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Flax powdery mildew (PM), caused by Oidium lini, is a globally distributed fungal

disease of flax, and seriously impairs its yield and quality. To data, only three

resistance genes and a few putative quantitative trait loci (QTL) have been

reported for flax PM resistance. To dissect the resistance mechanism against

PM and identify resistant genetic regions, based on four years of phenotypic

datasets (2017, 2019 to 2021), a genome-wide association study (GWAS) was

performed on 200 flax core accessions using 674,074 SNPs and 7 models. A total

of 434 unique quantitative trait nucleotides (QTNs) associated with 331 QTL were

detected. Sixty-four loci shared in at least two datasets were found to be

significant in haplotype analyses, and 20 of these sites were shared by multiple

models. Simultaneously, a large-effect locus (qDI 11.2) was detected repeatedly,

which was present in themapping study of flax pasmo resistance loci. Oil flax had

more QTL with positive-effect or favorable alleles (PQTL) and showed higher PM

resistance than fiber flax, indicating that effects of these QTL were mainly

additive. Furthermore, an excellent resistant variety C120 was identified and

can be used to promote planting. Based on 331 QTLs identified through GWAS

and the statistical model GBLUP, a genomic selection (GS) model related to flax

PM resistance was constructed, and the prediction accuracy rate was 0.96. Our

results provide valuable insights into the genetic basis of resistance and

contribute to the advancement of breeding programs.
KEYWORDS
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Introduction

Flax (Linum usitatissimum L.) is an important oil and fiber crop

around the world (Wu et al., 2017), divided into oil flax, fiber flax,

and oil–fiber dual-purpose flax (OF). Oil flax is the ancestor of

cultivated flax, and the OF is an evolutionary intermediate

transition state between oil and fiber flax (Guo et al., 2020).

Among the various threats to flax production, powdery mildew

(PM) caused by Oidium lini Skoric is one of the most widespread

and common diseases (Bengtsson et al., 2017; Duk et al., 2021). This

fungal infection affects the growth of flax plants from vegetative

stage to flowering. With the most severe impact occurring during

ripening under conditions of high humidity and temperature

(Stadlmeier et al., 2018), susceptible varieties can experience yield

losses of up to 75% (Javid et al., 2015). Since 1970, the screening of

accessions to PM resistance has been carried out in European

countries. Scientists have conducted standard phenotypic

identification to evaluate the resistance to PM in flax and

screened PM resistance accessions (Rashid and Duguid, 2005;

Dash et al., 2016; Dhirhi et al., 2017). However, only a limited

number of resistant varieties have been identified and shown

unstable resistance in different cultivation years (Aly et al., 2012;

Hall et al., 2016). A similar circumstance exists in China (He et al.,

2007; Qiao and Chen, 2012; Chen et al., 2018), where flax is an

essential cash crop in several provinces with limited water resources

(Zhou, 2020). There are many studies that have reported the

unstable genotypic response of flax to PM across various

ecological zones. For example, AC Watson shows moderate

resistance in Canada (Rashid and Duguid, 2005), while it is

susceptible in China (Qiao and Chen, 2012). Similarly, Diana

exhibits a resistant response in the Indian climate (Wang et al.,

2019) but is being used as a susceptible parent in the Heilongjiang

flax breeding program for PM-resistant cultivar development

(Zhang, 2015). It seems that the mechanism of PM infection in

flax appears to be more complex than initially understood.

As compared with research on rice, wheat, and other crops,

research on flax PM resistance has been relatively limited. Only

three flax PM resistance genes have been reported, namely, pm1

(Rashid and Duguid, 2005), ol (Singh et al., 1989), and pm-linum

(Zhang, 2015), while their specific positions on the chromosome are

still unknown. Based on linkage mapping, using 143 simple

sequence repeat (SSR) markers in the F3 and F4 populations

(NorMan×Linda), Asgarinia et al. (2013) obtained three flax PM

resistance-related quantitative trait loci (QTLs) located in linkage

groups 1, 7, and 9 (genetic distance between 6.7 and 25.2 cM),

which can explain 97% of the variation. Similarly, 9801–1, a mutant

line, was used as a resistant parent in a hybridization program with

different susceptible parents and identified the candidate gene “pm-

linum” located in the ChrNew02 chromosome (Yang et al., 2008;

Zhang, 2015). Compared to linkage mapping, association mapping

is more robust and has high accuracy, but its application in flax PM

research is limited (Yano et al., 2016; Du et al., 2018). Based on

phenotypic data of 311 flax accessions, Speck et al. (2022)

performed a genome-wide association study (GWAS) using

1,693,910 single-nucleotide polymorphisms (SNPs) and MLM
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models and predicted eight QTLs across chromosomes 1, 2, 4, 13,

and 14. You et al. (2022) performed GWAS on 5–8 years

of phenotypic data from 447 flax accessions using 247,160

SNPs with nine models, and a total of 349 quantitative

trait nucleotides (QTNs) were identified. The limited number

of shared QTLs in existing studies suggested that this is

highly quantitative and complex traits and demand to divulge

underlying genetic mechanism.

GWAS is a method for analyzing genetic variation

polymorphisms among varieties within a population at the

genome-wide level (Li et al., 2021). It can screen and identify

markers that are closely linked to target traits based on linkage

disequilibrium (LD) (Lou et al., 2015) and reduce false-positive

results by delineating a significance threshold. Large genomic

datasets often exhibit a notable characteristic where SNPs that are

physically close to each other often tend to display LD (Li et al.,

2018), which is a major factor influencing marker density

requirements and map resolution in GWAS analysis (Speck et al.,

2022). This intricate high-dimensional and correlated structure

within population genomic datasets poses difficulties for both

single- and multi-locus models (Liang and Kelemen, 2008; Xu,

2013). Single-locus models rely on multiple detection corrections to

reduce the occurrence of false positives. Bonferroni correction is the

most traditional and extensively utilized approach (Dudbridge and

Koeleman, 2004). However, this also makes the single-point model

tend to identify locus with larger effects (Cui et al., 2018). A large

number of studies have shown that most of the important economic

traits of crops are influenced by polygenes, with contributing genes

having a small effect on phenotype (Liu et al., 2017; Kang et al.,

2020; Pogoda et al., 2020). The multi-locus mixed linear models,

such as FASTmrEMMA (Wen et al., 2018), pLARmEB (Zhang et al.,

2017), can effectively detect QTNs/QTLs with small effects and have

been successfully applied in rape (Li et al., 2017), corn (Zhang et al.,

2018), and other crops. Genomic selection (GS) is a promising

breeding strategy that utilizes genome-wide markers to construct a

statistical prediction model for obtaining genomic breeding values

of markers and haplotype effects (Meuwissen et al., 2013; Xu et al.,

2020). By incorporating genetic variation from across the entire

genome, GS can capture a broader range of relevant genetic

information and increase selection accuracy and efficiency in

the breeding process. The accuracy of the method has been

demonstrated in plants such as maize, barley, and Arabidopsis

(Lorenzana and Bernardo, 2009), and the findings obtained from

GWAS can be effectively utilized in GS to enhance the accuracy and

capabilities of genetic prediction models (Lan et al., 2020).

In this study, 200 flax core accession resources were evaluated

for PM resistance in the field for 4 years in Yining, Xinjiang. GWAS

was conducted utilizing 674,074 SNPs from this population to

locate QTLs linked with PM resistance. Five multi-locus models

and two single-locus models were used to identify resistance QTLs,

and the results were compared with prior research to mine putative

genes for PM resistance. At the same time, GWAS results were used

to carry out GS, evaluate the efficiency of different markers in GS,

and calculate breeding values, providing a theoretical basis for flax

PM resistance breeding.
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Materials and methods

Plant material

A diverse genetic panel of 200 cultivated flax accessions from

the core collection was used (Guo et al., 2020). The core accessions

were assembled from the world flax accession resources, collected

from 41 countries and regions, corresponding to 11 geographical

origins (Supplementary Table S1). This panel was grouped into

three morphotypes: 71 oil flax, 51 fiber flax, and 78 OF.
Powdery mildew resistance evaluation

The 200 accessions were evaluated for field PM resistance in the

same nursery for 4 years, 2017 and 2019 to 2021, at Ili Kazakh

Autonomous Prefecture Agricultural Science Institute, Xinjiang,

China (43°55′N, 81°23′E; altitude, 681.6 m; the average July

temperatures for 2017–2020 are 26.44°C, 26.27°C, 24.37°C, and

26.13°C, respectively, and their average humidity was 29.60%,

28.71%, 28.95%, and 28.89%, respectively). Each accession was

seeded in 2-m rows spaced 40 cm apart during the second or

third week of May every year. Spore suspension of PM from the last

growing season was sprayed and inoculated to young shoots two to

three times to ensure PM conidia dispersal and development. The

disease index (DI) was calculated using the following formula:

DI = 100�o
k

i=1
(si� ni)=(5� N),

where i is the ith disease score, k is the number of classes in the

disease scale, si is the disease score (Table 1), ni is the number of

plants at the corresponding disease score, and N is the total number

of plants investigated (Willocquet et al., 2023). An accession was

considered immune (I) when DI = 0, 0< DI< 20 highly resistant

(HR), 20 ≤ DI< 40 resistant (R), 40 ≤ DI< 60 moderately resistant

(MR), 60 ≤ DI< 80 susceptible (S), and DI ≥ 80 highly susceptible

(HS) (Wang and Su, 2006). Field assessments were conducted at the

early flowering stages (approximately July 20), and 30 normal plants
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of each variety were randomly selected to calculate the DI and used

as phenotypic datasets for GWAS (Supplementary Table S2).
Genotyping and SNP identification

The sequencing and genotype calling, relative kinship, and LD

analysis were performed as previously described (Guo et al., 2020).
Genome-wide association study

GWAS analyses were conducted using the 4-year dataset and

the 4-year average dataset with seven single-locus and multi-locus

models (Table 2). Kinship genetic relationship matrices were

estimated using the protocol suggested by each GWAS software

package. The population structure of the 200 accessions was

estimated using Frappe (http://med.stanford.edu/tanglab/software/

frappe.html Supplementary). The principal component analysis

(PCA) was performed using the MVP in the R package (https://

github.com/XiaoleiLiuBio/MVP).

The two single-point models were calculated using Tassel 5

software (Table 2), and the significant association threshold was

determined using the Bonferroni-corrected critical p-value (a =

0.05). After correction, the selection threshold of GLM was −log10
(p) = 7.13 (p = 0.05/674,074 SNPs), while the selection threshold of

MLM was −log10(p) = 5. Five multi-locus models were performed

using the R package mrMLM (Table 2). The selection threshold was

logarithm of the odds (LOD) ≥ 3, which means that the rate of the

existing target QTLs was 1,000 times higher than the probability

that it does not exist.

After putative QTNs were identified, QTNs were grouped into

QTLs. Based on LD analysis, 54 kb was the size of the linkage

interval, and the obtained QTNs were grouped into QTLs by r2

(Supplementary Figure S1). The QTN with the highest average R2

across all datasets was chosen as a representative or tag for the QTLs
TABLE 1 Criteria for field assessment of powdery mildew on a scale
of 0–5.

Disease score
Symptoms and degree of

the disease

0 No sign of infection

1
Fewer than 1/3 leaves of the plant have been

infected; the white powder is indistinct

2
1/3–2/3 leaves of the plant have been infected;

the white powder is distinct

3
>2/3 leaves of the plant have been infected; the

white powder is thickly formed together

4
The white powder grew thicker; the leaves

started to turn yellow and necrotic

5
>2/3 leaves of the plant turned yellow

and necrotic
TABLE 2 Statistical methods used for GWAS.

Statistical
model

Threshold
for QTNs

GWAS
software

References

GLM −log(p) > 7.13 Tassel 5 (Price
et al., 2006)

MLM −log(p) > 5 Tassel 5 (Yu et al., 2006)

mrMLM LOD > 3 mrMLM.GUI
v4.0.2

(Zhang and
Tamba, 2018)

FASTmrMLM LOD > 3 mrMLM.GUI
v4.0.2

(Zhang and
Tamba, 2018)

FASTmrEMMA LOD > 3 mrMLM.GUI
v4.0.2

(Wen
et al., 2018)

pLARmEB LOD > 3 mrMLM.GUI
v4.0.2

(Zhang
et al., 2017)

ISIS EM-BLASSO LOD > 3 mrMLM.GUI
v4.0.2

(Tamba
et al., 2017)
GWAS, genome-wide association study; QTNs, quantitative trait nucleotides.
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(tag QTNs). Next, the significance of the DI differences was

evaluated between two tag QTN alleles (henceforth referred to as

the QTN effect) across all accessions. Wilcox non-parametric tests

were performed using the R function wilcox.test (R Core Team,

2023) to remove the non-significant QTNs at a 5% probability level.

Then, the resultant QTL set was filtered by selecting QTLs that were

shared in at least two of the five datasets. Additionally, haplotype

analysis was performed to keep QTLs with significant variations.
Candidate gene prediction

Based on the maximum linkage interval (54 kb on either side of

tag QTNs) and gene annotation using the L. usitatissimum

genome’s GFF3 file, a total of 1,060 candidate genes were

identified from 64 QTLs. Following functional annotation, disease

resistance genes such as those with tetratricopeptide repeat (TPR),

leucine-rich repeat (LRR), nucleotide-binding site (NBS), Toll/

interleukin-1 receptor (TIR)–NBS–LRR (TNL), and receptor-like

protein kinase (RLK) were selected. In order to find potential

resistance genes, the discovered stable QTLs in this study were

compared with those associated with disease resistance (Asgarinia

et al., 2013; He et al., 2019a).
Flax core collection evaluation

To investigate the QTL effect, correlations of the number of

QTLs with positive-effect or favorable alleles (NPQTL) with DI in

the five DI datasets were calculated using GraphPad Prism 8

(https://www.graphpad.com). Two hundred accessions were

evaluated for their resistance to powdery mildew using the

identified stable and significant QTLs. Two-dimensional

clustering analysis of accessions and QTLs was conducted using

the R package stats algorithm in the function “hclust” (R Core

Team, 2023). The Euclidean distances between accessions or

between QTLs were calculated based on QTL genotypes (“1” for

positive-effect alleles and “2” for negative-effect alleles) using the

“dist” function and the “Euclidean” method in R (R Core Team,

2023). Based on the DI score, 25 resistant (R) and 25 susceptible (S)

extreme subgroups were chosen. The R package Complex heatmap

was used to create a heatmap (Gu et al., 2016).
Genomic selection

To improve the accuracy of genomic prediction models, using

the R package lmerTest (Kuznetsova et al., 2017), the best linear

unbiased predictor (BLUP) values (Robinson, 1991) were calculated

as the phenotypic value based on 4 years’ data. The predictive ability

of five marker sets was evaluated: 1) randomly selected from

674,074 single-nucleotide diversities, 2) QTNs identified by

GWAS using all 674,074 SNPs, 3) QTLs that were shared across

multiple datasets and were significant in haplotype analysis, 4)

QTLs shared by multiple models, and 5) QTLs with large effect.
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GS utilized twomodels—GBLUP (Ikeogu et al., 2019) (based on the

SNP relationship matrix) and rrBLUP (Ahmadi et al., 2021) (based on

the individual relationship matrix)—implemented using the R software

package sommer (Covarrubias-Pazaran, 2016). The correlation between

the phenotypic data of the predicted population and genomic estimated

breeding values (GEBVs) based on fivefold cross-validation was

calculated to analyze the accuracy of the prediction.
Results

Powdery mildew resistance evaluation

A total of 200 accessions from 44 different countries were tested

for PM resistance in the field trials during 2017, 2019, 2020, and

2021. The broad-sense heritability over the 4 years was calculated to

be 0.93, indicating that the phenotype was mainly affected by

genetic factors. The average DI recorded during these years was

72.6 (Figure 1A; Supplementary Table S3), and there were no

significant differences in PM resistance. The five DI datasets’

correlation analysis revealed a highly substantial positive

correlation between the five groups of data (Figure 1B),

demonstrating that the PM resistance situation was relatively

stable for 4 years and that the repeatability of the data was high.

Furthermore, statistics was conducted on the PM resistance

grading, and the 200 accessions were divided into five resistance

groups based on the DI (Figure 1C; Supplementary Table S4). The

geographical distribution of resistant cultivars across datasets

showed that resistant accessions were mainly distributed in the

Mediterranean coastal area and parts of Europe (Figure 1D).
A total of 331 QTL identifications
through GWAS

Based on 4 years of phenotypic datasets and the 4-year average

dataset from 200 flax accessions, GWAS analysis was performed

using 674,074 SNPs, two single-locus models, and five multi-locus

models. A total of 443 QTNs were detected. The maximum linkage

interval calculated using the LD decay plot was in the range of 54 kb

(Supplementary Figure S1), and 434 QTNs were combined into 331

QTLs (Supplementary Table S5). QTNs with the highest average R2

were chosen as the tag to represent these QTLs (tag QTNs).

Hereafter, the QTLs will be represented by the tag QTNs. In the

two single-locus models, GLM identified 34 QTLs with an average

contribution rate of 17.44%, which was higher than the average

contribution rate identified by the MLM model (Table 3). Among

the five multi-locus models, FASTmrMLM identified the highest

number of QTLs (101) or QTNs (105), with an average R2 of 2.73%.

The QTLs identified by mrMLM had the highest contribution rate,

with an average R2 of 4.32% (Table 3). This result demonstrated that

compared to single-locus models, the multi-locus models are more

likely to detect QTLs with smaller effects. Only a small fraction of

the total QTLs were found by at least two models (Supplementary

Table S6). The pLARmEB and FASTmrMLM models identified the
frontiersin.org
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highest number of QTLs, amounting to 40, while the ISIS

EM-BLASSO and pLARmEB models detected 26 loci.
Identification of QTLs across years
and models

To explore the candidate QTLs for PM resistance, the 331 QTLs

explained earlier were explored, and the 100 QTLs that had been

identified in at least two datasets were selected (Figure 2A;
Frontiers in Plant Science 05
Supplementary Tables S7, S8) and subjected to haplotype analysis.

Using SNP15090 (tag QTNs) as an example, the locus with

significant haplotype analysis among the resistant and susceptible

variations was kept (Figure 2B). A total of 64 loci were identified

and distributed across 14 chromosomes (Figure 2C; Supplementary

Table S9). Similarly, 20 of these sites were shared by two single-site

models or by more than three multi-site models simultaneously

(Supplementary Figure S2). Due to the greater number of variants

found in the 64 QTLs, we have chosen these 64 QTLs for further

investigation in our following research.
TABLE 3 Comparison of QTN/QTL identifications for different statistical models.

Statistical model No. of QTLs identified No. of QTNs
identified

Average
R2 (%)

R2

range (%)

GLM 34 39 17.44 12.82–22.03

MLM 101 144 16.13 10.67–23.64

mrMLM 88 91 4.32 0.73–13.53

FASTmrMLM 101 105 2.73 0.08– 12.29

FASTmrEMMA 49 51 2.37 0.67–5.45

pLARmEB 94 101 1.95 0.11–11.33

ISIS EM-BLASSO 58 60 4.09 0.37–17.16
QTN, quantitative trait nucleotide; QTL, quantitative trait locus.
B

C D

A

FIGURE 1

Resistance phenotypes. (A) Disease index (DI). (B) Correlation analysis of DI. (C) Classification of powdery mildew (PM) resistance: HS, high
susceptible; S, susceptible; MR, moderately resistant; R, resistant; HR, high resistant. (D) Geographical distribution of resistant varieties: green
represents highly resistant varieties, blue represents moderately resistant varieties, and orange represents resistant varieties. Different letters denote
significant differences at the p< 0.05 level found by MRT. *** p<0.001.
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Among the 64 stable QTLs, 49 harbored 137 disease resistance-

related genes (DRGs) within the maximally linked regions of the

QTNs (Figure 2D), encompassing five types of resistance gene

analogs (RGAs): 1) kinases: protein kinase (PK), RLK, mitogen-

activated protein (MAP), pyruvate kinase (PAK), and serine/

threonine kinase (STK); 2) receptor-like protein (RLP); 3) NBS

encoding genes: TNL, LRR, RNA binding protein (RBP), and

sequence-specific transcription factors (TFs); 4) transmembrane

proteins (TM classes): transmembrane receptor (TMR), amino

acid transporter (AAT), transmembrane proteins (TMPs), Mildew

Locus O (MLO), and transmembrane kinase (TMK); and 5) others:

TPR, zinc finger protein (ZFP), alpha/beta hydrolases (ABHs),

major latex protein (MLP), calcium-dependent lipid-binding

(CalB), heat shock protein (HSP), abscisic acid (ABA), disease

resistance-responsive (dirigent-like protein) family protein,

nuclear transport factor (NTF), nucleotidyl transferase (NTase),

nucleotide sugar transporter (NST), protein methyltransferase

(PMT), peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine

amidase A (PNGase A), and GAI‐RGA‐and‐SCR family (GRAS).

Most DRGs belong to the NBS gene family, accounting for 26.28%,

followed by kinases, accounting for 20.44%. Additionally, we

compared these findings to previous studies on flax resistance and
Frontiers in Plant Science 06
found that some of the 64 QTLs reported in this study had already

been reported (Figure 2E) (Asgarinia et al., 2013; He et al., 2019a).

Asgarinia et al. (2013) mapped flax PM resistance genes to three

linkage groups—LG1, LG7, and LG9—in 2013 and identified three

loci. Comparatively, our study also identified the locus on LG7 (qDI

3.2), where a total of six resistance candidate genes were localized.

There are also similarities in plant resistance to fungal diseases,

most of which are common. By comparing with flax pasmo

resistance loci, eight QTLs (qDI 4.7, 4.8, 8.4, 8.5, 9.6, 9.8, 11.2,

and 12.1) were repeatedly detected, along with 17 resistance

candidate genes. In summary, after further screening, 64 stable

QTLs were obtained, which comprise 137 DRGs. Of these 64 QTLs,

20 showed significant effects. Moreover, the results of the

comparison with previous studies also demonstrate the reliability

of the identified QTLs.
Large-effect locus detected repeatedly—
qDI 11.2

Based on the aforementioned research, we discovered that the

chromosome 11 locus qDI 11.2 (R2 = 22.24) was commonly
B

C

D E

A

FIGURE 2

Screening and comparison of the obtained quantitative trait loci (QTLs) and candidate gene. (A) Repeated detection of QTL screening in different
years. (B) Haplotype analysis of SNP15090, Y1–Y4, and M representing the 2017, 2019, 2020, 2021, and average datasets. (C) The distribution of 64
stable resistance loci on chromosomes. (D) Class distribution of disease resistance-related genes (DRGs) located within 54-kb flanking regions of
QTLs. (E) Duplication between the resistance loci utilized in this investigation and those used in previous studies. The difference between haplotypes
was analyzed by t-tests.
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detected by GLM [−log10(p) = 9.47], MLM [2021: −log10(p) = 7.71,

mean: −log10(p) = 5.69], and mrMLM [−log10(p) = 11.00, LOD =

10.06] (Figures 3A–D) and was also observed by You’s lab (He et al.,

2019a). The candidate interval was reduced to 30 kb by combining

the local Manhattan map and the LD heatmap (Figures 3E–H). This

region contains only one gene, Lus10042068 (Figure 3I), which

encodes TPR protein and has been involved in resistance to both

bacterial blight and rice blast (Yang et al., 2019). Haplotype analysis

showed that the AA genotype had a positive effect on flax PM

resistance (Figures 3J, K). The AA genotype accounts for 32.4% of

oil and 2.7% of fiber (Figure 3L).
Positive effects of favorable alleles have
additive effects

The study of the correlation between the number of QTLs with

NPQTL and DI revealed that in five datasets, both showed a highly

significant negative correlation (r = −0.48–0.71, p< 0.0001), with the

mean dataset exhibiting the strongest correlation (r = −0.71; p<

0.0001) (Supplementary Figure S3). In order to investigate the

relationship between NPQTL and DI in the 200 core accessions,

based on 64 core QTLs associated with PM resistance, a two-

dimensional cluster analysis was carried out utilizing the tag QTNs

as the representative of QTLs. The 200 accessions were divided into

three clusters (Figure 4A). Cluster 1 contained 80 cultivars, showing

strong susceptibility (DI = 81.6 ± 5.2), with an average of only 3.06

QTLs with positive-effect or favorable alleles (PQTLs) per cultivar

(Figures 4B, C). Cluster 2 included four moderately resistant
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varieties, 44 susceptible varieties, and 16 highly susceptible

varieties (DI = 73.7 ± 8.1) (Figures 4B, C). The majority of the

accessions in Cluster 1 and nearly half of the accessions in Cluster 2

belonged to flax for fiber. The cultivars in Cluster 3 were the most

resistant (DI = 58.5 ± 14.7), with an average of 19.02 PQTLs per

cultivar, 43 PQTLs for oil, and 13 PQTLs for fiber (Figures 4B, C).

The 64 QTLs were clustered into four subgroups based on the QTL

distribution in 200 accessions. The first group included 16 QTLs that

were widely distributed among accessions but had relatively low QTL

effects (Figures 4D, E). Group II contained 16QTLs, with an average R2

of 13.48%, and was present in 71.0% of the accessions. Group III

contained 16 QTLs, and 64.0% of the accessions had these QTLs, with

an average R2 of 10.79%. The 16 QTLs in subgroup IV were mainly

distributed in the resistant accessions, accounting for only 42% of the

accessions, most of them were oil accessions, and the average R2 was

18.16% (Figures 4D, E). The highly resistant material C120 contains 41

resistance loci, and these excellent resistant accessions containing more

resistance loci were very important for flax PM resistance breeding.
Morphotype response to flax PM

We discovered that among the 200 accessions of flax, the DI

distribution of oil flax was significantly lower than that of fiber flax

(Figure 5B). By comparing the DI of flax and the NPQTL contained

in different flax accessions, we found a highly significant correlation

between NPQTL and the flax subgroup (r = 0.34, p< 0.0001)

(Figures 5B, C). For further analysis, we assigned each QTL a

value of “1” for positive-effect alleles and “2” for negative-effect
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FIGURE 3

Analysis of the peak for chromosome 11 and candidate genes. (A–D) Manhattan plots based on GLM-2021 (A), MLM-2021 (B), MLM-mean (C), and
mrMLM-2021 (D). (E, F) Local Manhattan plot surrounding the peak on chromosome 11. (E) GLM-2021. (F) MLM-mean. (G) MLM-mean. (H) LD
heatmap. (I) Gene structure of Lus10042068. (J, K) Haplotype analysis based on the lead single-nucleotide polymorphism (SNP) (SNP450497) of
2021 (J) and mean (K). (L) The distribution of allele frequencies of strong SNP was distributed in oil and fiber subpopulations. The AA and GG alleles
are shown in blue and red, respectively. The difference between haplotypes was analyzed by t-tests.
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alleles. Chi-square test results showed that most of the PQTLs were

significantly associated with oil accessions (Figure 5C) and that 80%

to 100% of the PQTLs were present in oil varieties. Among the 200

flax accessions, NPQTL in different accessions ranged from 0 to 41.

Then, we analyzed the aggregation of the PQTLs in two extreme

subsets of flax accessions, consisting of 25 resistant (R) and 25

susceptible (S) accessions. Among them, 25 resistant accessions

belonged to oil flax, and 25 susceptible accessions belonged to fiber

flax. The mean DI in the R group was 45.8, each variety contained

an average of 24.4 PQTLs, and they show stable resistance in many

years of phenotypic data (Supplementary Figure S4). Among them,

C120 showed high resistance in the 4-year resistance identification,

and it had relatively good agronomic traits (Supplementary Figure

S4, Supplementary Table S10); the mean DI of group S was 84.0,

and each variety contained an average of 3.52 PQTLs (Figure 5A).
Genomic selection

In order to improve the breeding efficiency of flax PM

resistance, we used 4 years of field phenotype data to calculate the

BLUP values, and a fivefold cross-validation scheme was used to

identify the best models for GS of PM resistance. Five marker sets

were used to construct the GS: 1) SNP-6741 was randomly selected

from 674,074 single-nucleotide diversities. 2) SNP-331QTL has a

total of 331 QTLs associated with PM resistance obtained based on

the GWAS results. 3) SNP-64QTL was in the SNP-331QTL based

on the selection of the set that was shared at least two times or more

in the five DI sets and the significant loci of the haplotype analysis.

4) SNP-20QTL was selected based on the SNP-64QTL to be

repeatedly detected by GLM and MLM, or by five, the multi-locus

model repeatedly detects the locus set at least three times. 5) SNP-
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12QTL was a locus set with an effect value of more than 15%

selected on the basis of SNP-64QTL.

Based on the SNP relationship matrix and the individual

relationship matrix, respectively, we selected the GBLUP model and

the rrBLUP model in GS prediction. These two models have much

shorter running times while still maintaining prediction accuracy. First,

we examined the two models’ accuracy when performed on various

QTL datasets (Figure 6A). Accuracy based on the SNP-331QTL

operation was the highest (0.92 ± 0.01 by GBLUP and 0.93 ± 0.01

by rrBLUP). The result based on the SNP-6741 operation had the

lowest accuracy (0.39 ± 0.14 by GBLUP and 041 ± 0.13 by rrBLUP).

The accuracy of the rrBLUPmodel was higher than that of the GBLUP

model when calculations were based on the same dataset. However, the

rrBLUP model’s efficiency was lower than the GBLUP model’s

efficiency due to a significant increase in calculation time when the

computation was based on a large number of datasets (Figure 6B).

Taking all relevant factors into account, we will carry out further

analysis based on the SNP-331QTL dataset and the GBLUPmodel. We

also discovered that the prediction accuracy was promoted with the

increasing number of training populations (Figure 6C). Finally, we

developed a GS model with a 0.96 prediction accuracy, and the linear

relationship was expressed as y = 0.8970x − 6.727e−007 (Figure 6D).
Discussion

Evaluation of flax powdery
mildew resistance

In this study, we observed that the resistance to PM of oil

cultivars was higher than that of fiber cultivars, the resistance

population contained more PQTLs (Figures 5B, C), and the PM
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FIGURE 4

Cluster analysis of the association panel based on a set of 64 stable large-effect quantitative trait loci (QTLs). (A) The accessions were grouped into
three clusters, and the QTLs were assigned to four subgroups. Tag QTNs of QTLs were chosen for analysis. Red indicates the presence of positive-
effect or favorable alleles (PQTLs) in the accessions; blue indicates the absence of PQTLs. (B) The number of oil and fiber materials included in the
materials clustered into three clusters. (C) DI, disease index; NPQTL, the number of QTLs with positive-effect alleles. (D) Violin plot of QTLs clustered
into four groups. (E) Set A, the number of materials that contain this group of QTLs; Set B, number of materials excluding this group of QTLs.
Different letters denote significant differences at the p< 0.05 level found by MRT.
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resistance of flax cultivars tended to increase with the NPQTL

(Figure 5A) in its genome. The result aligns with the results

obtained in Canada, where 5 years of continuous field phenotypic

data were analyzed (You et al., 2022). At present, the view of the

mainstream is that the ancestor of the existing flax varieties is

Linum bienne, and the genetic diversity of oil flax is more abundant

than that of fiber flax (Allaby et al., 2005; Fu and Allaby, 2010; Fu,

2011). Fiber materials are less resistant than oil materials, which

may be attributed to the fact that resistance to PM was not the main

selection criterion during the early human selection process. In

addition, the presence of different physiological races of PM in

various regions may result in variations in the resistance response of

the same plant material across those regions (He et al., 2007; Qiao

and Chen, 2012). We utilized the saturation inoculation method to

evaluate the PM resistance in flax accessions because, in a natural

environment, all susceptible flax plants may not be infected by

pathogenic fungi at the same time, leading to significant variations

in resistance identification of the same variety in the field. The

Belgian cultivar C120 identified in this study showed stable high

resistance to flax PM over many years of field observations, with 4-

year DI grades ranging from 11 to 18.67. The cultivar L. 270–68

identified in this study showed stably high susceptibility to flax PM

over many years of field observations, with 4-year DI grades ranging

from 88 to 92 (Figure 4A). Smaller variations of DI indicated that

the phenotype obtained in our study through saturation inoculation

was stable and reliable. Therefore, we believe that the Belgian

cultivar C120 with large numbers of 41 PQTLs was an excellent
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parent, which can be directly crossed with excellent flax varieties to

improve the disease resistance of flax.
Identification of QTLs

GWAS is widely used because it can screen multiple SNPs

associated with complex trait variations on a genome-wide scale,

and its core is the selection of algorithms, that is, analysis models.

The commonly used single-locus models like GLM and MLM tend

to identify QTNs or QTLs with larger effects (He et al., 2019b; Guo

et al., 2020). However, most quantitative traits are controlled by a

few high-influencing genes and many small-influencing polygenes

(Arojju et al., 2020). To overcome this problem, we introduced

multiple multi-locus models in this study to detect these loci with

smaller effects (Gunjača et al., 2021). The results showed that in the

single-locus models, fewer sites were detected by GLM, while more

sites were detected by MLM, which may be due to the stricter

correction threshold used by GLM. In the multi-locus models,

FASTmrMLM detected the largest loci, while the mrMLM had

the highest R2 (Table 3). Additionally, we observed that there were

few shared loci between the single-point model and the multiple-

point model (Supplementary Table S6). Therefore, the combination

and complementarity of different models were very crucial.

Using 4-year flax PM datasets and 674,074 SNPs for GWAS, a total

of 434 QTNs were detected based on two single-locus models and five

multi-locus models. Optimal window size can be determined based on
B C

A

FIGURE 5

Distribution of number of quantitative trait loci (QTLs) with positive-effect or favorable alleles (NPQTL) in flax accessions. (A) Heatmap of disease
index and NPQTL in resistant and susceptible individuals. (B) Comparison of disease index (DI) of oil and fiber in flax. (C) Comparison of NPQTL of oil
and fiber in flax. The difference between subpopulations was analyzed by t-tests.
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link imbalance decay (Remington et al., 2001; Sun et al., 2016). A

maximum link interval of 54 kb was selected (Supplementary Figure

S1), and 434 QTNs were merged into 331 QTLs. Additionally, through

haplotype analysis, 64 loci with significant haplotype analysis were

obtained, and 49 of them were co-localized with 137 DRGs

(Figure 2D). Moreover, it was observed that 20 QTLs were

consistently detected by multiple models, indicating their robustness

and reliability (Supplementary Figure S2). By comparing with previous

literature (Asgarinia et al., 2013; He et al., 2019a; Speck et al., 2022; You

et al., 2022), a total of 17 identical QTLs were obtained. Encouragingly,

certain loci, such as qDI 4.7 and qDI 8.4, had been identified

consistently across multiple studies. This indicated that these shared

loci were highly stable. These QTLs provide important information for

further dissecting the mechanisms and breeding of powdery mildew-

resistant flax varieties. By leveraging these genetic markers, breeders

can expedite the process of selecting and developing resistant cultivars,

thereby advancing sustainable flax production and bolstering crop

health in the presence of powdery mildew challenges.

Flax mildew resistance candidate
gene Lus10042068

According to our research, the qDI 11.2 (R2 = 22.24) was a large-

effect locus (Figure 3); shared by GLM, MLM, and mrMLM models;
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and also detected in the flax pasmo resistance locus mapping study (He

et al., 2019a). The candidate range was further narrowed by combining

the LD map with the local Manhattan map, and the Lus10042068 gene

was located. The functional region of this gene encodes a tetrapeptide

repeat superfamily protein, whose homologous gene in rice has been

proven to be a resistance gene to blast and bacterial blight by means of

overexpression and knockout (Yang et al., 2019). The gene is regulated

by reactive oxygen species metabolism in response to the infection of

Magnaporthe grisea, not only as an important node in the effector-

triggered immunity (ETI) process but also in response to the pattern-

triggered immunity (PTI)-related immune signaling pathway triggered

by PAMP. This is also consistent with the major breakthrough in the

principle of interaction between PTI and ETI in recent years, so

Lus10042068 in flax may also play an important regulatory role in

the process of plant PTI and ETI.
Genomic selection

In this study, four QTL marker sets associated with PM (SNP-331

QTL, SNP-64 QTL, SNP-20 QTL, and SNP-12 QTL) and a set of

genome-wide SNP markers (SNP-6741) were used to evaluate flax

population breeding value. Our findings demonstrated that the SNP-

331 QTL-based GS model was consistently superior to the models
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FIGURE 6

Genomic selection for flax powdery mildew. (A) Prediction accuracy of GBLUP and rrBLUP. (B) Relative efficiency of GBLUP and rrBLUP.
(C) Correlation between training population size and prediction accuracy. (D) Correlation between observed and predicted values. Different letters
denote significant differences at the p< 0.05 level found by MRT. * p<0.05, **** p<0.0001, ns: no significant.
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made with the other four marker sets. The robustness and reliability of

QTLs identified by unit point andmulti-locus GWAS statistical models

were verified. All or virtually all PM-related QTLs were present in the

SNP-331 QTL, and additional markers instead reduced prediction

accuracy. Likewise, further screening of these QTLs with stricter criteria

would reduce accuracy. Our results further demonstrated why QTLs

with high effects sometimes fail to fully account for genetic traits in

quantitative trait-related gene mapping (Jighly et al., 2019). Previous

studies have also shown that the use of genome-wide QTN/QTL

markers instead of random SNP markers for GS model construction

can improve the prediction accuracy of GS (He et al., 2019a; Lan et al.,

2020). Therefore, it is desirable to create a GS model including all

potential QTLs linked to the chosen trait because it considerably

increases prediction accuracy. Similar findings have been found for

the related genome-wide predictions of flax blight (He et al., 2019b).
Conclusion

We conducted a 4-year field evaluation for PM resistance of 200 flax

accessions collected from 44 countries. The data demonstrated high

reproducibility, which increased the credibility of the study’s findings.

Using a genome-wide high density of SNPs, combined with multiple

single-locus and multi-locus models, we identified 64 QTL and 137

resistance candidate genes and demonstrated the importance of

combining multiple models. At the same time, we identified a

repeatedly detected QTL with a large effect, and we identified a

candidate gene Lus10042068 according to the local Manhattan map

and LD heatmap, which has been confirmed to play an important role in

rice disease resistance. These large-effect QTLs and candidate genes had

great significance in the subsequent breeding for flax PM resistance and

in understanding the mechanisms of resistance. Furthermore, we proved

that NPQTL was positively correlated with flax PM resistance and had

an additive effect. We also showed that the outstanding resistant variety

C120 provides the foundation for future breeding of flax disease

resistance. Finally, we developed a GS model based on the results of

GWAS that may be utilized to direct breeding for PM resistance and

increase breeding effectiveness. Nevertheless, GWAS analyses typically

only reveal SNPs linked to diseases without elucidating the specific

functional connections between these SNPs and the diseases. Therefore,

further functional studies are essential to validate the findings of GWAS.
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SUPPLEMENTARY FIGURE 1

Average LD decay map of 15 chromosomes in 200 core collections.

SUPPLEMENTARY FIGURE 2

Repeated detection of 64 resistance loci between different models. M1-M5

correspond to the mrMLM, FASTmrMLM, FASTmrEMMA, pLARmEB, and the
ISISEM-BLASSO, respectively.

SUPPLEMENTARY FIGURE 3

Correlation of NPQTL with DI. Correlation analysis between NPQTL and the
DI from 2017 (A), 2019 (B), 2020 (C), 2021 (D) and mean (E), (F) Correlation
analysis between NPQTL and five datasets. **** indicates statistical

significance at the 0.01% probability.

SUPPLEMENTARY FIGURE 4

Four-year resistance identification of Partial resistant materials. (A) C120,
(B) C92, (C) C198, (D) C123, (E) C162, (F) C111, (G) C193.
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