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Rapidly obtaining the chlorophyll content of crop leaves is of great significance

for timely diagnosis of crop health and effective field management. Multispectral

imagery obtained from unmanned aerial vehicles (UAV) is being used to remotely

sense the SPAD (Soil and Plant Analyzer Development) values of wheat crops.

However, existing research has not yet fully considered the impact of different

growth stages and crop populations on the accuracy of SPAD estimation. In this

study, 300 materials from winter wheat natural populations in Xinjiang, collected

between 2020 to 2022, were analyzed. UAV multispectral images were obtained

in the experimental area, and vegetation indices were extracted to analyze the

correlation between the selected vegetation indices and SPAD values. The input

variables for the model were screened, and a support vector machine (SVM)

model was constructed to estimate SPAD values during the heading, flowering,

and filling stages under different water stresses. The aim was to provide a method

for the rapid acquisition of winter wheat SPAD values. The results showed that the

SPAD values under normal irrigation were higher than those under water

restriction. Multiple vegetation indices were significantly correlated with SPAD

values. In the prediction model construction of SPAD, the different models had

high estimation accuracy under both normal irrigation and water limitation

treatments, with correlation coefficients of predicted and measured values

under normal irrigation in different environments the value of r from 0.59 to

0.81 and RMSE from 2.15 to 11.64, compared to RE from 0.10% to 1.00%; and

under drought stress in different environments, correlation coefficients of

predicted and measured values of r was 0.69–0.79, RMSE was 2.30–12.94, and

RE was 0.10%–1.30%. This study demonstrated that the optimal combination of

feature selection methods and machine learning algorithms can lead to a more

accurate estimation of winter wheat SPAD values. In summary, the SVM model

based on UAV multispectral images can rapidly and accurately estimate winter

wheat SPAD value.
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Introduction

Wheat is one of the most important cereal crops worldwide, and

it is heavily dependent on chlorophyll. Chlorophyll is the primary

pigment orchestrating photosynthesis. This essential pigment plays

a pivotal role in crop growth and nitrogen utilization efficiency by

capturing solar energy throughout the process (Lu et al., 2020;

Zhang et al., 2022; Yin et al., 2023). Chlorophyll is the basic

substance for photosynthesis in green plants and the main

photosynthetic pigment in plant leaves. It is an important

indicator for studying wheat growth indicators, physiological

changes, and nitrogen nutrition status (Jiang et al., 2015; Zhang

et al., 2019a). SPAD can directly reflect the chlorophyll content in

crop leaves and shows a strong correlation. Numerous studies have

shown good consistency between leaf chlorophyll content and

SPAD values measured by chlorophyll meters (Sampson et al.,

2003; Wang et al., 2022b). Winter wheat is indeed one of the major

food crops of the world and plays a significant role in China’s

agricultural landscape and the daily lives of people (Liu et al., 2023).

Rapid and accurate acquisition of winter wheat SPAD has

important scientific significance for agricultural irrigation

management, drought monitoring, and crop growth monitoring.

As the winter wheat growth period develops, the canopy

reflectance also changes continuously. Spectral indices during the

reproductive growth stage of winter wheat have a high correlation

with SPAD and can be better used to estimate SPAD, such as

spectral vegetation indices during the heading, flowering, and filling

stages (Wu et al., 2023). However, as the growth period progresses,

the correlation between SPAD and a single-period spectral index

reaches a significant level (Ma et al., 2021; Yang et al., 2023), but the

process of SPAD formation cannot be determined in a single period.

On the contrary, a dataset composed of growth information from

multiple growth periods can better reflect crop growth changes and

provide more useful information, which is beneficial to improving

algorithm estimation accuracy. Crop growth can be predicted by

constructing features of nutrient elements and canopy spectra.

Therefore, studying the chlorophyll of crops provides a basis for

judging the growth situation of crops. Currently, remote sensing

technology provides a new solution for estimating crop chlorophyll

content (Kaivosoja et al., 2013; Adao et al., 2017; Yang et al., 2019;

Liu et al., 2022), and research mainly focuses on predicting

chlorophyll content using spectral vegetation indices and spectral

information obtained by different sensors combined with ground

measurement data.

Remote sensing technology has demonstrated strong

competitiveness in precision agriculture under different

experimental conditions, especially the convenient application of

multispectral imaging technology on UAVs, which has accelerated

the development of the technology (Kaivosoja et al., 2013; Yang

et al., 2019). The development of UAV technology has greatly

facilitated the timely and rapid acquisition of information on crop

vegetation, water, soil, and other agricultural and forestry ecological

elements, as well as their long-term dynamic monitoring.

Compared to data acquisition methods using satellite remote
Frontiers in Plant Science 02
sensing and airborne remote sensing, UAVs have the advantages

of maneuverability, flexibility, low data collection costs, and high

image resolution. UAV remote sensing imagery is gradually

becoming the main data source for the development of smart

agriculture and forestry.

By equipping UAVs with hyperspectral cameras, more

comprehensive multidimensional image data can be obtained,

which enables quantitative inversion of crop phenotypic

information such as plant quantity (Font et al., 2014), plant

height (Fang et al., 2016), lodging rate (Barata et al., 2024), leaf

area index (Liu et al., 2021), chlorophyll content (Kanning et al.,

2018), nitrogen element content (Sun et al., 2022; Wang et al.,

2022c), pest and disease information (Liu et al., 2020), and other

physical and chemical parameters. Compared to RGB three-band

image data, hyperspectral imagery provides higher inversion

accuracy. However, the high cost, large size, weight, complex data

acquisition procedures, and susceptibility to environmental

influences restrain the widespread application of hyperspectral

imagers. Additionally, acquiring characteristic data on ground-

based chlorophyll content often involves destructive methods

(Adao et al., 2017). Ground-based data acquisition is limited to a

few selected points, making it difficult to represent the

characteristics of the entire area. Therefore, the range of

traditional ground-based phenotypic data acquisition is inhibited.

Remote sensing data enable high-throughput and large-scale

data acquisition, but the influence of spatial image resolution makes

it difficult to capture certain local features. Therefore, UAV-based

remote sensing technology fills this gap by providing more detailed

and localized information for analysis and decision-making in

precision agriculture.

Combining ground-based phenotypic data with multispectral

imagery from UAVs is an innovative application of UAV

multispectral sensors for the estimation of crop chlorophyll

content. Machine learning not only enables predictive analysis of

traditional data but also demonstrates significant advantages in

noise and anomaly handling. Predicting chlorophyll content

through the combination of multispectral imagery from UAV

remote sensing and machine learning algorithms provides a

promising approach. Currently, the integration of machine

learning with various vegetation indices has shown strong

advantages in agricultural remote sensing. Therefore, this study

utilizes high-throughput UAV remote sensing imagery data, along

with selected vegetation indices and ground-based SPAD data, to

predict the chlorophyll content at different growth stages of winter

wheat under various water stresses, aiming to achieve intelligent-

level detection of wheat. This paper focuses on the following topics:

(1) the impact of chlorophyll content under different irrigation

conditions on water response; and (2) the response of the SVM

machine learning algorithm in predicting chlorophyll content in

winter wheat under different water stress and growth stages. The

aim of this study was to explore the potential of SPAD prediction in

a large number of multispectral bands and to develop a prediction

model to improve the accuracy of SPAD prediction in wheat

breeding trials.
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Materials and methods

Materials

A total of 300 wheat accessions were used in the experiment,

consisting of 65 foreign varieties/lines and 235 varieties/lines from

four winter wheat regions in China. These regions included 51

materials from the northern winter wheat region, 121 materials

from the Huang Huai winter wheat region, 41 materials from the

Yangtze River middle and lower winter wheat regions, and 22

materials from the southwestern winter wheat region. These

materials were representative and were provided by the Crop

Science Institute of the Chinese Academy of Agricultural

Sciences. The distribution of the materials is shown in Figure 1.
Experimental design

The experiment was conducted during the 2020–2022 winter

wheat growing season at Manas (86°12’52.2”N, 44°18’15.77”E) and

Zepu (77°16’17.22”N, 38°11’21.65”E) in Xinjiang Province, China.

The two locations are approximately 1600 kilometers apart,

representing the typical geographical differences between

northern and southern Xinjiang. Manas has a temperate

continental arid to semi-arid climate characterized by cold

winters, hot summers, low rainfall, abundant sunshine, high

evaporation, and inhibited precipitation. Zepu has a warm

temperate continental arid climate, with an average annual

temperature of 11.40°C. The extreme maximum temperature

reaches 39.50°C, while the extreme minimum temperature can

drop to -22.70°C. For this study, two irrigation water stresses

were employed: normal irrigation (N) and drought stress (D).

Each water treatment included 900 plots, and a total of 300 wheat

varieties were selected for the experiment. Each plot was planted
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with one variety in a completely randomized block design with

three replications. The plots were arranged in three rows, with a row

length of 2 meters and a row spacing of 20 cm. The drought stress

treatment involved water control management during the wheat

heading, flowering, filling, and maturity stages. Field management

practices followed the local conventional cultivation methods,

including fertilization, drip irrigation, pest control, and weed

management. The wheat planted grew normally, and the field

conditions were favorable.
Image acquisition

The UAV used in this study was the DJI Phantom 4

Multispectral (P4M) drone. This device was equipped with one

visible light sensor channel and five multispectral sensor channels,

which capture data in five different wavelength bands: 475 ± 16nm

(blue), 560 ± 16nm (green), 668 ± 16nm (red), 717 ± 16nm (red

edge), and 840 ± 26nm (NIR). The high-definition digital camera

model was the FC 6310. Its main parameters were: a 1-inch CMOS

sensor with effective pixels of 20 million, a resolution of 5472 ×

3648, an aperture value of f/5.6, and a focal length of 9 mm. Each

flight captured six images, each with a pixel resolution of over two

million. The P4M drone was equipped with the TimeSync system,

which ensured centimeter-level positioning accuracy. Additionally,

it has a light intensity sensor integrated on the top to capture solar

irradiance data for radiometric calibration. This helped in

compensating for the effects of environmental light and improved

the accuracy and consistency of the collected data at different times.

During the acquisition of multispectral images, the UAV was flown

autonomously along predefined flight paths under clear and

windless conditions at noon. The multispectral camera lens was

oriented vertically downward. The flight parameters were presented

in Table 1.
FIGURE 1

Source distribution of 300 materials.
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Data acquisition plan

The data collection involved the measurement of SPAD values

in the canopy of winter wheat and the acquisition of multispectral

imagery using the UAV. The SPAD measurements and

multispectral imagery data were collected at three different

growth stages of winter wheat: heading, flowering, and filling.

Additionally, the data collection plan included two different

watering treatments. The specific data collection plan for SPAD

measurements and UAV multispectral imagery was provided

in Table 2.
Determination of chlorophyll content

The measurements were taken during three different growth

stages of wheat: heading, flowering, and filling. On the day of the

UAV flight, the relative chlorophyll content of different genotypes

was synchronously measured. Five wheat plants with consistent

growth were selected from each variety. The SPAD-502 Plus

chlorophyll meter, manufactured by the Japanese company

Minolta, was used for measurements. This instrument has been

widely used by many researchers to obtain SPAD data for wheat
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(Zhang et al., 2019b; Wang et al., 2022a). In the experimental field,

the upper, middle, and lower leaves of winter wheat plants were

selected, and SPAD values were recorded. The average

chlorophyll content of the three leaf positions was considered

the canopy SPAD value of the respective winter wheat plant.

Then, the average SPAD value of five winter wheat plants was

calculated as the canopy SPAD value for that specific variety of

winter wheat.
Image processing

In this study, the DJI P4M drone was used to capture images.

The acquired raw images were processed using Pix4Dmapper

software (https://pix4d.com/) for image stitching. Prior to the

stitching process, image correction was performed based on

ground control points to generate a Digital Orthophoto Map

(DOM). Subsequently, reflectance conversion was conducted

using white balance correction to convert pixel values to

reflectance, resulting in reflectance images for all spectral

channels. Finally, the ARCGIS software (Version 10.3.1, Esri,

USA) (http://www.esri.com/arcgis/about-arcgis) was employed to

extract vector surfaces of the study area, enabling the acquisition of

reflectance data for further vegetation index calculations. The

processing flow of the image is shown in Figure 2.
Selection of vegetation indices

Combining reflectance values from different spectral bands

forms vegetation indices, which can reduce the influence of
TABLE 2 UAV Multispectral Imagery and SPAD data acquisition program.

Collection
time

Environment
Fertility
period

Collection data

2021.5.08

Manas

heading

Photosynthetic traits
multispectral imaging

2021.5.21 flowering

2021.5.28 filling

2021.4.30

Zepu

heading

2021.5.08 flowering

2021.5.15 filling

2022.5.13

Manas

heading

2022.5.20 flowering

2022.5.27 filling

2022.4.27

Zepu

heading

2022.5.08 flowering

2022.5.16 filling
FIGURE 2

Flow chart of UAV image processing.
TABLE 1 Parameters of UAV multispectral image acquisition.

Parameter Parameter values

Flight altitude 12m

Flight Speed 5.4km/h

Course overlap ratio 75%

Lateral overlap rate 75%

Spectral type Blue、Green、Red、
Red_edge、Nir
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factors such as background soil on vegetation spectra to some

extent, thereby improving the accuracy of estimating chlorophyll

content. In this study, various vegetation indices were selected and

then evaluated in combination with the correlation between

vegetation indices and SPAD values. The chosen vegetation

indices were used to inversely model the SPAD values and make

predictions. The formulas for calculating vegetation indices are

presented in Table 3.
Analytical methods

For this study, the classic SVM model, a machine learning

algorithm, was selected. The SVM model consists of two main

components: data construction and model creation. In the data

construction phase, X represents the input variables (vegetation

index combinations) and Y represents the target variable (measured

values of the studied photosynthetic trait). Assuming Y is a

continuous variable and the target value, the training dataset D is

as shown in Equation (1):

D = (x1, y1), (x2, y2),…, (xN , yN )f g (1)

xi = (x(1)i , x(2)i ,…, x(n)i )(i = 1, 2,…,N) (2)

xi represents the feature vector (Equation 2), n represents the

number of features, andN represents the material capacity, which in

this research corresponds to the number of residential areas. A

heuristic method is adopted for partitioning the feature space. Each

time, the current set of features and their values are examined one

by one. The optimal split point is selected based on the criterion of

minimizing the squared error. For example, for the j feature variable

x(j) in the training set and its set of values S, it is used as the splitting

variable to define two regions R1(j, s) = xjx(j) ≤ s
� �

and R2(j, s) =

xjx(j)>s� �
and find the optimal j and s.

In this study, the SVM kernel used for regression analysis is

support vector machine regression (SVR), which establishes the
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dependency between vegetation indices and photosynthetic traits.

The set X mentioned above represents the vegetation indices, while

Y represents the photosynthetic traits. To achieve higher accuracy

and faster convergence, the data is first subjected to standardization

before the model regression analysis. Let us assume finij represents

the j feature value of the i material, finmin,j represents the minimum

value of the j feature, and finmax,j represents the maximum value of

the j feature. The standardized result finxj is calculated as shown in

Equation (3):

finij =
finij − finmin,j

finmax,j − finmin,j
(3)

This equation calculates the standardized value of each feature

by subtracting the minimum value and dividing it by the range

(maximum value minus minimum value) of that feature.

Standardization was performed to ensure that all features were on

the same scale, which helped in comparison and analysis. It enabled

a fair assessment of the relative importance of different features and

prevented any bias that may have arisen from the original scale of

the data.
Indicators for model evaluation

During the modeling process, it was important to ensure that

the training set and validation set did not overlap. Finally, the

coefficient of determination (r), root mean square error (RMSE),

and relative error (RE) are used as indicators to assess the

correlation of the model’s predicted values.

r = o
n
i = 1(ŷ i − �y)2

on
i = 1(yi − �y)2

(4)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i = 1(ŷ i − yi)
2

n

s
(5)
TABLE 3 Vegetation index and its calculation formula.

Vegetation index formula to calculate Reference

NDVI NDVI = (RNir − RRe d)=(RNir + RRe d) (Rouse et al., 1973)

GNDVI GNDVI = (RNir − RGreen)=(RNir + RGreen) (Wagner, 1996)

NGBDI NGBDI = (RGreen − RBlue)=(RGreen + RBlue) (Dong et al., 2015)

NGRDI NGRDI = (RGreen − RRe d)=(RGreen + RRe d) (Dong et al., 2015)

RERDVI RERDVI = (RNir − RRed _ edge)=(RNir + RRed _ edge) (Xue and Su, 2017)

SAVI SAVI = 2:5*(RNir − RRed)=(RNir + RRed + 0:5) (Huete, 1988)

OSAVI OSAVI = (RNir − RRed)=(RNir + RRed + 0:16) (Rondeaux et al., 1996)

RVI RVI = RNir=RRed (Wang et al., 2007)

DVI DVI = RNir − RRed (Tucker, 1979)

GRVI GRVI = RNir=RGreen (Tucker, 1979)
RBlue、 RGreen、 RRed、 RRed _ edge and RNir respectively represent the reflectance of the blue wave band, green band, red band, red edge band, and near infrared band.
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RE ¼ yi − ŷ i

yi

����
���� (6)

In Equations (4–6) of the given expression, ŷ i represents the

predicted values of the photosynthetic trait; yi represents the

measured values of the photosynthetic trait; �y represents the

average value of the photosynthetic trait; and n represents the

number of validation materials. These equations are utilized to

calculate and evaluate various metrics that assess the performance

of the model’s predictions in comparison to the actual

measurements of the photosynthetic trait.
Modeling framework

The model construction flow of this study is shown in Figure 3.

SPAD used 1,800 materials of water and drought treatments at the

tasseling, flowering, and grouting stages in 2021 and 900 materials

of water and drought treatments at the tasseling, flowering, and

grouting stages in 2022 from the Manas and Zepu regions in

Xinjiang for the construction and prediction of the model. SPAD

prediction model for different periods of data with different

treatments, data in accordance with the ratio of 7:3 for the

division of training set and test set, test set 210 materials, test set

90 materials, validation, and finally in the BLUP calculation of all

the data and use all the data as a training set, through the original

data calculated BLUP values and the model prediction of the BLUP

to model the Evaluation.
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Results

Accuracy evaluation of UAV multispectral
image data

The winter wheat UAV remote sensing images obtained during

the heading, flowering, and filling stages under normal irrigation

and drought stress treatments in Manas and Zepu regions in

Xinjiang from 2020 to 2022 were processed. Reflectance images of

different bands from different zones were obtained. The distribution

trend of reflectance is shown in Figure 4. From the figure, it can be

observed that there was a distinct peak approximately 550 nm and a

pronounced trough at 650 nm. After 750 nm, the reflectance curve

becomes steeper, indicating a rapid increase in reflectance. The

obtained reflectance values in this study are consistent with

previous research (Fu et al., 2019). Moreover, the results

demonstrate that the reflectance of the multispectral data has

high accuracy within the 466 nm–830 nm spectral range. This

finding is consistent with Aasen’s study (Aasen et al., 2015).

Additionally, the five selected multispectral bands in this study

fall within this spectral range, which enables the estimation of

canopy chlorophyll content in winter wheat.

Distribution of winter wheat canopy
SPAD phenotypes

In this study, we investigated the SPAD traits of Manas (MNS)

wheat in Xinjiang, China, during the reproductive stages of heading,
FIGURE 3

The data processing procedure and the ensemble SVM model averaging framework.
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flowering, and filling under both normal irrigation and drought

stress conditions in the years 2020–2022. We also examined the

SPAD traits of Zepu (ZP) wheat in Xinjiang during the heading,

flowering, and filling stages under normal irrigation conditions in

2021. We evaluated the SPAD traits from four dimensions, namely

the mean represented by m, median represented by median,

coefficient of variation represented by CV, and standard deviation

represented by s. From Figure 5A, it can be observed that during

the heading stage of Manas wheat in 2021, the CV of SPAD traits

was 5.00% under normal irrigation and 5.10% under drought stress.

Similarly, during the flowering stage, the CV was 4.60% under

normal irrigation and 4.30% under drought stress. For the grain

filling stage, the CV was 4.40% under normal irrigation and 3.50%

under drought stress. Considering the entire reproductive period,

the CV ranged from 4.40% to 5.00% under normal irrigation and

from 3.50% to 5.10% under drought stress. Additionally, the mean

(m) values during the entire reproductive period ranged from 58.64

to 61.83, while under drought stress, the range was 58.82–59.89.

Similarly, from Figure 5B, it can be seen that during the heading

stage of Manas wheat in 2022, the CV of SPAD traits was 6.70%

under normal irrigation and 6.10% under drought stress. During

the flowering stage, the CV was 6.60% under normal irrigation and

5.60% under drought stress. For the filling stage, the CV was 5.80%

under normal irrigation and 5.10% under drought stress.

Considering the entire reproductive period, the CV ranged from

5.80% to 6.70% under normal irrigation and from 5.10% to 6.10%

under drought stress. Additionally, the mean (m) values during the
entire reproductive period ranged from 57.54 to 59.41, while under

drought stress, the range was 56.74–57.98.
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From Figure 5C, it can be observed that during the heading

stage of Zepu wheat in 2021, the coefficient of variation (CV) of

SPAD traits was 4.10% under normal irrigation and 4.20% under

drought stress. During the flowering stage, the CV was 5.90% under

normal irrigation and 5.30% under drought stress. For the grain

filling stage, the CV was 4.90% under normal irrigation.

Considering the entire reproductive period, the CV ranged from

4.10% to 5.90% under normal irrigation and from 4.20% to 5.30%

under drought stress. Additionally, the mean (m) values during the
entire reproductive period ranged from 57.56 to 59.99, while under

drought stress, the range was 57.90–59.77.

Overall, the data shows a large dispersion and variation

range, indicating significant variation in SPAD traits during

the heading, flowering, and filling stages of Zepu wheat. This

also suggests that the population exhibits abundant genetic

variation, consistent with typical quantitative trait inheritance

characteristics, and the data follows a continuous and normal

distribution. From the perspective of normal irrigation and

drought stress, the range of average SPAD values throughout

the reproductive period indicates that SPAD content is higher

under normal irrigation compared to drought stress .

Furthermore, considering the CV, there is minimal difference

in heading stage CV between normal irrigation and drought

stress across different environments and reproductive stages.

However, with the progression of the reproductive stage and

prolonged drought stress, the variability range under normal

irrigation was higher than that under drought stress. As the

reproductive stage continues, the overall variability range

gradually narrows.
FIGURE 4

Reflectance curves of the five bands of the multispectrum under different treatments in different fertility periods in different environments.
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SPAD correlation analysis of winter wheat
canopy in different environments

The correlation analysis results of crown SPAD content at the

heading, flowering, and filling stages of winter wheat under normal

irrigation and drought stress treatments in Manas and Zepu regions

of Xinjiang from 2020 to 2022 are shown in Figure 6.

In the figure, the correlation of crown SPAD content at different

growth stages of winter wheat was compared, and it can be observed

from Figure 6 that the crown SPAD content of winter wheat had

reached a significant level. In the Manas environment of 2021, the

correlation under normal treatments at different growth stages

ranged from 0.21 to 0.81, while under drought stress treatments,

the correlation ranged from 0.20 to 0.77. In the Zepu environment

of 2021, the correlation under normal treatments at different growth

stages ranged from 0.13 to 0.74, while under drought stress

treatments, the correlation ranged from 0.22 to 0.66. In the

Manas environment of 2022, the correlation under normal

treatments at different growth stages ranged from 0.51 to 0.70,

while under drought stress treatments, the correlation ranged from

0.49 to 0.74. Overall, the correlation of crown SPAD content in

winter wheat under different environmental conditions and

treatments ranged from 0.13 to 0.81, reaching a significant level.
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Evaluation of the accuracy of the
prediction model

The SPAD values of winter wheat during three growth stages

(heading, flowering, and filling) under two water stresses were

modeled using the SVM machine learning algorithm, and the

results are shown in Table 4. In the Zepu region of Xinjiang,

under normal irrigation during the heading stage, the predicted

values showed a correlation coefficient (r) of 0.73 with the measured

values. The root mean square error (RMSE) was 6.07, and the

relative error (RE) was 0.10%. For the flowering stage with normal

irrigation, the corresponding values were r = 0.73, RMSE = 5.87, and

RE = 0.20%. During the filling stage with normal irrigation, the

values were r = 0.73, RMSE = 6.01, and RE = 0.20%. In the Manas

region, during the heading stage with normal irrigation, the

predicted values showed a correlation coefficient ranging from

0.59 to 0.80. The RMSE ranged from 2.51 to 7.95, and the RE

ranged from 0.20% to 0.80%. For the flowering stage with normal

irrigation, the corresponding values were r = 0.65–0.81, RMSE =

2.15–11.64, and RE = 0.10%–1.20%. During the grain filling stage

with normal irrigation, the values were r = 0.59–0.81, RMSE = 4.87–

10.05, and RE = 0.10%–0.40%. Considering both the Zepu and

Manas regions over 2 years, during the heading stage with normal
B

C

A

FIGURE 5

SPAD distribution of BLUP under different treatments at different fertility stages in different environments and the full average environment (A) SPAD
distribution under normal irrigation and drought stress at full fertility in 2021 MNS; (B) SPAD distribution under normal irrigation and drought stress at
full fertility in 2022 MNS; (C) SPAD under normal irrigation and drought stress at full fertility in 2021 ZP and BLUP distributions for all environments.
2021-MNS-H-N: 2021 Manas normal irrigation at heading stage; 2021-MNS-H-D: 2021 Manas drought stress at heading stage; 2021-MNS-F-N:
2021 Manas normal irrigation at the flowering stage; 2021-MNS-F-D: 2021 Manas drought stress at the flowering stage; 2021-MNS-G-N: 2021
Manas normal irrigation at the stage of filling; 2021-MNS-G-D: 2021 Manas drought stress at the stage of filling; 2022-MNS-H-N: 2022 Manas
normal irrigation at the stage of heading; 2022-MNS-H-D: 2022 Manas drought stress at the stage of heading; 2022-MNS-F-N: 2022 Manas normal
irrigation at the stage of flowering irrigation; 2022-MNS-F-D: 2022 Manas flowering drought stress; 2022-MNS-G-N: 2022 Manas filling drought
stress; 2022-MNS-G-D: 2022 Manas filling drought stress; 2021-ZP-H-N: 2021 ZP heading normal irrigation; 2021-ZP-H-D: 2021 ZP heading stage
drought stress; 2021-ZP-F-N: 2021 ZP flowering stage normal irrigation; 2021-ZP-F-D: 2021 ZP flowering stage drought stress; 2021-ZP-G-N: 2021
ZP grubbing stage normal irrigation; BLUP: best linear unbiased prediction for the whole environment.
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irrigation, the predicted values showed a correlation coefficient

ranging from 0.69 to 0.80. The RMSE ranged from 2.51 to 7.95, and

the RE ranged from 0.10% to 0.80%. For the flowering stage with

normal irrigation, the corresponding values were r = 0.65–0.81,

RMSE = 2.15–11.64, and RE = 0.10%–1.20%. During the grain

filling stage with normal irrigation, the values were r = 0.59–0.81,

RMSE = 4.87–10.05, and RE = 0.20%–1.00%. In both the Zepu and

Manas regions of Xinjiang over the course of 2 years, during the

heading stage under drought stress, the predicted values showed r

from 0.69 to 0.77. The RMSE ranged from 2.48 to 12.6, and the RE

ranged from 0.20% to 0.80%. For the flowering stage under drought

stress, the corresponding values were r = 0.71–0.79, RMSE = 2.30–

7.72, and RE = 0.10%–0.80%. During the grain filling stage under

drought stress, the values were r = 0.70–0.73, RMSE = 7.90–9.50,

and RE = 0.60%–1.30%.
The BLUP values obtained through the best linear unbiased

prediction calculation for the SPAD measurements and predicted

values in all environments are shown in Figure 7. The BLUP model

achieved r= 0.53, RMSE=3.72, and RE= 1.20%. In terms of prediction

accuracy, the model performed better for normal irrigation conditions

compared to drought-stress conditions. Overall, the majority of the

predictions had an accuracy of 0.60 or higher, indicating that the

model’s predictive performance was quite satisfactory.
FIGURE 6

Correlation of SPAD under different treatments at different fertility
stages in different environments and the value of BLUP. Same as all
the notes in Figure 4.
TABLE 4 Model analysis of three fertility SVM models combined with vegetation indices to predict SPAD.

Fertility Environments Treatment r RMSE RE(%)

heading

2021-ZP
N 0.73 6.07 0.10

D 0.76 12.60 0.80

2021-MNS
N 0.80 2.51 0.20

D 0.77 2.48 0.20

flowering

2021-ZP
N 0.73 5.87 0.20

D 0.79 4.70 0.30

2021-MNS
N 0.81 2.15 0.10

D 0.75 2.30 0.10

filling

2021-ZP
N 0.73 6.01 0.20

D 0.75 12.94 0.70

2021-MNS
N 0.59 4.87 0.40

D 0.70 9.50 1.30

heading 2022-MNS
N 0.69 7.95 0.80

D 0.69 7.97 0.50

flowering 2022-MNS
N 0.65 11.64 1.20

D 0.71 7.72 0.80

filling 2022-MNS
N 0.81 10.05 1.00

D 0.73 7.90 0.60
2021-ZP: 2021 Zepu environment; 2021-MNS: 2021 Manas environment; 2022-ZP: 2022 Zepu environment; 2022-MNS: 2022 Manas environment; N: normal irrigation treatment; D: drought
stress treatment.
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Discussion

Effect of drought treatment on chlorophyll

The impact of drought on crops was widespread, particularly

for high-yielding and stable-yielding crops, with recent years in

China witnessing a reduction in crop production by 100 million

metric tons due to drought (Wang et al., 2003). Moreover, extreme

weather events have become increasingly frequent, significantly

affecting the entire growth stage of wheat under drought stress.

Additionally, the experimental area in this study primarily focused

on the Xinjiang region, which experiences perennial drought stress

on crops. Therefore, studying drought stress in the Xinjiang region

holds greater significance for crop productivity. Referring to the

historical research conducted on wheat and its growth stages, the

entire growth period can be categorized into four stages: the initial

stage (sowing-emergence), the development stage (emergence-

heading), the middle stage (heading-maturity), and the late stage

(maturity-harvest). Previous studies on the effects of drought stress

at different growth stages of wheat suggest that it can exert varying

degrees of influence on the physiological and biochemical

phenotypes within the plant. These changes manifest in the

alterations of SPAD content and leaf area index (LAI), indicating

a close relationship between chlorophyll content and the drought

resistance and yield traits of wheat (Li et al., 2010).

Through the study of the photosynthetic characteristics of

wheat under normal irrigation and drought stress across multiple

environments and growth stages, the analysis of SPAD values

indicates that the average photosynthetic content under normal

irrigation is higher than that under drought stress throughout the

entire growth period. Furthermore, as the growth stage progresses,

the differences in SPAD values between the two conditions become

smaller. From a physiological perspective, once wheat enters the

heading stage, it requires ample water for vigorous growth and to

effectively capture a large area of sunlight for photosynthesis and

dry matter accumulation. As the growth stage extends, the crop

gradually enters the senescence phase, resulting in a weakened

photosynthetic capacity and reduced accumulation of dry matter,
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leading to decreased variation in the measured values (Wang, 2008).

In addition, drought stress also affects the physiological and

biochemical processes within plants. Previous studies have shown

that drought stress leads to stomatal closure and a decrease in

stomatal conductance, resulting in reduced photosynthesis and dry

matter production. Drought stress also leads to the accumulation of

malondialdehyde (MDA) and peroxidase (POD) in plants. MDA is

an active lipid peroxidation product that can crosslink and

aggregate lipids, nucleic acids, and proteins and affect the

composition of cell membrane components, including chloroplast

membrane formation. POD, under prolonged drought stress,

generates reactive oxygen species and triggers lipid membrane

peroxidation. Both substances can cause changes in membrane

structure, resulting in leaf dehydration and affecting water

metabolism, thereby influencing crop yield. These findings are

consistent with the decreasing trend of wheat’s photosynthetic

characteristics under drought stress, as observed in this study

(Wang et al., 2003).
Generalization of SPAD inversion models

In this study, a support vector machine (SVM) regression model

was developed using multiple vegetation indices to estimate SPAD

values. Experimental results demonstrated that the SVM model

exhibited certain advantages during the heading, flowering, and

filling stages. The generalizability of the regression model was

validated using the SVM algorithm on a dataset of 300 natural

populations. Before conducting the model inversion, reflectance

values were extracted from different spectral bands of the acquired

multispectral data. The analysis of the reflectance extraction results

showed distinct peaks and valleys in the data, which were consistent

with the findings of Aasen et al (Aasen et al., 2015). This consistency

indicates the accuracy of the obtained reflectance data and prepares

the groundwork for subsequent model inversion processes.

In the same way, it was challenging to infer the distribution of

SPAD values using a single vegetation index. Additionally,

incorporating too many vegetation indices in the calculation

process exponentially increases the complexity. To address this,

the present study employed a comprehensive screening and

evaluation approach by considering both the contribution rate of

vegetation indices and their correlation with SPAD values. As a

result, different vegetation indices were selected for model

construction during various growth stages. Based on the

experimental results, it can be observed that the SVM model

performed well under normal irrigation conditions during the

heading, flowering, and grain-filling stages of wheat in the Zepu

region. The r between the predicted and measured values was 0.73,

with an RMSE of 6.07 and a RE of 0.10% during the heading stage.

During the flowering stage, the r was 0.73, the RMSE was 5.87, and

the RE was 0.20%. For the filling stage, the r was 0.73, the RMSE was

6.01, and the RE was 0.20%. In the Manas region, under normal

irrigation during the heading stage, the range of r values between

the predicted and measured values was 0.59–0.80, the RMSE ranged

from 2.51 to 7.95, and the RE ranged from 0.20%–0.80%. During the

flowering stage, the r ranged from 0.65–0.81, the RMSE ranged from
FIGURE 7

Distribution of BLUP values for predicted and tested values in
all environments.
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2.15 to 11.64, and the RE ranged from 0.10%-1.20%. For the filling

stage, the range of r values was 0.59–0.81, the RMSE ranged from

4.87–10.05, and the RE ranged from 0.10%–0.40%. In both the Zepu

and Manas regions, during the heading stage of wheat cultivation

across 2 years under normal irrigation, the range of r values between

the predicted and measured values was 0.69–0.80, the RMSE ranged

from 2.51 to 7.95, and the RE ranged from 0.10%–0.80%.
Conclusion

In this study, a method utilizing UAV remote sensing imagery is

developed for estimating the SPAD of wheat canopies. The SVM

machine learning algorithm was employed for model inversion.

Under normal irrigation during the booting stage, the r between

predicted and measured values ranged from 0.69 to 0.80, with

RMSE ranging from 2.51 to 7.95 and RE ranging from 0.10% to

0.80%. During the flowering stage under normal irrigation, the r

values ranged from 0.65 to 0.81, the RMSE ranged from 2.15 to

11.64, and the RE ranged from 0.10% to 1.20%. During the grain

filling stage under normal irrigation, the r values ranged from 0.59

to 0.81, the RMSE ranged from 4.87 to 10.05, and the RE ranged

from 0.20% to 1.00%. Under water stress during the booting stage,

the r values between predicted and measured values ranged from

0.69 to 0.77, with RMSE ranging from 2.48 to 12.60 and RE ranging

from 0.20% to 0.80%. Under water stress during the flowering stage,

the r values ranged from 0.71 to 0.79, the RMSE ranged from 2.30 to

7.72, and the RE ranged from 0.10% to 0.80%. Under water stress

during the grain filling stage, the r values ranged from 0.70 to 0.75,

the RMSE ranged from 7.90 to 12.94, and the RE ranged from 0.50%

to 1.30%. The BLUP (Best Linear Unbiased Prediction) values for all

SPAD tests and predicted values under all conditions resulted in an

r value of 0.53, an RMSE of 3.72, and a RE of 1.20%. In terms of

prediction accuracy, the models performed better under normal

irrigation compared to water stress conditions, with most of the

overall prediction accuracy being above 0.60. This study’s results

demonstrate that the SVM models constructed for different growth

stages and water stress can effectively estimate the chlorophyll

content in winter wheat canopies with varying levels of

growth vigor.
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