transporter activity (Figure 7B). These

findings indicate that the DEGs of B. cinerea treated with 2-HE

primarily regulate cellular processes, metabolic processes, cell parts,

membrane parts, membranes, organelles, catalytic activity, binding,

and transporter activity.

The KEGG pathway enrichment analysis was performed to

categorize the DEGs and further investigate the molecular

mechanisms underlying the antifungal activity of 2-HE against B.

cinerea (Figure 7C). The analysis identified the top 20 significantly

enriched pathways (Supplementary Table S4), which predominantly

included ribosome biogenesis in eukaryotes (map03008), propanoate

metabolism (map00640), ABC transporters (map02010), and RNA

polymerase (map03020). Additionally, several amino acid-related

metabolic pathways were enriched, notably those involved in the

biosynthesis and degradation of valine; leucine and isoleucine

biosynthesis (map00290); valine, leucine, and isoleucine

degradation (map00280); beta-alanine metabolism (map00410);

alanine, aspartate, and glutamate metabolism (map00250); lysine

biosynthesis (map00300); glycine, serine, and threonine metabolism
Frontiers in Plant Science 07
(map00260); and arginine and proline metabolism (map00330).

Validation of the relative expression levels of selected genes

corroborated the transcriptomic findings, as indicated by a high

correlation coefficient of 0.96668, thus confirming the reliability of

the transcriptome data (Supplementary Figure S1).
3.8 DEGs related to amino acid metabolism
and ABC transporters

Analysis of the top 20 enriched metabolic pathways via KEGG

revealed that six pathways were associated with amino acid

metabolism. To further elucidate the molecular mechanism of 2-HE

in B. cinerea, TBtools was employed to construct a heatmap of

differential gene expression across these six amino acid metabolism

pathways. The valine, leucine, and isoleucine biosynthesis pathway

(map00290) exhibited enrichment for seven DEGs, six of which

(Bcin10g05310, Bcin01g00210, Bcin04g02200, Bcin04g03100,

Bcin16g02820, and Bcin04g01520) were upregulated, suggesting an

acceleration of these biosynthetic processes by 2-HE treatment

(Figure 8A; Supplementary Table S5). Concomitantly, the pathway

for degradation of valine, leucine, and isoleucine (map00280) was also

activated, as evidenced by 12 upregulated DEGs (Figure 8B;

Supplementary Table S6). Similarly, the pathways for alanine,
B

C D

A

FIGURE 5

This study assessed conidial viability and membrane integrity following 2-HE treatment. (A) Effect of 2-HE treatment on the conidial activity of
B. cinerea. Bar = 20 µm; (B) Conidia stained by FDA; (C) Effect of 2-HE treatment on the conidia membrane integrity of B. cinerea. Bar = 20 µm;
(D) Conidia stained by PI. Duncan’s test was adopted, with different lowercase letters indicating significant differences (P<0.05) and the error bar in
the figure represents the standard error.
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aspartate, and glutamate metabolism (map00250); lysine biosynthesis

(map00300); and glycine, serine, and threonine metabolism

(map00260) were enriched with 10, 4, and 10 upregulated DEGs,

respectively (Figures 8C–E; Supplementary Tables S7-S10). Under 2-

HE treatment, 11 DEGs contributing to arginine and proline

metabolism (map00330) were identified, with seven (Bcin11g06270,

Bcin04g00260, Bcin05g08050, Bcin04g03360, Bcin02g03180,

Bcin13g05810, Bcin09g03430) showing significant upregulation and
Frontiers in Plant Science 08
four (Bcin07g00340, Bcin13g00080, Bcin01g06600, Bcin02g05730)

being significantly downregulated (Figure 8F; Supplementary Table

S10). In summary, these findings indicate that 2-HE treatment

enhances amino acid metabolism in B. cinerea.

KEGG pathway enrichment analysis indicated that 2-HE

treatment also affected the membrane transport system of B.

cinerea. ABC transporters, which utilize the energy derived from

ATP hydrolysis to facilitate the uptake of nutrients such as amino

acids and sugars, are instrumental in promoting cell growth

(Locher, 2016). Heatmap analysis showed that in cells treated

with 2-HE, 14 DEGs corresponded to ABC transporters, and

critically, all of these DEGs were significantly downregulated

(Figure 8G). This evidence suggests that 2-HE treatment impedes

the membrane transport system of B. cinerea.
3.9 2-HE inhibited ABC transporters in
B. cinerea

The heatmap presented in Figure 8G reveals that 2-HE

treatment leads to the downregulation of genes associated with

ABC transporters. As shown in Table 2, Bcin01g00180,

Bcin12g06050, and Bcin13g02730 exhibit markedly higher

downregulation, at 3.80, 3.72, and 3.89 times, respectively.

Notably, genes implicated in B. cinerea multidrug resistance, such

as BcatrA (Bcin11g04460), BcatrB (Bcin13g00710), and BcatrD

(Bcin13g02720), also trended downward, with respective fold

changes of 2.43, 2.71, and 1.16.
4 Discussion

Biogenic secondary metabolites offer a sustainable alternative to

synthetic pesticides for controlling plant diseases (Valotteau et al.,

2017; Chen et al., 2021). 2-HE, a VOC, presents a less toxic, safer,

and more reliable option than traditional fungicides for managing

diseases in tomatoes (Gong et al., 2022). For instance, Du et al.

(2022) observed that 2-HE effectively reduced the incidence of

Fusarium crown and root rot in tomatoes. These findings suggest

that 2-HE has great potential to inhibit tomato disease.

Mycelium growth represents a critical way through which B.

cinerea infects hosts, and targeting this process is a primary strategy

for preventing grey mold (Bi et al., 2023; Liu K. et al., 2023). Song

et al. (2024) reported that 2-nonanol, produced from Bacillus

aryabhattai, markedly suppresses Penicillium expansum mycelia

growth. In vivo studies demonstrate that biogenic secondary

metabolites reduce postharvest diseases in fruits and vegetables;

for example, reveromycin E, isolated from Streptomyces, shows

substantial inhibition of tomato B. cinerea and Penicillium

italicum (Nguyen et al., 2021). In addition, 3-methylbutan-1-ol,

produced by endophytic bacteria, significantly reduces the

incidence of tomato gray mold (Chaouachi et al., 2021).

Investigations have confirmed that such metabolites curtail the

mycelial growth of pathogenic fungi both in vivo and in vitro and

exhibit a dose–response relationship, with an increase in metabolite

concentration leading to heightened fungal suppression. Notable
B
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FIGURE 6

2-HE-induced cytoplasmic leakage and lipid peroxidation. (A) Nucleic
acids; (B) soluble proteins; and (C) MDA content. Duncan’s test was
adopted, with different lowercase letters indicating significant differences
(P<0.05) and the error bar in the figure represents the standard error.
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compounds displaying this effect include epsilon-polylysine (Li

et al., 2019), L-cysteine (Wang et al., 2023), and b-glucan (Zhao

et al., 2020). This study demonstrates that 2-HE substantially

curtails B. cinerea mycelial growth under both in vivo and in vitro

conditions in a dose-dependent manner. These findings suggest that

2-HE has the potential to manage B. cinerea infection by hindering

mycelium growth.

The conidium causes the long-distance transmission of gray

mold, so the inactivation of conidia is also one of the ways to

prevent gray mold (Dai et al., 2021). Studies have shown that the use

of biological bacteria and their secondary metabolites also reduces

the conidial activity of pathogenic fungi (Russi et al., 2024), for

example, hinokitiol (Wang et al., 2020) and magnolol (Cui et al.,

2021). In this study, we also discovered that 2-HE markedly reduces

the conidial activity of B. cinerea. This suggests that 2-HE reduces

the possibility of long-distance transmission of B. cinerea by

inhibiting spore activity.

Inducing host resistance is a central strategy for controlling

postharvest fruit and vegetable diseases (Kesel et al., 2021; Prusky

and Romanazzi, 2023). Augmenting the activity of defense-related

enzymes constitutes a significant aspect of this resistance against

pathogenic fungi (Raynaldo et al., 2021). POD, CAT, and SOD are

the pivotal antioxidant enzymes in fruits and vegetables; their

heightened activity signals an enhanced capacity for reactive

oxygen species detoxification (Jing et al., 2020; Dou et al., 2021).

Relevant studies indicate that the application of bioderived

secondary metabolites activates these enzymes activities, thereby

fortifying host resistance to fungal pathogens (Wu et al., 2023; Xing
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et al., 2023). Our study demonstrated that the activities of CAT,

SOD, and POD were related to the concentration of 2-HE. Notably,

compared to the control, 2-HE activated the antioxidant enzyme

activity in the tomato host, substantially mitigating the invasion by

gray mold. Malondialdehyde (MDA), a primary product of

membrane lipid peroxidation, is commonly used to gauge

oxidative damage (Ling et al., 2023). Throughout storage, MDA

content at 0.05 mL cm-3 of 2-HE was lower than that in the control

group, whereas at 0.16 mL cm-3, MDA content surpassed the control

on the second day of storage. The results indicated that 2-HE

diminishes tomato cell membrane peroxidation at low

concentrations (0.05 mL cm-3), identifying its potential as a

preservative. In general, 2-HE acts as an antifungal agent by

reducing membrane peroxidation damage in tomato fruits,

activating the defense response, inducing resistance, and

ultimately suppressing the incidence of tomato gray mold at an

optimal concentration.

In managing postharvest decay, preserving the appearance,

flavor, texture, and nutritional value of fruits and vegetables is of

paramount importance (Chen et al., 2021; Hosseini et al., 2023).

Wang et al. (2024) demonstrated that natamycin does not adversely

impact the quality attributes of fruits, such as grape stem

appearance, berry hardness, total soluble solids (TSS), and

titratable acidity (TA). Similar results were also reported in

thymol (Ding et al., 2023), dimethyl disulfide, and dimethyl

trisulfide (Wang et al. , 2021). Additionally, 2-ethyl-5-

methylpyrazine was found to enhance mango postharvest quality

by increasing TSS, total phenol, total proline, total carotenoid, total
B
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FIGURE 7

DEGs analysis. (A) Differential gene expression was analyzed by a volcano map, including 622 upregulated genes and 1,020 downregulated genes.
(B) GO function classification statistics. (C) KEGG enrichment pathway.
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flavonoid, and fruit firmness (Archana et al., 2021). Our study

indicates that 2-HE neither compromises the external appearance of

tomato fruit nor diminishes its postharvest quality.

The plasma membrane plays a pivotal role in sustaining normal

cellular function in fungal pathogens, rendering it a frequent target

for antifungal agents (Liu R. et al., 2023; Wei et al., 2021).

Numerous studies demonstrate that various antifungal

compounds compromise membrane integrity, result in the

leakage of cytoplasmic contents, and lead to spore mortality (Ma

et al., 2019; Zhang M. et al., 2020). Our findings reveal that 2-HE

treatment notably reduces spore activity and impairs membrane

integrity. Moreover, elevated levels of soluble carbohydrates, nucleic

acids, and MDA were detected in B. cinerea subjected to 2-HE

treatment. These outcomes suggest that 2-HE disrupts membrane

permeability, triggers cytoplasmic leakage, and induces membrane

lipid peroxidation, findings that align with those from studies on 3-

Octanol (Zhang et al., 2023), 2-Phenylethanol (Zou et al., 2022), and

2,3-Butanedione (Li et al., 2022).
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ABC transporters facilitate the translocation of not only a wide

array of nutrients but also exogenous drugs, with certain

transporters playing a pivotal role in cell growth and antifungal

resistance (Viglas and Olejnikova, 2021). To date, 14 ABC

transporters (BcatrA to BcatrN) have been characterized, and of

these, the BcatrB, BcatrD, and BcatrK genes are implicated in the

multidrug resistance of B. cinerea, primarily functioning in the

expulsion of toxic fungi compounds (Stefanato et al., 2009; Wu

et al., 2024). Research has revealed that antifungal agents impinge

on the functionality of pathogen ABC transporters by modulating

ABC gene expression (Wu et al., 2024). Our investigations indicate

that BcatrB and BcatrD genes were significantly downregulated

following 2-HE treatment by 2.71 and 1.16 times, respectively,

suggesting impaired B. cinerea ability to extrude 2-HE as a toxic

substance. Moreover, other genes associated with ABC transporters

were also substantially downregulated. Such findings resonate with

observations of certain antifungal substances, including resveratrol

(Vermeulen et al., 2001), psoralen, and eugenol (Hayashi et al.,
frontiersin.o
B

C

D

E F

G

A

FIGURE 8

Heatmap of the gene expression for KEGG pathway-enriched amino acid metabolism. (A) valine, leucine, and isoleucine biosynthesis; (B) valine,
leucine, and isoleucine degradation; (C) alanine, aspartate, and glutamate metabolism; (D) lysine biosynthesis; (E) glycine, serine, and threonine
metabolism; (F) arginine and proline metabolism; and (G) ABC transporters.
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2002). These RNA-Seq data demonstrate that 2-HE impedes the

ABC transporters pathway, corroborating the notion that 2-HE

compromises the membrane structure of B. cinerea and

consequently disrupts membranal transport functionality.

Amino acids play a crucial role in promoting cell growth and

survival by serving as vital nutrients (Li and Zhang, 2023).

Disrupted amino acid metabolism often results in cell death (Jin

et al., 2020). Our research found that most DEGs related to amino

acid metabolism were upregulated, suggesting that 2-HE

contributes to nutrient depletion in B. cinerea cells. Consequently,

treatment with 2-HE not only obstructs the membrane transport

pathway but also hastens intracellular amino acid metabolism

within B. cinerea cells. This destruction of the membrane

structure, along with the inhibition of the membrane transport

pathway and the acceleration of intracellular amino acid

metabolism, culminates in the cells’ inability to assimilate

nutrients, leading to eventual nutrient depletion.
5 Conclusion

In summary, 2-HE exhibits a potent antifungal effect in both in

vitro and in vivo conditions, enhancing the activity of defense

enzymes in tomatoes. At the same time, 2-HE does not adversely

affect the appearance or quality of tomatoes. The antifungal

mechanism of 2-HE against B. cinerea involves the acceleration of

intracellular amino acid metabolism, disruption of membrane

structure, and inhibition of the membrane transport system,

resulting in the depletion of intracellular nutrients and the

eventual demise of B. cinerea. Consequently, 2-HE represents a
Frontiers in Plant Science 11
promising natural agent for the control of postharvest gray mold

in tomatoes.
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TABLE 2 2-HE-downregulated ABC-related genes.

Gene _ id Gene name Log2FoldChange p-value

Bcin08g02690 – -2.102 0.000

Bcin02g06110 – -1.757 0.007

Bcin05g03610 – -1.318 0.000

Bcin01g00180 – -3.808 0.000

Bcin01g07660 – -2.315 0.000

Bcin01g07220 – -1.727 0.006

Bcin02g00790 – -2.028 0.001

Bcin16g03560 – -1.854 0.000

Bcin12g06050 – -3.723 0.000

Bcin13g02720 BcatrD -1.167 0.002

Bcin13g00710 BcatrB -2.715 0.000

Bcin13g02730 - -3.893 0.000

Bcin11g04460 BcatrA -2.431 0.000

Bcin11g05850 – -1.773 0.001
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