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Rice is the leading global staple crop. Low temperatures pose negative impacts

on rice’s optimal growth and development. Rice cultivars acclimating to low

temperatures exhibited improved seedling emergence under direct-seeded

sowing conditions, yet little is known about the genes that regulate

germination at low temperatures (LTG). In this research investigation, we’ve

performed whole genome sequencing for the 273 rice plant materials. Using

the best linear unbiased prediction (BLUP) values for each rice material, we

identified 7 LTG-related traits and performed the efficient genetic analysis and

genome-wide association study (GWAS). As a result of this, 95 quantitative trait

loci (QTLs) and 1001 candidate genes associated with LTG in rice were identified.

Haplotype analysis and functional annotation of the candidate genes resulted in

the identification of three promising candidate genes (LOC_Os08g30520 for

regulating LTG4 and LTG5, LOC_Os10g02625 for regulating LTG6, LTg7 and

LTG8, and LOC_Os12g31460 for regulating LTG7, LTg8 and LTG9) involving in

the regulation of LTG in rice. This research provides a solid foundation for

addressing the LTG issue in rice and will be valuable in future direct-seeded

rice breeding programs.
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1 Introduction

Rice is one of the major food crops in the world, ensuring food for more than 50% of the

global population (Sreenivasulu et al., 2021). However, meeting the future dietary demands of

a growing population is at risk due to uncertain climate variations (Hassan et al., 2023). In

recent decades, there has been a notable increase in extreme temperature events (IPCC, 2014).
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Low temperature poses a significant challenge to the growth and

development of rice plants, impacting their attributes, geographic

distribution, and productivity (Sperotto et al., 2018). Rice originated

in the tropics and subtropics and is more susceptible to the negative

impacts of low-temperature stress than other grain crops such as

wheat, barley, and soybean (Zhang et al., 2014; Kovach et al., 2007).

As the world population increases and arable land diminishes, the rise

in rice production poses a formidable challenge to food security and

national economies. With the increasing demand for food, the rice

planting area continues to expand from tropical and subtropical

regions to high-altitude and high-latitude regions. The probability of

rice suffering from chilling injury is gradually increasing. About 24

countries in the world (such as China, Japan, and North Korea, etc.)

have encountered severe chilling injury (Zhang et al., 2017). In the

double-cropping rice areas of South China and the middle and lower

reaches of the Yangtze River, early-grown rice often suffered from

cold stress (Liu et al., 2018). The difference between the north and

south of the rice area in China is about 34 degrees (53°27’N in the

northernmost Amur River and 18°90’N in the southernmost

Hainan), and the difference in altitude is 2700 meters (from the

southeast coast to the Yunnan-Guizhou Plateau). The changes in

ambient temperature expose rice cultivation to various risks,

particularly low-temperature threats, which annually lead to a

substantial rice yield loss of 3~500 million tons of grain production

in China (Zhu et al., 2015; Zhang et al., 2017). Therefore, low

temperature is a significant constraint to global rice production

(Shinada et al., 2013), as it usually results in reduced seedling

survival, stunted growth, and decreased tillering during the active

growth stages of rice, such as germination and seedling stage, which

in turn directly affects the yield and quality of rice (Xu et al., 2020).

In recent years, direct-seeded rice has become increasingly

popular worldwide due to the continuous reduction of labor and

its low cost, easy planting, and quick management (Zhu et al., 2015).

However, direct-seeding rice demands good low-temperature

germination traits for adequate seedling survival. Environmental

and genetic interactions influence rice’s low-temperature

germination (LTG) (Yang et al., 2019). Approximately 300

quantitative trait loci (QTLs) have been identified across 12 rice

chromosomes under low-temperature stress conditions through

mapping, cloning, and SSR marker analysis in various

populations such as RIL, NIL, BIL, DH, BC, and natural

populations (Xu et al., 2008; Shirasawa et al., 2012; Jiang et al.,

2017, 2020). It is reported that Jiang et al. (2017) successfully

identified six LTG-related QTLs in 124 rice backcross

recombinant self-compatible lines derived from a cross between

the Xian rice variety Changhui 891 and the Geng rice variety 02428.

Li et al. (2013) identified three LTG-regulating QTLs by

constructing a RIL population and finely localized the largely

contributing QTL (qLTG-9) with a 72.3 kb region in chromosome

9. Ji et al. (Ji et al., 2008) discovered 11 QTLs through the QTL

localization of rice varieties in three environments; two QTLs had a

maximum phenotypic variance explained (PVE) percentage of

27.9%. Cao et al. (2022) detected two QTLs (qLTG-3 and qLTG-

12) on chromosomes 3 and 12, highlighting a mutual effect that

increased germination rates by 22-27%. Yang et al. (2018)

succeeded in localizing 12 QTLs related to LTG in a backcross
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population from the cross between Dongnong422 and Kongyu131.

Among the identified QTLs, only qLTG3-1 was successfully cloned.

During seed germination, qLTG3-1 is particularly characterized by

its expression in the seed coat’s aleurone layer and the germ sheath’s

epiblast covering (Wang et al., 2023). It improves seed germination

at low temperatures by regulating cell vacuolization in these tissues,

leading to enhanced plasticity in tissues that reduces the mechanical

resistance to the growth of the germinal sheath (Fujino and

Matsuda, 2010; Wang et al., 2023).

Finding LTG-related loci in rice has been effective when

candidate genes for LTG are analyzed using high-density single

nucleotide polymorphisms (SNPs) and statistical modeling (Fujino

et al., 2015; Mao et al., 2022; Li et al., 2022a). Li et al. (2022a)

successfully identified 18 QTLs by integrating six LTG-related

indicators with genome-wide association studies (GWAS) in a

natural population of 211 rice lines. Mao et al. (2022) identified

37 QTLs using 497k SNPs. Wang et al. (2018b) discovered 53 QTLs

through GWAS and also identified the gene (OsSAP16) responsible

for regulating LTG in rice. They found that increased expression of

OsSAP16 enhances germination at low temperatures and vice versa.

However, for a better understanding of the genetic basis of LTG in

rice, more LTG-related genes must be excavated using GWAS, as

fewer genes have been discovered concerning the regulation of LTG

in rice.

Plants have developed complex regulatory networks to adapt to

different temperature conditions (Li et al., 2022a). Rice cultivation

in Asia is divided into two subspecies, indica (Xian) and japonica

(Geng), and each subspecies contains many materials with different

levels of low-temperature tolerance (Ma et al., 2015). Utilizing these

rich genetic resources to identify numerous low-temperature

tolerance-related genes and loci in rice has become a high

priority. To analyze the LTG rate for 3 to 9 days, we assembled a

natural population comprising 273 rice samples and acquired

approximately 4.93 million SNPs through resequencing. This

research investigation enabled us to explore the underlying

genetics of LTG in rice. We opted for the best linear unbiased

prediction (BLUP) values for seven traits across two different

environments and locations to mitigate environmental variability

and diminish false positives. We evaluated each trait individually

and successfully identified 95 QTLs and three potential candidate

genes. The findings of our research investigation serve as a

fundamental groundwork for gaining a more profound

understanding of the mechanisms governing LTG in rice.
2 Materials and methods

2.1 Plant materials

Plant material from 273 varieties/lines was procured from 25

provinces in China and six other countries, with 150 being Xian and

123 Geng rice varieties (Supplementary Table S4). It was planted in

Shucheng and Hefei (Anhui, China) in 2022 and 2023, respectively.

Each rice variety/line was sown with twenty plants in two rows

containing ten plants per row and a row-to-row spacing of 25 cm.

Two rows were planted at each border with 25 cm spacing between
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them to minimize border effects. The remaining practices, such as

irrigation, fertilization, and pest control, were followed according to

local agronomic standards. Upon reaching maturity (approximately

40 days after flowering), five randomly selected plants from each

planting unit were harvested and utilized as test samples.
2.2 LTG measurement

The harvested seeds were naturally air-dried for two weeks and

subsequently subjected to a 50°C oven treatment for seven days to

break dormancy. This seven-day dry heat treatment is an easy and

cost-effective method for breaking seed dormancy in rice plants

(Shiratsuchi et al., 2017; Baskin and Baskin, 2020). The experiment

was conducted with three replications, and thirty thoroughly dried

and disease-free seeds were chosen for each replication. These seeds

were sterilized by soaking them in 1.5% sodium hypochlorite for 30

minutes and then rinsed 4-5 times with distilled water. The seeds

were placed in 9 cm petri plates containing two layers of filter paper

and 10 ml of pure water, which was added through a pipette gun.

Petri plates were then positioned in an artificial climatic chamber

set at a photoperiod of 24-hour darkness, a temperature of 15°C,

and 70% relative humidity. Seeds with a shoot or root length of

more than 0.1 cm were defined as germinated seeds, and the

number of germinated seeds was counted daily from day 3 until

day 9 (Wang et al., 2018a; Wang et al., 2018c; Najeeb et al., 2020).

The number of germinated seeds was counted on the 9th day, then

promptly moved to an artificial growth chamber, maintained at

30°C for an additional three days. Dead or non-germinating seeds

that could not break dormancy were eliminated and disposed of.

The number of germinated seeds was recorded after three days. The

seed germination percentage was calculated as follows:

LT Seed germination  %  on each day(n)

=  (Germinated seeds on each day(n)= 

Number of seeds germinated at 

30 ° C after 12 days of sowing )*100

Here,  day(n) =  3,  4,  5,  6,  7,  8,  9 days

Later, LTG was evaluated based on the germination percentage

of each day.
2.3 Statistical analysis

Statistical data analysis was performed using Excel 2021, while the

‘R software’ was employed for daily correlation and frequency

analyses of LTGs. The BLUP of each genotype-environment

combination and variance component was obtained using the R

package ‘Phenotype’ (Piepho et al., 2007). Furthermore, the R

packages “corrploof” and “ggplot2” were used to generate

correlation analysis plots and box plots depicting the phenotypic data.
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2.4 DNA extraction and SNP genotyping

In each of the 273 plant samples prepared for sequencing, two

leaves were harvested at the tillering stage (one month after seedling

transplantation). Genomic DNA extraction was carried out using

the standard CTAB method. Subsequently, libraries were prepared

following the manufacturer’s instructions for sequencing on the

MGI-DNBSeq platform, and the raw sequences were then subjected

to further processing to eliminate low-quality reads containing

adapters. The Beijing Genomics Institution was responsible for

constructing libraries, sequencing, and sequence cleanup. The

sequencing data were aligned to the reference genome (IRGSP-

1.0) using the Burrows-Wheeler alignment (BWA) tool (Li and

Durbin, 2009), and SNPs were called by employing the Genome

Analysis Tool Kit (GATK) (DePristo et al., 2011). The SNPs with a

minor allele frequency (MAF) of 5% and a deletion rate of ≤20%

were retained using a whole genome association analysis toolset

known as PLINK (Chang et al., 2015). Missing genotypes were

inferred using a genotype imputation and haplotype phasing

program IMPUTE2 (Howie et al., 2012), resulting in 4938656

high-quality SNPs. Density maps were plotted using the “Circle

Manhattan Plot (CMplot)” software package (Yin et al., 2021) to

show the distribution of variants in the 12 chromosomes.
2.5 Population structure analysis

The population structure was analyzed using principal

component analysis (PCA) and neighbor-joining (NJ) tree

techniques. Genetic distances were calculated using TASSEL

(Trait analysis by Association, Evolution, and Linkage) (Bradbury

et al., 2007), and the NJ tree was visualized with the online tool

iTOL (interactive tree of life) (https://itol.embl.de/). PCA was

performed using PLINK software and plotted using the R

package ‘ggplot2’.
2.6 Genome-wide association studies

This study obtained 4938676 SNPs (MAF > 0.05) and 7

phenotypic data sets. These SNPs and phenotypic data were

utilized for Genome-Wide Association Study (GWAS) analysis in

Tassel software employing a general linear model (GLM) (Price et al.,

2006). The Bonferroni correction controlled genetically false positives

in this population to obtain a threshold p-value (p = 2.02e-9) for

GLM. Significant SNPs were those with a p-value lower than the

established threshold. SNPs in the same linkage disequilibrium (LD)

region were the same QTL. Here, the LD attenuation distance was

200 kb, following earlier reports of LD attenuation distances of 100–

200 kb in cultivated rice (Huang et al., 2010). The SNPs with the

lowest p-value were used as the leading SNPs, and the neighboring

SNPs within the physical distance of 200 kb were merged into the

same QTL; the Manhattan plot was drawn with the software R

package “CMplot.”
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2.7 Candidate gene identification and
haplotype analysis

To identify candidate genes associated with low-temperature

germination (LTG), the Rice Genome Annotation Project (http://

rice.plantbiology.msu.edu) was used for the screening of specific

SNPs linked to the potential candidate genes and located in the 200

kb genomic area. We removed retrotransposons, transposons, genes

encoding, and hypothetical proteins from the pool of candidate

genes. Subsequently, R software was utilized to extract and evaluate

SNP data for the candidate genes for haplotypes >10, and a t-test

was employed to assess whether or not the locus affected LTG

in rice.
3 Results

3.1 Phenotypic variation and correlation

To identify novel genes associated with LTG, 273 rice plant

materials were evaluated for seven distinct LTG traits (LTG3, LTG4,

LTG5, LTG6, LTG7, LTG8, and LTG9). The distribution of LTG

traits assessed in 2022 and 2023 exhibited consistent trends; the

average values from the two years were used for analysis, with the

mean of the seven LTG traits being 0.0215, 0.0723, 0.2289, 0.4195,

0.5949, 0.6998, and 0.7825, respectively (refer to Figure 1A,

Table 1). The plant materials from sample 273 were divided into

Xian and Geng categories for comparison. It was observed that the

average LTG rate in Geng was significantly higher than that of Xian

on days 3 and 4, and the LTG rate in Xian started exceeding that of

Geng from day 5 onwards. Correlation analysis indicated significant

relationships among all traits except LTG3. A separate comparative

analysis of the Xian and Geng varieties also revealed significant

correlations among all characteristics (refer to Figure 1B). These

results indicated that rice LTG has a substantial genetic variation.
3.2 SNP density analysis and population
structure analysis

After contrasting the sequencing data to the reference genome,

12.64 million SNPs were obtained. There were 4938676 SNPs

obtained after filtering, which were evenly distributed on 12

chromosomes, and the average density of the 12 chromosomes

was 13,231.71/Mb. Thus, the SNPs used for GWAS are sufficient for

investigation (Figure 2A; Supplementary Table S1). The principal

component analysis (PCA) and NJ tree were employed to analyze

the population structure of the 273 plant materials. The total

variance explained by principal component-1 (PC1) and principal

component-2 (PC2) in PCA was 83.15% and 6.55%, respectively,

and the NJ tree was plotted according to the genetic distances of

each material. The PCA and NJ tree results showed that the studied

population was divided into two subgroups corresponding to the

Xian and Geng rice, which was in line with the subdivision of the

test material consistent with the clustering of the experimental

materials (Figures 2B, C).
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3.3 GWAS for LTG in rice

In this study, from the genome sequences of 273 rice materials,

a grand total of 4,938,656 high-quality SNPs were discovered, along

with the collection of phenotypic data for seven LTG traits (LTG3,

LTG4, LTG5, LTG6, LTG7, LTG8, and LTG9). The phenotypic and

SNP data were analyzed using the GLM model GWAS. A total of

292 significant SNP loci associated with LTG were identified using

an association threshold of p = 2.02e-9. (Figure 3; Supplementary

Table S2). Considering the decay distance of rice LD, adjacent SNPs

within a range of less than 200 kb were categorized as single QTLs,

and the SNPs with the lowest p-values were denoted as the leading

SNPs. This study successfully identified 13 previously reported

QTLs and 82 novel QTLs, and 1001 candidate genes were

obtained (Table 2; Supplementary Table S3). Among these, 54

QTLs were local ized to LTG3, distr ibuted across 12

chromosomes, with phenotypic contributions ranging from

10.58~26.11%, with the maximum phenotypic contribution of

qLG11.9 reaching 26.11%. For LTG4, a single QTL was found on

chromosomes 1, 4, and 8, 2 QTLs on chromosomes 2 and 11, and 6 on

chromosome 12. The phenotypic coefficient of variation of qLTG12.7

was the highest on chromosome 12 (19.47%), and qLTG12.4 had the

smallest coefficient of variation on chromosome 12 (13.77%). Among

these, qLTG8.3 was 1 QTL co-localized on LTG5 and LTG4, with a

phenotypic variation of 16.27%. LTG6 only localized 1 QTL

(qLTG10.3) on chromosome 10, co-localized on LTG6, LTG7 and

LTG8,with aphenotypic variationof 13.57%. LTG7detected 1QTLon

chromosomes 1 and 7, and 2 QTLs on chromosomes 10 and 12; with

phenotypic coefficients of variation of 10.90%, 11.74%, 11.96%,

13.57%, 10.99%, and 12.72%, respectively. LTG8 detected 2 QTLs on

chromosome 2, 1 QTL on chromosomes 3, 4, and 11, and 3 QTLs on

chromosomes 7 and 4QTLswere detected on chromosomes 10 and 12

each, with the largest coefficient of variation for qLTG10.3 (13.57%)

and the smallest coefficient of variation for qLTG3.2 (10.31%) on

chromosome 3. LTG9 alone was detected on chromosomes 1, 7, 10,

and 11, with 2, 1, 3, and 5 QTLs on each, respectively, and the

coefficients of variation for the phenotypes ranged from 11.3% to

12.3%. 7 QTLs were detected as co-localized with other phenotypes.

Among which qLTG2.2, qLTG7.7, qLTG11.12, and qLTG12.12 were

detected on both LTG9 and LTG8, with phenotypic variability of

11.87%, 11.72%, 11.13%, and 12.82%, respectively, and qLTG7.1,

qLTG10.2, and qLTG12.11 were repeatedly detected between the

three phenotypes LTG7, LTG8 and LTG9 with 11.74%, 11.96%, and

12.72% phenotypic variation, respectively.
3.4 Identification of candidate genes and
haplotype analysis

3.4.1 Identification of LTG4 and LTG5
candidate genes

In total, 13 QTLs were localized to LTG4 and LTG5, of which

qLTG8.3 is a QTL co-localized by LTG4 and LTG5 at chromosome 8.

We explored the Nipponbare genome reference sequence (http://

rice.plantbiology.msu.edu/) to find genes that might impact the

LTG candidate genes. Once genes encoding hypothetical proteins,
frontiersin.org
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retrotransposons, and transposon proteins were eliminated, we

made predictions about potential candidate genes inside the QTL

region. Five genes were identified at chromosome 8, 18.7Mb-

18.9Mb. The SNPs of five genes were subjected to association

analysis and haplotype typing, among which the most significant

gene was LOC_Os08g30520, which was annotated as plant protein

of unknown function domain-containing protein, located 54 kb

upstream of the significant QTL, with two SNPs on the promoter

and four SNPs on the exons. LOC_Os08g30520 was detected in all

materials with three major haplotypes: CGGATT (HapA),

CTACGG (HapB), and TGGATT (HapC). The HapA, HapB, and

HapC had mean LTG4 of 0.1575, 0.0802, and 0.03727, respectively.
TABLE 1 Description of germination rate in the full population.

Trait Mean ± SD Range Median

LTG3 0.0215 ± 0.0442 0-0.2710 0

LTG4 0.0723 ± 0.1010 0-0.5230 0.0255

LTG5 0.2289 ± 0.2192 0-0.8985 0.1762

LTG6 0.4195 ± 0.2830 0-0.9890 0.3990

LTG7 0.5949 ± 0.2905 0-1 0.6392

LTG8 0.6998 ± 0.2610 0-1 0.7625

LTG9 0.7825 ± 0.2201 0-1 0.8582
B

A

FIGURE 1

Description of LTG: (A) Germination rates in 2022 and 2023, (B) Correlation between different LTGs. Here, *, **, *** correlations are significant
(p< 0.05, p< 0.01, p< 0.001).
frontiersin.org

https://doi.org/10.3389/fpls.2024.1404879
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2024.1404879
The mean LTG5 was 0.5198, 0.22561, and 0.1675, respectively. The

two phenotypic values of HapA were significantly higher than

the other two haplotypes. Therefore, it is hypothesized

that LOC_Os08g30520 is involved in regulating LTG4 and

LTG5 (Figure 4).

3.4.2 Identification of LTG6、LTG7 and LTG8
candidate genes

In the interval of 0.9Mb-1.1Mb on chromosome 10 (qLTG10.3),

12 genes were identified. The LOC_Os10g02625 was annotated as

gibberellin-regulated protein, putative, expressed, which was

located 3kb upstream of the significant QTL, with 11 SNPs on

introns and 2 SNPs on exons. The LOC_Os10g02625 has three

major haplotypes such as HapA, HapB, and HapC, corresponding

t o GTCCCAGTGAGAC , GTCTTGGTGAGAC , a nd

TCTTCAACTGACT, respectively. The mean LTG6 of HapA-C

was 0.5383, 0.5036, and 0.2515; the mean LTG7 of HapA-C was

0.7338, 0.7038 and 0.3864; and the mean LTG8 of HapA-C was

0.8196, 0.8039 and 0.5068. Regarding LTG6, LTG7 and LTG8,

HapC had the lowest and significantly lower values than the other

two haplotypes (HapB and HapC). These results suggested that

LOC_Os10g02625 may be a candidate gene for LTG6, LTG7 and

LTG8 (Figure 5).
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3.4.3 Identification of LTG7、LTG8、LTG9
candidate genes

This QTL, qLTG12.11, is co-localized on chromosome 12 and

corresponds to LTG7, LTG8, and LTG9. A total of 10 genes were

identified within the 18.77-18.97 Mb interval of chromosome 12.

LOC_Os12g31460 was annotated as a heat shock protein (HSP)

located 41kb downstream of the significant QTL with two SNPs on

the promoter and six SNPs on the intron. Three haplotypes, HapA

is ATTAAGTA; HapB is CCAGGACT; and HapC is CCTAAGTT.

The mean of LTG7 for HapA-C was 0.7243, 0.6447, and 0.3244, and

the mean of LTG8 was 0.8163, 0.7394, and 0.4417; average LTG9

was 0.8662, 0.8409 and 0.5717. The HapC of LTG7, LTG8, and

LTG9 was significantly lower than that of HapA and HapB.

Therefore, it is anticipated that LOC_Os12g31460 regulated LTG7,

LTG8, and LTG9 in rice (Figure 6).
4 Discussion

Rice is a prominent food crop in China, and direct seeding of

rice has significant development potential as a light, simple, and

efficient cultivation practice (Devi, 2023). However, direct-seeded

rice often faces low-temperature stress during germination, so
B C

A

FIGURE 2

Genetic evolution of populations. (A) SNP density map, (B) Principal component analysis and (C) Neighbor-joining (NJ) tree.
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exploring genes for rice varieties germinating at low temperatures is

a vital step toward breeding programs regarding direct-seeded rice

varieties. The key trait indexes for low-temperature tolerance in rice

include the low-temperature germination rate and low-temperature

germination potential (Ji et al., 2009; Wang et al., 2018b). The

GWAS in plants is a method for identifying correlations between

natural variation and phenotypic traits (Mackay and Powell, 2007).

Through GWAS, researchers conduct whole genome sequencing or

gene chip analysis on many individual plants and then analyze them

using phenotypic data such as growth characteristics, yield, and

resistance (Langridge et al., 2001). GWAS can help plant scientists

find candidate genes or chromosomal regions (QTLs) associated

with specific traits by comparing the associations between

genotypes and phenotypic traits (Gutierrez et al., 2015). These

findings are significant for resolving the genetic basis of plant

traits, breeding improvement, and precision breeding. The

application of GWAS methodology has provided researchers with

a more comprehensive understanding of key traits and associated

genes in plant genomes, thereby offering valuable insights for plant

genetics and breeding studies.

In this research study, to minimize the impact of dormant seeds,

we subjected freshly harvested rice seeds to dry heating at the

temperature of 30°C to break dormancy. This process accelerated
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the physiological activity within the seeds, facilitating the breaking

of dormancy and improving germination and growth rates.

Furthermore, high-temperature drying aids in eliminating any

bacteria and fungi present on the seed surface, thereby enhancing

seed quality and storage stability. The low-temperature germination

rate served as a metric to evaluate rice’s capacity to withstand low

temperatures, with germination rates between 3 and 9 days in low-

temperature settings serving as benchmarks. The findings indicated

that Geng rice displayed higher LTG3 and LTG4 values under low

temperatures compared to Xian rice, indicating a quicker

germination pace in Geng rice during the initial 4 days. This

result aligns with prior studies, including those by Morsy et al

(Morsy et al., 2005). and Lv et al. (2016). Nevertheless, past the 5th

day of the experiment, the low-temperature growth rate of Xian rice

surpassed that of Geng rice, suggesting a potential gradual

acclimatization of Xian rice to the low-temperature environment

over time, corroborating previous suggestions during low-

temperature treatments by Schlappi et al (Schlappi et al., 2017).

These outcomes highlight the diverse responses of rice to low

temperatures across different varieties and time frames, enhancing

our comprehension of low-temperature tolerance mechanisms in

rice. Furthermore, these findings offer valuable insights and

references for future rice breeding programs that enhance low-
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FIGURE 3

Genome-wide association analysis of rice LTG using GLM. (A) LTG3, (B) LTG4, (C) LTG5, (D) LTG6, (E) LTG7, (F) LTG8 and (G) LTG9.
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TABLE 2 Summary of detected QTLs using GLM in the full population.

QTLs Trait Chr Pos P R² (%)
Previous
QTLs/Genes

qLTG1.1 LTG4 1 184547 6.26E-10 14.34%

qLTG1.2 LTG3 1 1222839 1.35E-09 12.05%

qLTG1.3 LTG3 1 2090800 2.85E-10 12.89%

qLTG1.4 LTG3 1 3289042 2.20E-10 13.03%

qLTG1.5 LTG3 1 6737873 7.02E-13 16.06%

qLTG1.6 LTG3 1 6956491 5.29E-10 12.56%

qLTG1.7 LTG9 1 7503387 1.40E-09 11.29%

qLTG1.8 LTG9 1 9497829 5.50E-10 11.76%

qLTG1.9 LTG3 1 13093731 1.73E-09 11.91%

qLTG1.10 LTG3 1 26775538 2.87E-10 12.89%

qLTG1.11 LTG7 1 32405467 7.06E-10 10.90%

qLTG2.1 LTG8 2 698792 9.24E-10 10.58%

qLTG2.2 LTG8, LTG9 2 3469634 4.41E-10 11.87% qSR2-1 (Li et al., 2022b)

qLTG2.3 LTG3 2 14182567 1.56E-09 11.97%

qLTG2.4 LTG4 2 26836681 3.51E-10 14.70%

qLTG2.5 LTG3 2 27436799 6.02E-12 14.95%

qLTG2.6 LTG3 2 27984356 1.76E-10 13.15%

qLTG2.7 LTG3 2 29266551 1.06E-11 14.65%

qLTG2.8 LTG3 2 29854412 7.52E-10 12.37%

qLTG2.9 LTG4 2 34316505 1.41E-11 16.68%

qLTG3.1 LTG3 3 1056363 2.46E-10 12.97%

qLTG3.2 LTG8 3 1299595 1.65E-09 10.31%

qLTG3.3 LTG3 3 5727116 1.16E-09 12.13%

qLTG3.4 LTG3 3 12711085 1.70E-09 11.92%

qLTG3.5 LTG3 3 13352563 5.37E-10 12.55%

qLTG3.6 LTG3 3 20108228 1.35E-09 12.05%

qLTG3.7 LTG3 3 25876386 1.48E-11 14.47% qLTG3c (Fujino et al., 2015)

qLTG3.8 LTG3 3 34097328 1.15E-11 14.61%
SNAC1; OsNAC9 (Hu
et al., 2006)

qLTG4.1 LTG3 4 7067689 1.23E-09 12.10%

qLTG4.2 LTG3 4 8026393 4.19E-12 15.14%

qLTG4.3 LTG8 4 11134669 1.12E-09 10.49%

qLTG4.4 LTG3 4 11551156 2.68E-14 17.73% qSR4 (Fujino et al., 2015)

qLTG4.5 LTG3 4 13508486 1.76E-09 10.76% qLTSS4-1 (Ma et al., 2015)

qLTG4.6 LTG3 4 14006650 1.88E-09 11.87%

qLTG4.7 LTG3 4 14440441 6.54E-11 13.68%

qLTG4.8 LTG4 4 22167803 5.97E-10 14.37%

qLTG5.1 LTG3 5 7742011 9.49E-12 14.71% OsPRP (Najeeb et al., 2020)

qLTG6.1 LTG3 6 1589915 8.36E-11 13.55% qLTG6a (Fujino et al., 2015)
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TABLE 2 Continued

QTLs Trait Chr Pos P R² (%)
Previous
QTLs/Genes

qLTG6.2 LTG3 6 10161883 1.29E-10 13.32%

qLTG7.1 LTG7, LTG8, LTG9 7 54486 5.79E-10 11.74%

qLTG7.2 LTG3 7 9661409 4.08E-10 12.70%

qLTG7.3 LTG9 7 10880261 3.98E-10 11.93%

qLTG7.4 LTG3 7 14692379 4.94E-10 12.60%
qLTG7-5 (Shirasawa
et al., 2012)

qLTG7.5 LTG3 7 19531660 6.81E-10 12.42%

qLTG7.6 LTG3, LTG8 7 21460943 9.38E-10 10.58%

qLTG7.7 LTG8, LTG9 7 22364235 5.92E-10 11.72%

qLTG7.8 LTG3 7 24560676 1.06E-10 13.42%

qLTG8.1 LTG9 8 3323895 1.34E-09 11.31%

qLTG8.2 LTG3 8 7264027 1.79E-10 13.14%

qLTG8.3 LTG4, LTG5 8 18832150 7.90E-12 16.27%

qLTG8.4 LTG3 8 24347126 1.18E-09 12.12%

qLTG9.1 LTG3 9 5579286 4.79E-13 16.26%

qLTG10.1 LTG8, LTG9 10 439045 3.64E-10 11.02%

qLTG10.2 LTG7, LTG8 10 719338 4.82E-11 11.96%

qLTG10.3 LTG6, LTG7, LTG8 10 1007428 1.38E-12 13.57%

qLTG10.4 LTG3 10 2602621 3.49E-10 12.78%

qLTG10.5 LTG9 10 5237726 1.92E-10 12.29%

qLTG10.6 LTG3 10 5526869 1.85E-09 11.88%

qLTG10.7 LTG9 10 5750372 7.58E-10 11.60%

qLTG10.8 LTG3 10 6830235 2.39E-10 12.99%

qLTG10.9 LTG8 10 7106752 1.13E-09 10.49%

qLTG10.10 LTG9 10 8543792 1.43E-09 11.27%

qLTG10.11 LTG3 10 11747432 9.24E-10 12.26%
qCTGERM10.11 (Wang
et al., 2018c)

qLTG10.12 LTG3 10 22732244 9.01E-11 13.51%

qLTG11.1 LTG9 11 4308453 5.25E-10 11.78%

qLTG11.2 LTG4 11 5526788 9.62E-11 15.50%
qCTGERM11-2/qLTSS11-1
(Schlappi et al., 2017)
(Shakiba et al., 2017) [30,33]

qLTG11.3 LTG9 11 7425398 4.41E-10 11.87%

qLTG11.4 LTG9 11 8844646 1.00E-09 11.46%

qLTG11.5 LTG9 11 13117504 1.22E-09 11.35%

qLTG11.6 LTG9 11 15084666 7.63E-10 11.59%

qLTG11.7 LTG4 11 19011922 7.25E-10 14.25%

qLTG11.8 LTG3 11 19750675 4.00E-10 12.71%
L112/qCTS11-6 (DePristo
et al., 2011)

qLTG11.9 LTG3 11 20252734 5.10E-22 26.11%
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temperature tolerance. Ongoing exploration of rice growth traits

under varying temperature conditions enables the refinement of

selection processes and breeding strategies for low-temperature-

resistant varieties, ultimately boosting rice yield and stability.

In this study, 273 materials were genotyped, and 4938656 SNPs

were used for genetic structure and GWAS analysis. 95 QTLs

significantly associated with LTG were localized with a threshold

value of -log10 (p) ≥ 8.6, and 1001 candidate genes were identified

within the interval, indicating the genetic complexity of controlling

low-temperature germination in rice. Combined with the haplotype

analysis of the candidate genes, three important genes related to low-

temperature germination in rice were screened. The

LOC_Os08g30520 refers to a type of protein that contains an

unknown functional, structural domain in plants. Such proteins

may regulate biological processes such as signaling, metabolic

pathways, or gene expression by interacting with other proteins or

biomolecules (Nietzsche et al., 2016). This kind of protein might be

crucial for rice germination at low temperatures. Low temperature is

an important environmental factor in the growth of rice and has a
Frontiers in Plant Science 10
significant effect on its germination and growth processes. Therefore,

plants’ adaptation to low temperatures through their physiological

and molecular mechanisms is of prime importance. Proteins

containing unknown functional, structural domains may regulate

low-temperature signaling pathways, activate or repress specific gene

expression, or regulate plant metabolic pathways, which affect rice

growth and development under low-temperature adversity

conditions. Therefore, investigating the contribution of such

proteins to low-temperature adaptation in rice will help us better

understand the mechanism of rice adaptation under low-temperature

conditions. The protein encoded by gene LOC_Os10g02625 is

gibberellin-regulated. Gibberellin is a plant hormone that plays a

vital role in plant growth and development (Castro-Camba et al.,

2022). During low-temperature stress in rice, plants adjust their

growth and development to adapt to these conditions. Gibberellin

plays a regulatory role in low-temperature germination in rice

(Yamauchi et al., 2004; Niu et al., 2014). Specifically, gibberellins

promote seed germination and seedling growth, which is particularly

important under low-temperature conditions and may inhibit plant
frontiers
TABLE 2 Continued

QTLs Trait Chr Pos P R² (%)
Previous
QTLs/Genes

qLTG11.10 LTG3 11 20464509 4.63E-11 13.87%

qLTG11.11 LTG3 11 22589803 5.97E-10 12.49%

qLTG11.12 LTG8, LTG9 11 23704763 1.88E-09 11.13%

qLTG11.13 LTG3 11 25036230 1.10E-09 12.16%

qLTG11.14 LTG3 11 25490114 1.66E-10 13.18%

qLTG11.15 LTG3 11 25991253 4.09E-10 12.70%
qLTGS(III)11 (Chang
et al., 2015)

qLTG11.16 LTG3 11 27146452 4.11E-10 12.70%

qLTG11.17 LTG3 11 27641914 1.15E-12 15.81%

qLTG12.1 LTG3 12 6158274 6.40E-11 13.70%

qLTG12.2 LTG3 12 10402588 8.26E-11 13.56%

qLTG12.3 LTG3 12 10644373 1.25E-10 13.34% qBMSI12 (Chang et al., 2015)

qLTG12.4 LTG4 12 12953299 1.56E-09 13.77%

qLTG12.5 LTG4 12 13438221 8.34E-10 14.16%

qLTG12.6 LTG4 12 13944837 8.70E-10 14.14%

qLTG12.7 LTG4 12 14148759 1.31E-13 19.47%

qLTG12.8 LTG4 12 14701675 2.32E-11 16.38%

qLTG12.9 LTG4 12 15015276 9.85E-10 14.06%

qLTG12.10 LTG7, LTG8 12 18470876 3.91E-10 10.99%

qLTG12.11 LTG7, LTG8, LTG9 12 18879706 8.32E-11 12.72%

qLTG12.12 LTG8, LTG9 12 19139526 6.78E-11 12.82%

qLTG12.13 LTG3 12 21983596 1.44E-09 12.02%

qLTG12.14 LTG8 12 25714436 6.15E-10 10.77%
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growth (Yamauchi et al., 2004). Thus, the gibberellin signaling

pathway, including gibberellin-regulated proteins, may significantly

impact the adaptation of rice to low-temperature germination.

LOC_Os12g31460 is annotated as heat shock protein DnaJ, a class

of molecular chaperone proteins belonging to the family of heat

shock proteins. They play a crucial role in the physiological response

of organisms subjected to environmental stresses such as high

temperature, low temperature, oxidative stress, hypoxia, etc. (Tran
Frontiers in Plant Science 11
Thi Ngoc et al., 2023). Further, DnaJ proteins are involved in the

folding, assembly and depolymerization of proteins in the cell,

helping other proteins to fold correctly and exhibit their functional

conformation (Liu et al., 2021). It is also associated with many

important cell signaling pathways, such as those that regulate the

cell cycle, apoptosis and DNA repair, among other biological

processes (Luo et al., 2023; Tran Thi Ngoc et al., 2023). In plants,

the heat shock protein DnaJ has also been associated with
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FIGURE 4

Identification of LTG4 and LTG5 candidate genes. (A, B) Local Manhattan plot (top) for LTG4 and LTG5. (C) The linkage disequilibrium heatmap for
the region from 18.7Mb to 18.9Mb on chromosome 8. (D) Gene structure and haplotype analysis of LOC_Os08g30520 based on SNPs from all
evaluated rice varieties. Where thin blue lines indicate introns and intergenic regions, blue boxes and white boxes indicate exons and promoters,
respectively, and thin black lines indicate the physical location of SNPs on the genome. Haplotypes of less than 10 rice varieties will not be counted.
(E, F) Haplotypes of LOC_Os08g30520 were statistically analyzed for LTG4 and LTG5 using Tukey’s test, and box plots demonstrate the differences
between them. ‘a’, ‘b,’ and ‘c’ are based on whether the t-test is significant between each other.
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environmental stresses, including low-temperature stress. Under low-

temperature conditions, plants produce heat shock proteins to

help them fight against adversity (Feder and Hofmann, 1999;

Wang et al., 2005). Therefore, the heat shock protein DnaJ may be
Frontiers in Plant Science 12
associated with low-temperature adaptation and cold tolerance in

rice. Overall, heat shock protein DnaJ plays a vital role in plants’

response to environmental stress and survival under

adverse conditions.
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FIGURE 5

Identification of LTG6, LTG7 and LTG8 candidate genes. (A–C) Local Manhattan plot (top) for LTG6, LTG7 and LTG8. (D) The linkage disequilibrium
heatmap for the region from 0.9Mb to 1.1Mb on chromosome 10. (E) Gene structure and haplotype analysis of LOC_Os10g02625 based on SNPs
from all evaluated rice varieties. Where thin blue lines indicate introns and intergenic regions, blue boxes and white boxes indicate exons and
promoters, respectively, and thin black lines indicate the physical location of SNPs on the genome. Haplotypes of less than 10 rice varieties will not
be counted. (F-H) Haplotypes of LOC_Os10g02625 were statistically analyzed for LTG6, LTG7 and LTG8 using Tukey’s test, and box plots
demonstrate their differences. ‘a’ and ‘b’ are based on whether the t-test is significant between each other.
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5 Conclusions

We performed an efficient genetic analysis of LTG in rice using

natural population andgenome-wide association analysis. A total of 95

QTLs associated with LTG in rice were identified (Table 2). After
Frontiers in Plant Science 13
haplotype analysis and functional annotation of the candidate

genes, three promising candidate genes (LOC_Os08g30520,

LOC_Os10g02625, and LOC_Os12g31460) were successfully

identified. This research investigation provides an essential basis for

resolving the issue of LTG in rice, particularly in direct-seeded rice.
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FIGURE 6

Identification of LTG7, LTG8 and LTG9 candidate genes. (A–C) Local Manhattan plot (top) for LTG7, LTG8 and LTG9. (D) The linkage disequilibrium
heatmap for the region from 18.77Mb to 18.97Mb on chromosome 10. (E) Gene structure and haplotype analysis of LOC_Os12g31460 based on
SNPs from all evaluated rice varieties. Where thin blue lines indicate introns and intergenic regions, blue boxes and white boxes indicate exons and
promoters, respectively, and thin black lines indicate the physical location of SNPs on the genome. Haplotypes of less than 10 rice varieties will not
be counted. (F-H) Haplotypes of LOC_Os12g31460 were statistically analyzed for LTG7, LTG8 and LTG9 using Tukey’s test, and box plots
demonstrate their differences. ‘a’ and ‘b’ are based on whether the t-test is significant between each other.
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