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Carbon and nitrogen
stoichiometry across plant–soil
system accounts for the
degradation of multi-year
alfalfa grassland
Wei Wang1,2‡, Tao Tian2‡, Meng-Ying Li2, Bao-Zhong Wang2,
Fu-Jian Mei2, Ji-Yuan Li2, Ning Wang2, Yu-Miao Yang2,
Qiang Zhang1, Hong-Yan Tao2, Li Zhu2,3*†

and You-Cai Xiong2,3*†

1Key Laboratory of Soil Environment and Nutrient Resources in Shanxi Province, Shanxi Agricultural
University, Taiyuan, China, 2State Key Laboratory of Herbage Improvement and Grassland Agro-
ecosystems, College of Ecology, Lanzhou University, Lanzhou, China, 3College of Biology and
Agricultural Resources, Huanggang Normal University, Huanggang, China
Alfalfa (Medicago sativa L.) grassland is prone to degradation following multi-year

maintenance. Yet, its mechanism regarding the stoichiometry of carbon (C) and

nitrogen (N) across plant–soil system is still unclear. To address this issue, the

method of space-for-time sampling was employed to investigate alfalfa

grasslands with five planting years (5-, 8-, 10-, 15-, and 20-year periods) in the

semiarid Loess Plateau. The results showed that the alfalfa above- and

underground biomass decreased steadily decrease after the fifth to eighth

years, showing a degradation tendency with the extension of planting duration.

The mean weight diameter of aggregate registered an increase with planting

years. However, the C and N stocks decreased with planting years in five soil

aggregate fractions. Specifically, they were the highest in the fifth year and then

started to gradually decrease along the 8th, 10th, 15th, and 20th year.

Redundancy and correlation analysis confirmed that the C and N stocks of soil

aggregates were closely positively associated with those of plant. Overall, the

highest stability of soil physical structure was found during the period from the

fifth to eighth year, and, afterward, the stability declined. In conclusion, alfalfa

plantation improved soil structure stability but aggravated soil C and N stocks,

and biomass and soil aggregate indicators accounted for alfalfa field degradation

after a certain year of plantation.
KEYWORDS

alfalfa field, soil aggregates, carbon and nitrogen stoichiometry, degradation,
semiarid region
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Highlights
Fron
• There exists a steady degradation with planting years in

perennial alfalfa field.

• Field productivity and soil aggregate quality declined after

5- to 8-year planting.

• C and N stocks in aggregate fractions were the highest at the

fifth year and then declined.

• C and N stocks of soil aggregates were positively linked with

that of alfalfa (p < 0.05).

• Steady deterioration of C and N stocks from soil to plant

explains system degradation.
1 Introduction

The Loess Plateau is one of the most seriously degraded soil

regions, which is located in northern China (Li et al., 2021; Yuan

et al., 2024). Soil degradation is related to the climatic,

environmental, and geological features of this region (Gong et al.,

2020); it is also strongly tied to unreasonable land-use management

(Fan et al., 2016). To restrain soil degradation, alfalfa (Medicago

sativa L.) was extensively planted until the 1960s in the Loess

Plateau due to the characteristics of the nutrient-rich forage crop

with high biological yield potential, high resistance ability, and wide

adaptability in extreme environments (Zhang X. L. et al., 2021; Song

et al., 2024). Alfalfa has the potential to enhance nitrogen (N) input

into soil ecosystems while promoting soil carbon (C) and N

accumulation (Vitousek et al., 2013). However, alfalfa forage

biomass is gradually reduced with the duration of planting years,

and continuous planting for many years will degrade the alfalfa

biomass and soil quality (Gu et al., 2018; Fang et al., 2021; Qi et al.,

2023). Therefore, it is essential to study the optimum cultivation

period and the degradation mechanism of alfalfa grasslands.

Ecological stoichiometry was used to explore the degradation

mechanism for plant responses to environmental change (Austin

and Vitousek, 2012). The ecological stoichiometry of C and N

across ecosystem components can provide a new strategy for

elucidating the nutrient cycle process (Du and Gao, 2021; Tang

et al., 2022). Carbon is an essential energy source for above- and

underground ecosystem biogeochemical processes (Wang et al.,

2021b), whereas N is an essential plant nutrient as a key limiting

factor determining primary production in ecosystems (Wang et al.,

2021a). The C and N stoichiometry of plants and their interaction

with the soil significantly affect ecosystem functions (Yang et al.,

2019; Xu et al., 2024). Soil C and N availability affects plant nutrient

absorption and assimilation (Zhang et al., 2019); In turn, plant litter

and root exudates will provide substrates to enhance soil C and N

cycling processes (Zhou et al., 2019; Dan et al., 2023). Overall, the

variation in C and N cycles in ecosystems can change the

stoichiometry of plants and soils (Wang et al., 2021a). C and N

stoichiometric flexibility might affect terrestrial ecosystem

biogeochemical cycling, a changing the ecosystem productivity

and terrestrial degradation (Sardans et al., 2017; Li et al., 2023).
tiers in Plant Science 02
Therefore, it is necessary to determine the C and N stoichiometry in

plants and soil to explore the degradation mechanism of perennial

alfalfa grasslands.

Soil aggregates are composed of granular or small clumped

structures, and soil aggregate stability is a key index for

characterizing soil degradation (Zhu et al., 2018; Tan et al., 2024).

Soil aggregates are affected by many factors, such as the soil physical

and chemical properties, soil microbes, plant root distribution, and

artificial cultivation (Bodner et al., 2014; Shen et al., 2024). Based on

soil size, aggregates are classified into three parts: macroaggregates

(>0.25 mm), microaggregates (0.053–0.25 mm), and the silt-clay

fraction (<0.053 mm) (Lu et al., 2021). The soil aggregate size

distribution often influences soil aeration, corrosion resistance, and

water permeability (Bissonnais and Arrouays, 1997). Soil

aggregation is a process driven the biotic and abiotic factors that

plant-derived organic matter input, microorganisms, and soil

conditions combination (Liu et al., 2023). Increasing plant cover

to prevent the surface erosion and to protect soil physical

disturbance promotes the plant-derived organic matter input and

contributes soil aggregation formation (Wang et al., 2022). In

addition, more plant residue input also promotes the microbial

grower, regulate microbial activity, and microbial-derived C and

ultimately affects the formation of soil aggregate (Zhao et al., 2024).

Higher C concentrations and mineralization rates are often found

to be associated with macroaggregates (Wang et al., 2018; Araujo

et al., 2024). This is because macroaggregates are easily

disintegrated and broken by external interference, whereas

microaggregates may be more physically protected and are,

therefore, more biochemically recalcitrant to C mineralization

(Kubar et al., 2021). Previous studies have investigated the soil

aggregates in various land-use types, including forests, cultivated

lands, grazing lands, and woodlands. In fact, most of above

investigations on soil aggregates are mainly aimed at the stability

and C and N characteristics (Wang et al., 2018; Bhatt et al., 2023),

and few studies have focused on the relationship between alfalfa

aggregates and plant C and N stoichiometry. Therefore, knowledge

of C and N stoichiometry is crucial for understanding the

biochemical mechanisms of plant and soil aggregates.

Plant–soil interactions via both positive and negative feedbacks

can constrain or promote plants development in the novel

environment, and plant–soil interaction is strongly influenced by

the rhizosphere microbiota (Lustenhouwer et al., 2024). Plant–soil

interaction plays an important role in global C and N

biogeochemical cycles, and previous study found that

rhizobacteria symbiotic with legumes can drive positive effect, and

promote nutrient uptake and plant growth (Yahui et al., 2023).

However, there is still controversy about how multi-year alfalfa

planting affects the C and N in soil aggregates and plant organs in

the semiarid regions. We hypothesized that the dynamics of C and

N sequestration might be key indicators to explain soil degradation

following continuous alfalfa plantation. To clarify this issue, the

method of space for time was employed to investigate 5-year

succession of alfalfa grasslands in the semiarid region. The

purposes of this study were 1) to determine the changes in the

production of alfalfa with planting years, 2) to identify the stocks

dynamics of C and N in soil aggregate distribution with planting
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years, 3) to reveal the changes C and N across plant–soil system in

the multi-year alfalfa grassland, and 4) to explore the degradation

mechanisms of perennial alfalfa. The findings will help formulate an

appropriate management strategy for ecological restoration and

sustainable soil development.
2 Materials and methods

2.1 Description of the study site

The study area is located in Yuzhong County, Gansu Province,

China (36°02′N, 104°25′E, 2,400 m) (Figure 1). The average

annual temperature is 6.5°C, and the monthly average

maximum and minimum temperatures are 19.0°C and −8.0°C,

respectively. The mean annual precipitation from 2000 to 2018

was 323.5 mm, the maximum year was 2018 (458.8 mm), and the

minimum precipitation occurred in 2004 (202.0 mm). The average

annual water evaporation is approximately 1,450 mm. The local

soil type is Calcic Kastanozems (Siltic) or rusty dark loess soil with

a pH of 8.2 (Guo et al., 2010). The rainfall data were derived from
Frontiers in Plant Science 03
the perennial positioning automatic meteorological recording

instrument (Figure 1).
2.2 Experimental design

We selected five alfalfa grasslands in October 2018 and formed a

time series of 5, 8, 10, 15, and 20 years, which represented

successional series with similar topographic conditions. Where

fields planted with alfalfa were recorded in 2013, 2010, 2008,

2003, and 1998, respectively. Abandoned farmland was chosen as

the control group (CK; abandoning 15 years). The aspect and slope

of each selected alfalfa field remained relatively consistent

(Figure 1). In all the selected plots, the alfalfa variety Algonquin

was planted, each plot was sown with alfalfa seeds of 35 kg ha−1, the

depth was approximately 2 cm, and each row was almost 20 cm.

There was no irrigation throughout the growing season.

Fertilization was only applied in the first year of planting (N,

185.6 kg ha−1; P, 48 kg ha−1), and no fertilization was conducted

afterward. There was no grazing treatment for the alfalfa grassland,

which was harvested in June and October of each year (weeds were
FIGURE 1

Location of study area and its precipitation and biodiversity background. CK, abandoned farmland. 5-Y, 8-Y, 10-Y, 15-Y, and 20-Y planting indicate
the variations across 5, 8, 10, 15, and 20 years, respectively.
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also mowed at the same time). The control group had no

fertilization and mowing treatment. The only difference in the

selected alfalfa grassland was in planting years. In the alfalfa

grassland, weed biomass increased with prolonged plantation

years. The dominant vegetation species are Artemisia frigida

Willd., Leymus secalinus (Georgi) Tzvel., Poa annua L., Aster

altaicus Willd., Stipa capillata L., and Agropyron cristatum L.

Gaertn. The weeds were periodically cleared by hand when

needed to avoid interspecific disturbance.
2.3 Sampling

InOctober 2018, 15 plots of 1m× 1mof each fieldwere randomly

selected andmarked tomeasure the biomass of each field. Soil samples

of 0-cm to 20-cmdepthwere randomly collected from the field using a

soil auger (diameter of 5 cm) with five replicates for each planting

period, and each alfalfa field was mixed in three samples. Before air-

drying, the soil was sieved through 2.0-mm screens for available

nutrient analyses, and, after drying, it was sieved through 0.15-mm

screens for total nutrient analyses. The soil aggregate sample was

collectedwith a hardPolyvinyl Chloride (PVC)pipewith a diameter of

10 cm and a height of 20 cm. After sampling, the aggregate samplewas

divided into small clods a diameter of 1 cm for air-drying.
2.4 Physical and chemical analysis

Soil bulk density (SBD) was determined using cutting ring (0–

20 cm). Soil water storage (SWC) was measured gravimetrically (0–

20 cm, 20–40 cm, 40–60 cm, 60–80 cm, and 80–100 cm). The soil

aggregate-size fraction was measured using a dry- and wet-sieving

method (Su et al., 2009). For the dry sieving method, we used 100 g

of air-dried soil samples in a stainless-steel vibrating sieve divided

into five sizes: >2 mm, 2–1 mm, 1–0.5 mm, 0.5–0.25 mm, and <0.25

mm. The wet sieving method used 50 g of air-dried soil, which was

weighed according to dry sieving and moistened for 10 min with

distilled water. The apparatus specifications were an oscillation of

10 min at a frequency of 30 cycle min−1. Aggregates retained in the

sieve were air dried at 65°C, weighed, and stored for C and N

content measurements. The soil aggregate distribution is calculated

with Equation 1. The mean weight diameter (MWD) and

percentage of aggregate destruction (PAD) are calculated using

Equations 2 and 3, respectively.

       AD = ADi=TO� 100% (1)

MWD = ½on
i=1(Xi ADi)�=on

i=1ADi (2)

 PAD =  (ADd − ADw)=ADd (3)

where AD is the aggregate distribution of each fraction (%), ADi is

the i size aggregate weight (g), and TO is the total weight of the soil (g).

Xi is the mean diameter of the aggregate, and ADd and ADw are the

proportions of dry and water stable aggregates (>0.25 mm), respectively.
Frontiers in Plant Science 04
The SOC content and C of aggregate fractions are determined

by Puget et al. (2000). The soil total nitrogen (TN) content and TN

of the aggregate fractions were measured by Bremner (1997). The

above- and underground biomass of alfalfa and weeds (soil depth

up to 40 cm) were collected from a 1 m × 1 m area of each plot

(collected twice in late June and early October). The above- and

underground biomass were dried at 105°C for 30 min and then at

65°C to constant weight (Wilson et al., 2009). The C and N contents

of alfalfa plants were measured following Yu et al. (2021); aggregate

C and N stocks were measured according to Equation 4 (Zhang L.

Q. et al., 2015).

C(N)stock = ADi �M� SOCi(TNi)� 0:001 

   M = SBD�H� 0:01� 10000 (4)

where C and N stocks are stocks of soil carbon and nitrogen

[Mg ha−1; where M is soil quality per unit area (Mg ha−1)], SOCi

and TNi are different size aggregates of soil carbon and nitrogen

content (g kg−1), SBD is the soil bulk density (g cm−3), and H is

20 cm.
2.5 Statistical analysis

All statistical data were tested for normality and homogeneity

of variance before further analysis. One-way ANOVA was used to

compare the differences among the six treatments. The difference

was tested by Tukey’s honestly significant difference (HSD) to

check the statistical significance of the treatments between

different planting years. Mean comparisons were performed

using the least significant difference at a probability level of 0.05.

Redundancy analysis (RDA) and correlation analysis were used to

evaluate the relationship between aggregate C and N stocks, plant

biomass, and the C and N concentrations of alfalfa plants. RDA was

plottedusingCanoco5.0.Graphswere preparedusingArcGis 10.0 and

Origin 2021.
3 Results

3.1 Dynamics of aboveground and
belowground biomass with planting years

Above- and underground biomass varied significantly among

alfalfa cultivation years (Table 1). Throughout various planting for

alfalfa, a significant change in above- and underground biomass

was occurred. In the aboveground biomass, alfalfa yields reached

the highest after approximately 5 years, whereas those of the

remaining years declined approximately 20 years after alfalfa

planting. Conversely, underground biomass was at a maximum

value after alfalfa planting for 8 years but then decreased with the

duration years. Therefore, the above- and underground biomass of

alfalfa grassland declined with the number of years of planting.
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3.2 Dynamics of the organic carbon and
total nitrogen concentrations of plants
with planting years

The C and N contents and C-N ratio of alfalfa varied with

planting years (Table 1). The C contents of alfalfa above- and

underground decreased after continuous planting 5 years. The N

content of the aboveground also showed significant change;

however, the N content of underground significantly increased
Frontiers in Plant Science 05
with planting years. Similarly, the C-N ratio of alfalfa above- and

underground also declined under cultivated 5 years.

3.3 The responses of soil water content
and soil bulk density to planting years

As the depth of the soil layer increases, the SWC of the 0-cm to

100-cm soil layer decreases significantly, and the soil moisture content

of alfalfa grassland is significantly lower than that of the control

(Figure 2A). At different planting times, the SWCwas the highest after
FIGURE 2

Dynamics of soil water content (SWC; 0–100 cm) (A), soil bulk density (B), SOC content (C), and TN content (D) at 0-cm to 20-cm soil depth in
response to different durations of alfalfa planting. Different letters indicate significant differences in planting duration (p < 0.05). The values are
mean + SE (error bar). CK, abandoned farmland. 5-Y, 8-Y, 10-Y, 15-Ym and 20-Y represent planting variations for 5, 8, 10, 15, and 20
years, respectively.
TABLE 1 Variations of above- and belowground biomass and the C and N stocks in alfalfa along varying planting durations.

Years

Aboveground Underground

Biomass
(kg ha−1)

C content
(g kg−1)

N content
(g kg−1)

C-N ratio Biomass
(kg ha−1)

C content
(g kg−1)

N content
(g kg−1)

C-N ratio

CK 2,349.3 ± 23.1e 522.8 ± 1.2a 6.42 ± 0.0e 81.5 ± 0.0a 1,866.3 ± 11.5f 413.3 ± 1.1f 4.11 ± 0.1e 100.9 ± 2.6a

5-Y 3,985.6 ± 11.5a 506.1 ± 1.1b 16.4 ± 0.1bc 30.8 ± 0.1b 3,906.3 ± 23.1e 588.4 ± 1.1a 9.83 ± 0.1c 59.8 ± 0.6b

8-Y 3,788.3 ± 11.5b 475.2 ± 1.2c 16.9 ± 0.2a 28.5 ± 0.1c 5,757.3 ± 11.5a 520.6 ± 1.2b 9.26 ± 0.2d 56.2 ± 0.8c

10-Y 3,516.0 ± 11.4c 463.5 ± 1.2d 16.7 ± 0.1ab 27.7 ± 0.1d 5,542.6 ± 11.5b 513.9 ± 1.1c 11.8 ± 0.1b 43.8 ± 0.3d

15-Y 2,743.9 ± 11.7d 451.2 ± 0.6e 16.3 ± 0.1c 27.7 ± 0.2d 5,259.3 ± 11.5c 456.0 ± 1.1d 12.2 ± 0.2a 37.6 ± 0.3e

20-Y 1,925.4 ± 23.1f 432.1 ± 1.2f 15.8 ± 0.2d 27.3 ± 0.1e 4,856.4 ± 5.8d 440.2 ± 1.2e 12.1 ± 0.2a 36.4 ± 0.2e
Different lowercase letters indicate significant differences among the same parameter at p < 0.05 according to Tukey HSD tests. CK, abandoned farmland. 5-Y, 8-Y, 10-Y, 15-Y, and 20-Y represent
planting variations for 5, 8, 10, 15, and 20 years, respectively.
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10 years of planting and the lowest after 8 years of planting. The SBD

of alfalfa grassland ranged from 1.04 g cm−3 to 1.28 g cm−3, and there

was a significantly variable trend in 5 years, and there is less change

after cultivated 8 to 20 years (Figure 2B). The change in SBD after 8,

15, and 20 years of planting was significantly higher than that after 5

years of planting, followed by 10 years of planting.
3.4 The dynamics of soil organic carbon
and nitrogen contents under different
planting years

The soil organic carbon (SOC) content of artificial alfalfa grassland

at 0-cm to 20-cm soil depth showed a V-shaped trend with increasing

alfalfa planting duration. The highest value of planting for 5 years was

14.4 g kg−1, and the lowest value of planting for 8 years was 8.54 g kg−1

(Figure 2C). The soil TN content was between 0.89 g kg−1 and 1.02 g

kg−1, and the planting years had a significant effect on soil TN content,

which showed a decreasing trend with increasing planting

years (Figure 2D).
3.5 The dynamics of soil aggregate
distribution with planting years

In general, the distribution of soil aggregates in size ranged

considerably among various years of cultivation (Table 2). The

proportion of aggregates with sizes > 2 mm and < 0.25 mm is

significantly higher than that of aggregates with other sizes. After 8
Frontiers in Plant Science 06
years of planting, the proportion of aggregates > 2-mm size was

higher than that for other planting durations, the proportions of

aggregates of 1.0–2.0 mm, 0.5–1.0 mm, and 0.25–0.5 mm after 5 years

of planting were higher than those for other planting durations

(except for the 1.0–2.0 mm). The proportion of <0.25-mm

aggregates after 20 years of planting was higher than that for other

periods of cultivation.

In addition, both the mechanical and water-stable aggregates,

soil aggregate, R0.25 and MWD showed a declining trend with

increase planting years. The mechanical and water-stable aggregates

R0.25 ranged from 62.9% to 43.7% and from 23.7% to 14.2%

accordingly. The mechanical and water-stable aggregates MWD

change from 1.16 mm to 0.90 mm and from 0.46 mm to 0.35 mm,

respectively. In contrast, PAD presented an increasing trend and

ranged from 62.2% for planting for 5 years to 67.4% for planting for

20 years.
3.6 The soil organic carbon and total
nitrogen contents of different aggregates
in response to planting years

The soil organic carbon (SOC), TN, and C-N ratios in different

aggregates of alfalfa grassland showed a variable trend in planting years.

The SOC and TN contents of each size were the highest at 5 years of

planting, but the lowest was at 8 years of planting. The C-N ratio in all

five sizes showed that the highest value was in the 10-year plantation,

and the lowest was in the 5-year plantation (except for the 1–2

mm) (Figure 3).
TABLE 2 Responses of soil mechanical and water-stable aggregate compositions to varying planting years in alfalfa field.

Years
Composition of soil mechanical stable aggregate (%) R0.25

(%)
MWD
(mm)

< 0.25 mm 0.25–0.5 mm 0.5–1.0 mm 1.0–2.0 mm > 2.0 mm

CK 45.4 ± 1.14BCa 3.96 ± 0.38Ab 3.86 ± 0.27Ab 5.05 ± 0.24Ab 41.7 ± 0.51Ca 54.6 ± 1.14BC 1.01 ± 0.01C

5-Y 37.1 ± 2.04Db 3.70 ± 0.04Ac 4.86 ± 0.42Ac 3.88 ± 0.22Bc 50.5 ± 2.30Aa 62.9 ± 2.04A 1.16 ± 0.04A

8-Y 40.4 ± 0.99CDb 3.49 ± 0.14ABc 2.02 ± 0.25Bc 2.41 ± 0.25Cc 51.7 ± 0.93Aa 59.6 ± 0.99AB 1.15 ± 0.02AB

10-Y 46.8 ± 1.06Ba 2.72 ± 0.04BCb 1.52 ± 0.21Bb 1.67 ± 0.25CDb 47.3 ± 1.05ABa 53.2 ± 1.06C 1.05 ± 0.02BC

15-Y 53.0 ± 0.55Aa 1.84 ± 0.25CDc 1.46 ± 0.12Bc 1.63 ± 0.14CDc 42.1 ± 0.23BCb 47.0 ± 0.55D 0.95 ± 0.01CD

20-Y 56.3 ± 0.73Aa 1.50 ± 0.04Dc 1.21 ± 0.03Bc 1.32 ± 0.03Dc 39.6 ± 0.72Cb 43.7 ± 0.73D 0.90 ± 0.01D

Years
Composition of soil water stable aggregate (%) R0.25

(%)
MWD
(mm)

PAD
(%)

< 0.25 mm 0.25–0.5 mm 0.5–1.0 mm 1.0–2.0 mm > 2.0 mm

CK 81.0 ± 0.94CDa 3.36 ± 0.32Ac 2.61 ± 0.19Bc 1.40 ± 0.16Ac 11.6 ± 0.50Bb 19.0 ± 0.94B 0.39 ± 0.01B 65.3 ± 1.27A

5-Y 76.3 ± 0.69Ea 3.14 ± 0.04Ac 3.80 ± 0.03Ac 1.44 ± 0.08Ac 15.3 ± 0.58Ab 23.7 ± 0.69A 0.46 ± 0.01A 62.2 ± 2.30A

8-Y 78.2 ± 0.85DEa 2.63 ± 0.22ABc 2.38 ± 0.13Bc 1.45 ± 0.29Ac 15.3 ± 0.35Ab 22.1 ± 0.57A 0.45 ± 0.01A 62.9 ± 1.40A

10-Y 82.5 ± 0.49BCa 2.30 ± 0.03BCc 1.74 ± 0.10Cc 1.33 ± 0.11Ac 12.1 ± 0.48Bb 17.5 ± 0.49BC 0.39 ± 0.01B 67.1 ± 0.29A

15-Y 85.0 ± 0.65ABa 1.61 ± 0.07Cc 1.31 ± 0.05CDc 0.86 ± 0.03Ac 11.2 ± 0.58Bb 15.0 ± 0.65CD 0.36 ± 0.01B 68.1 ± 1.32A

20-Y 85.8 ± 0.36Aa 1.55 ± 0.01Cc 1.16 ± 0.03Dc 0.83 ± 0.03Ac 10.7 ± 0.32Bb 14.2 ± 0.36D 0.35 ± 0.01B 67.4 ± 1.27A
f

Different capital letters indicate significant differences among different planting durations in the same-sized aggregate at the 0.05 level, and different small letters indicate significant differences
among different-sized aggregates in the same planting durations at the 0.05 level. The values are mean + SE. R0.25, aggregates of diameter >0.25 mm; MWD, mean weight diameter; PAD,
percentage of aggregate destruction; CK, abandoned farmland. 5-Y, 8-Y, 10-Y, 15-Y, and 20-Y represent planting variations for 5, 8, 10, 15, and 20 years, respectively.
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In addition, the SOC and TN contents and C-N ratio of

different size aggregates in the same planting years also showed a

significant difference (Figure 3). In general, the SOC and TN

contents of macroaggregates in the alfalfa grassland were higher

than those in other particle sizes, and the < 0.25-mm particle size

was the lowest. In the alfalfa grassland field, the C-N ratio of >2 mm,

0.25–0.5 mm, and <0.25 mm in 8 years was the lowest than that in

the other years. After planting for 8 years, the ratios of the five size

aggregates increased in all five sizes.
3.7 The dynamics of carbon and nitrogen
stocks with planting years

The variation in the C and N stocks of the alfalfa succession

series with different planting years is shown in Figure 4. In general,

the C and N stocks of aggregates > 2 mm were the highest in each

planting year (except for <0.25 mm). Among different planting
Frontiers in Plant Science 07
years, the stock of C after 5 years of planting was the highest, and,

after 8 years, it was declined. Similarly, in each planting year, the N

stocks of aggregates > 2 mm were the largest. The N stocks after 5

years were the highest among the five planting years. Overall, the C

and N stocks slightly decreased with prolonged planting.
3.8 Relationships of aggregate carbon and
nitrogen stocks with alfalfa plants

The RDA showed that the CK treatment was concentrated in the

first quadrant, and alfalfa grasslands were distributed in the other three

quadrants (Figure 5). The first and second axes accounted for 84.63% (a)

and 84.62% (b) of the variability explained. Aboveground biomass was

negatively correlated with SBD and planting years, whereas

underground biomass was positively correlated with planting years. At

the same time, we found that aggregate C and N stocks were closely

related to the C-N ratio of alfalfa above- and underground plants.
FIGURE 3

SOC, TN contents, and SOC/TN of different-sized aggregates at 0-cm to 20-cm soil depth in alfalfa plantations with different planting durations.
Different letters indicate significant differences among different planting durations for the same-sized aggregate at the 0.05 level. The values are
mean + SE (error bar). CK, abandoned farmland. 5-Y, 8-Y, 10-Y, 15-Y, and 20-Y represent planting variations for 5, 8, 10, 15, and 20
years, respectively.
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The correlation analysis indicated that aggregate MWD was

positively correlated with alfalfa aboveground biomass and the above-

and underground C content (Figure 6). The aggregate C stock was

markedly positively correlated with the SWC, the C and N content of

aggregates, the C content of alfalfa aboveground, and the C-N ratio of

above- and underground. Similarly, the aggregate N stock was markedly

positively correlated with the SWC, C and N content of the soil surface
Frontiers in Plant Science 08
and each aggregate size, the aboveground C content of alfalfa, and the

aboveground C-N ratio. The C and N stocks of aggregates were

negatively correlated with underground biomass and the above- and

underground N content. In addition, the aboveground C content of

alfalfa was positively correlated with SWC and MWD. The above- and

underground N content was negatively correlated with the SWC and

aboveground C content.
FIGURE 4

C and N stocks of different-sized aggregates at 0- to 20-cm soil depth in alfalfa plantations with different planting durations. Different letters
indicate significant differences among different planting durations for the same-sized aggregate at the 0.05 level. The values are mean + SE (error
bar). CK, abandoned farmland. 5-Y, 8-Y, 10-Y, 15-Y, and 20-Y represent planting variations for 5, 8, 10, 15, and 20 years, respectively.
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4 Discussion

4.1 The dynamic of alfalfa productivity
under cultivation years

The productivity of alfalfa is affected by soil fertility, soil

physical conditions, and other ecological factors (Feng et al.,

2022). Soil moisture will affect the growth of roots, and excessive
Frontiers in Plant Science 09
or limited water supply will change the distribution of crop roots,

thereby affecting yields (Jia et al., 2009; Fan and Schutze, 2024). The

results of this study showed that the largest aboveground biomass

was found after 5 years in a cultivated field (Table 1), which is

related to the precipitation in previous and subsequent years

(Figure 1). Water is the main limiting factor restricting vegetation

restoration and reconstruction, and it determines the water–soil

ecological relationship of grassland on the Loess Plateau (Jiang

et al., 2006). Soil moisture is affected by many factors, such as soil

characteristics, land-use structure, topography, vegetation types,

and weather, resulting in complex dynamic changes (Fan et al.,

2016). In this paper, compared to the control, the soil water content

of alfalfa with different planting years has a greater decrease

(Figure 2A), which indicates that the soil water deficit is obvious.

Because the local soil is loess soil, it is beneficial for rainwater to

penetrate the soil and restore the water content. On the other hand,

we found that the root biomass was negatively correlated with SWC

(Figure 6), which may be because the root system of alfalfa is

relatively wide, and the proliferation of the root system in the soil

increases the porosity of the soil (Jia et al., 2009; Heinze, 2020). In

addition, as the planting time increases, the distribution of root

systems becomes wider and deeper, which often leads to more

consumption and utilization of shallow soil water (Li and Huang,

2008). Moreover, as the planting time increases, the soil moisture

gradually decreases, which is directly related to the root biomass.

The accumulation of root biomass requires sufficient soil moisture,

which leads to water depletion in the soil profile. In addition, alfalfa

productivity was also affected by local rainfall (Zhang X. L. et al.,

2021). In our study, we found that planting alfalfa for 5 years had

the highest aboveground biomass, which may be related to the

increasing rainfall from 2010 to 2013, and, after 2013 years, alfalfa

biomass showed a declining trend due to the relative decreasing

precipitation (Figure 1).
4.2 The driving factors of soil aggregate
distribution in alfalfa grasslands

Soil aggregates are closely connected with soil physical,

chemical, and biological properties (Plaza et al., 2013; Li et al.,

2019). In this experiment, the particle size distribution of soil

aggregates in different years of alfalfa cultivation and abandoned

land showed a “V”-shaped trend, and soil aggregate size

distributions of >2 mm and <0.25 mm were dominant (Table 2).

This can be further explained by the fact that the stability of loess

soil is generally low. Therefore, macroaggregates will decompose

into microaggregates or smaller soil particles after being immersed

in water (Lu et al., 2021). In addition, alfalfa planting for numerous

years significantly increased the macroaggregate content in certain

years, which is directly related to the proliferation of alfalfa roots.

Because the root biomass can be increased by producing thick roots

or multiple thin roots (Heinze, 2020), the increase in planting time

will lead to more accumulation of root biomass, and this extensively

proliferating root system helps to consolidate broad soil particles

from smaller ones (Tisdall and Oades, 1982). However, due to the

reduced physical and mechanical disturbance, the surface herbs,
FIGURE 5

RDA biplot based on biomass and C and N concentrations of alfalfa
plant variables in all treatments under different size aggregates C (A)
and N (B) stocks. CK, abandoned farmland. 5-Y, 8-Y, 10-Y, 15-Y, and
20-Y represent planting variations for 5, 8, 10, 15, and 20 years,
respectively, AB, aboveground biomass; UB, underground biomass;
C-A, carbon concentration of alfalfa aboveground plant; C-U,
carbon concentration of alfalfa underground plant; N-A, nitrogen
concentration of alfalfa aboveground plant; N-U, carbon
concentration of alfalfa underground plant; C/N-A, carbon-nitrogen
ratio of alfalfa aboveground plant; C/N-U, carbon-nitrogen ratio of
alfalfa underground plant; SBD, soil bulk density; SWS, soil
water storage.
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litter, and root biomass increase in natural-restored grassland,

resulting in increased soil organic carbon, which is beneficial for

aggregate formation (Xiao et al., 2019). Similar outcomes have been

reported by Song et al. (2024) who found that the plant residue

accelerates the soil aggregates turnover, promoting the soil

macroaggregate formation. In addition, we found that dissolved

organic matter that, as a substrate for microorganism, contributes to

the increase in microbial activity may contribute to macroaggregate

formation and stability (Sonsri and Watanabe, 2023).
4.3 The driving factors of plant–soil C and
N stoichiometry of alfalfa grasslands

Plant–soil C and N concentrations and their ratios are essential

in the restoration process of grasslands, not only for a better

understanding of the C and N cycles but also for management

practices (Du and Gao, 2021). We evaluated alfalfa above- and

underground plant C and N contents and their ratios during the

multiyear growing season. Our results showed that multiple

planting durations decreased aboveground plant C and N

concentrations and the C-N ratio (Table 1). These findings are

supported by years of continuous planting, soil nutrient deficiency,

gradual alfalfa grassland degradation, and plant biomass decrease

due to self-toxic and self-thinning effects, which eventually results
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in less photosynthetic function and a lack of C assimilates in alfalfa

grasslands (Zhang et al., 2017). At the same time, the results of

Table 1 indicated that the N concentration of alfalfa roots increased

with increasing planting years, which is similar to the findings of

other studies (Cao et al., 2020). The higher N concentrations of

roots in plantations than those in natural-restored grassland can be

explained by the N2 fixation of leguminous forage (Song et al.,

2021). Additionally, in our paper, we found that alfalfa planting

duration resulted in soil C and N decreases in the topsoil layer

compared to the control (Figure 2). These results were mainly

attributed to decreased plant inputs due to yearly plant removal, a

decrease in outside litter input, and increased decomposition rates

(Zhang J. H. et al., 2015). Moreover, the degree of C and N decrease

depends on many factors, such as basic soil SOC and TN contents,

climate conditions, and surface erosion status (Yang et al., 2019).

The SOC content of soil aggregates is a microscopic expression

of SOC balance and mineralization rate, which is of great

significance to soil fertility and soil carbon sequestration, and the

TN content of soil is one of the main indicators of soil fertility (Lu

et al., 2021). In this experiment, alfalfa grassland planted for 5 years

had higher SOC and TN contents, and the largest SOC and TN

storage were found in particles >2 mm and <0.25 mm, whereas the

lowest SOC and TN contents were found in particles of 0.25–2.00

mm (Figure 3). This is mainly because macroaggregates are made

up of many microaggregates and because of the formation of
FIGURE 6

Correlation matrix of the study variables. Color and the size of the circles are proportional to the correlation coefficients between the variables. SWS is soil water
storage, SBD is soil bulk density, SOC-T is surface soil organic carbon content of 0-cm to 20-cm depth, TN-T is surface soil total nitrogen content of 0-cm to
20-cm depth, MWD is the mean weight diameter, PAD is the percentage of aggregate destruction, SOC-A is the average SOC content of five size aggregates,
TN-A is the average TN content of five size aggregates, Cstock-A is the sum of SOC stock in the five size aggregates, Nstock-A is the sum of TN stock in the
five size aggregates, AB is the aboveground biomass, UB is the underground biomass, C-AB is the SOC content of aboveground plant, C-UB is the SOC
content of root, N-AB is the TN content of aboveground plant, N-UB is the TN content of root, C/N-AB is the C/N content of aboveground plant, C/N-UB is
the C/N content of root. The values in the figure represent correlation coefficients.
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microaggregates through the combination of organic molecules

with clay and cations and not by aggregated particles (Devine

et al., 2014). Therefore, soil macroaggregates and microaggregate

are rich in organic matter, and soil macroaggregates have a faster

turnover time than middle aggregates (Puget et al., 2000). The

microaggregates and the surrounding small particles combine to

form large aggregates; when the large soil aggregates decompose

into microaggregates, the particulate organic matter decomposes,

resulting in a greatly reduced SOC content of the microaggregates

(Bissonnais and Arrouays, 1997). At the same time, the binding and

bonding effects of macroaggregates also reduces the SOC of

microaggregates (Tisdall and Oades, 1982). Previous studies have

shown that the SOC content of aggregates mainly exists in the

particle size of <0.25 mm, which is a combination of smaller organic

and inorganic colloids. The smaller aggregates have a larger specific

surface area after being combined, resulting in more adsorbed

organic matter (He et al., 2011).

Considering the aggregate size distribution and the SOC and

TN of specific aggregates, the aggregate size distribution not only

represents the contribution rate of aggregates to SOC and TN, but it

might also completely depict the interaction of different planting

durations to the soil C and N pools (Xu et al., 2012). In different

numbers of alfalfa planting years, the stocks of SOC and TN in

different proportions of aggregates were mainly restricted by

aggregates > 2 mm, which were significantly higher than those of

aggregates of other sizes (Figure 4). After 5 years of planting, the

SOC and TN reserves of the soil aggregates were the highest. This is

because, after 5 years of planting, the soil formed a stable plant

community, increased the biomass of underground roots, and

accumulated more SOC in the soil. At the same time, alfalfa is a

leguminous crop with strong nitrogen fixation ability. The roots fix

atmospheric nitrogen, which is conducive to the accumulation of

soil nitrogen (Liu et al., 2005; Thomas et al., 2009). In our study, the

soil C and N stocks decreased after alfalfa planting duration, which

may be caused by the very low C and N inputs from plants and soil.

Aminiyan et al. (2015) reported higher aggregate-related SOC

content in larger aggregate fractions (> 2 mm). In short, large

aggregates > 2 mm are the main contributors to the SOC and TN

contents in soil aggregates. This may be due to the increase in the

strength or stability of the aggregates due to the humidification of

crop residues, thereby increasing the SOC concentration of the large

aggregates (Kushwaha et al., 2001). Therefore, increasing the

number of aggregates with a particle size greater than 2 mm can

enhance soil carbon and nitrogen fixation. These findings may be

limited by the method of observing spatial and temporal changes

used in this article. However, we will focus on research on long-term

positioning to overcome these shortcomings in the future.
4.4 The degradation mechanism of
perennial alfalfa grasslands

Obtaining sustainable high biomass and suitable soil nutrient

management is crucial for cultivate alfalfa grassland (Fang et al.,

2021); however, degraded continuous alfalfa grasslands are

frequently characterized by substantially reduced of biomass
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output and potential losses in soil nutrient (Gu et al., 2018). In

the Loess Plateau of China, the low precipitation and high

evapotranspiration of alfalfa field will limit its sustainable

development (Ren et al., 2010). The lack of soil water content is

the mainly parameter caused the perennial alfalfa grassland

degradation (Wang et al., 2019). Alfalfa is a deep root plant that

gives it access to water deeper in the soil than annual pastures and

crops (Cheng et al., 2005). Alfalfa used soil water from deeper soil

profile than other crops and extracted more water and thus creates a

large soil water deficit (Huang et al., 2018). Previous study showed

that the length of the alfalfa cropping phase in the short term (2–4 years)

depends on soil water replenishment, and alfalfa continuously, for 6

years, reduces a relatively desiccation layer in the soil with 2-m to 10-m

depth (Li, 1983). Li and Chao (1992) also found that the biomass output

of continuous alfalfa markedly decreased after 7 or 8 years due to the

declined of soil water. Jia et al. (2009) reported that the alfalfa average

yield reached a peak after continuous 9 years planting and,more than 11

years, cultivated had higher soil water use efficiency. In our results, we

also found that the soil water content was quickly declined after

continuous cultivated alfalfa for 8 years (Figure 2A), the dynamic of

underground biomass (the underground biomass reached the higher

value in 8 year) (Table 1), because the longer the growing years of alfalfa,

the deeper its root distribution, which intensified the high water

consumption at deep soil (there was no rainfall when we collected soil

moisture samplesduring thefirsthalf of themonth).Onthecontrary, the

soil water content increased from 10 to 20 years; this was probably

because the alfalfa plants’ low transpiration and low productivity made

lesswater consumption.Theabove resultswerecoincidedwith the found

by Li and Huang (2008) and Ren et al. (2010) and Li et al. (2018).

Therefore, the long alfalfa stand duration may deplete available soil

water, whichwould negatively impact production (Li andHuang, 2008)

and thus caused the alfalfa grassland degradation.

On the other hand, the deficiency of soil nutrient also limits the

alfalfa grassland sustainable development, and eventually leading to

alfalfa grassland degradation and, conversely, enhancing the fertilizer

application in perennial alfalfa can boost biomass output and prolong

the alfalfa degradation timeline (Hakl et al., 2016; Gu et al., 2018;

Fang et al., 2021). The decrease of soil nutrients, especially soil

nitrogen, limits the perennial alfalfa growth, which, in turn,

becomes a crucial restricting factor for the alfalfa cultivation (Yuan,

2017; Fang et al., 2021). In our results, we found that the soil C

concentration decreased in the eight year and then increased after the

10th year of alfalfa cultivation (Figure 2). The soil C dynamical

dramatically declined mainly because the fertilizer was applied in

early planting alfalfa, and the carbon source in the soil is increased.

With the continuous cultivated, a large amount of aboveground

biomass was removed from alfalfa grassland, and the less carbon

source will add to soil. In addition, the root biomass litters were not

converted to carbon source by microbe decomposition. However,

after cultivation alfalfa for the 10th to 20th years, the soil C storage

increased, especially in the microaggregate, and this agrees with the

findings from other researchers (Li and Huang, 2008). It seems that

soil C storage rose through enhancing the aggregate stability with the

increased in cultivation years. However, in this study, TN content

continues decreased compared to the fifth year of alfalfa cultivation

(Figure 2), mainly because the N that was derived from symbiotic
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fixation by perennial alfalfa over 20th years does not reach the N

value of farmland, and artificial nitrogenous fertilizer losses were

larger than N fixation by perennial alfalfa. However, the TN storage

in the microaggregate presented less declined and finally increased

after continuous cultivation on the 15th to 20th years (Figure 4). This

was probably because this growing stage reached an imbalance

between TN fixation and loss and reduced the consumption of TN

on account of decreased alfalfa plant. Similar results were reported by

Ji et al. (2020), who found that the highest values of SOC and TN

content were observed in the begin stage of alfalfa grassland, and,

with the cultivated prolong, the above contents declined, and the

decline soil nutrients restricted alfalfa growth and biomass output.
5 Conclusion

We first found the ecological indicator of C and N

stoichiometry from plant to soil aggregate fractions affecting soil

degradation. Alfalfa plantations can improve soil structure and

promote the number of macroaggregates within a certain year.

Different planting periods display different effects on the SOC and

TN distribution of aggregates. In the present study, the inputs of

organic C compounds via root exudates provide a material base for

the rapid turnover of C and N stocks. Both low-quality resources

(high C/N) and high-quality material supply (low C/N) exert their

effects on sustaining soil nutrients. Thus, alfalfa production can

promote larger aggregates and accordingly improve soil C and N in

large aggregates. This process would help improve the soil structure

under the condition of continuous alfalfa planting. However, after

5–8 years of planting, alfalfa grassland productivity and soil quality

began to degrade gradually. In conclusion, a certain period of alfalfa

planting strengthened the stability of the soil physical structure, yet

it resulted in a steady deterioration of the C and N stocks from soil

to plant. Our findings provide novel insight into perennial alfalfa

grassland degradation and, therefore, help explore a potentially

sustainable solution in semiarid rainfed agricultural areas.
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