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Waterlogging is a constant threat to crop productivity and ecological biodiversity.

Plants face multiple challenges during waterlogging stress like metabolic

reprogramming, hypoxia, nutritional depletion, reduction in gaseous exchange, pH

modifications, microbiome alterations and disease promotion all of which threaten

plants survival. Due to global warming and climatic change, the occurrence, frequency

and severity of flooding has dramatically increased posing a severe threat to food

security. Thus, developing innovative crop management technologies is critical for

ensuring food security under changing climatic conditions. At present, the top priority

among scientists is to find nature-based solutions to tackle abiotic or biotic stressors in

sustainable agriculture in order to reduce climate change hazards to the environment.

In this regard, utilizing plant beneficial microbiome is one of the viable nature based

remedial tool for mitigating abiotic stressors like waterlogging. Beneficial microbiota

provides plants multifaceted benefits which improves their growth and stress

resilience. Plants recruit unique microbial communities to shield themselves against

the deleterious effects of biotic and abiotic stress. In comparison to other stressors,

there has been limited studies on how waterlogging stress affects plant microbiome

structure and their functional traits. Therefore, it is important to understand and explore

how waterlogging alters plant microbiome structure and its implications on plant

survival. Here, we discussed the effect of waterlogging stress in plants and its

microbiome. We also highlighted how waterlogging stress promotes pathogen

occurrence and disease development in plants. Finally, we highlight the knowledge

gaps and areas for future research directions on unwiring how waterlogging affects

plant microbiome and its functional traits. This will pave the way for identifying resilient

microbiota that can be engineered to promote their positive interactions with plants

during waterlogging stress.
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Introduction

In recent decades, harsh environmental conditions, such as

floods, drought, and extreme temperatures, have caused a

significant drop in agricultural yields across the globe (Kreibich et

al., 2022; Furtak and Wolińska, 2023). According to the Food and

Agriculture Organization of the United Nations (FAO), an increase

in food production of around 70% by 2050 is necessary to fulfill the

demand of an expanding population (FAO, 2021). However, in

fulfilling this demand, there is need to develop future climate

resilient smart crops in sustainable agriculture. Numerous

problems arise in the forecasts of what the future holds for our

global community, including how to strengthen food production in

light of the escalating effects of climate change and rising

population. Climate change has dramatically increased the

magnitude and occurrence of environmental stressors like floods

which affects crop productivity and food security (Kreibich et al.,

2022). Among environmental stressors, waterlogging stress has

emerged as a significant threat to agricultural output because it

alters not only key plant physiological and biochemical features but

also alters microbiome and soil physiochemical properties

(Francioli et al., 2021; Nio and Mantilen, 2023). In nature,

seasonal flooding is a regular occurrence in various ecosystems

and has a favorable impact on biodiversity and production.

Flooding may benefit agriculture by reloading soil nutrients in

floodplains, creating new homes for wildlife, and reviving

wetlands (Tonkin et al., 2018). However, unanticipated and

uncontrolled floods, on the other hand, are one of the most

damaging natural catastrophes, with the ability to wreak huge

damage not only to agriculture and but also endangers public

health (Kron, 2005). Climate models indicate that flooding events

may become more frequent and severe in the near future (Jongman

et al, 2014). Under flooding conditions, plants can be either

completely submerged or partially submerged which can have

distinct impact on their physiological, biochemical and

morphological traits (Sasidharan et al., 2017). In other words,

flooding is classified into two types: waterlogging, which occurs

when water is on the soil surface and only plant roots are

submerged and submergence, in which the whole plant can be

either underwater/fully immersed or partially submerged (Jia et al.,

2022). In the field, waterlogging can occur quickly after a heavy

rainstorm or as a result of flood, which leads plants to hypoxic

conditions (Voesenek et al., 2016).

Plants under waterlogging stress becomes more susceptible to

microbial pathogens which further endangers their survival (Moslemi

et al., 2018). On the other hand, waterlogging also leads dramatic

alteration in root microbiome which has huge impact on plants

survival under unfavorable conditions (Francioli et al., 2022;

Leelastwattanagul et al., 2023). In nature, plants are associated with

diverse and taxonomically structured microbial communities

including bacteria, fungi, and viruses, which are called the plant

microbiota (Trivedi et al, 2020). There are numerous reports which

highlight the importance of beneficial microbes in improving not

only plant growth but also their tolerance to different stressors

(Bokhari et al, 2019; Shekhawat et al, 2021; Timmusk et al., 2023).

Some of the key function’s microbes can assist plants are nutrient
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availability, modulation of growth and defense phytohormonal

signaling cascades, enhances stress tolerance and soil fertility (Ali et

al., 2022a, Ali et al, 2022b, Ali et al., 2023). Despite significant

progress in crop cultivar genetic modification and cultivation

practices that reduce waterlogging effects, the impact of rhizosphere

microorganisms in plant resistance to waterlogging has received little

attention. To reduce flooding stress, two primary tactics may be

implemented: traditional water management facilities (e.g., drainage,

dikes) and natural based solutions (Zölch et al., 2017). Also,

agronomic solutions for dealing with submergence or waterlogging

include creating standard models for predicting and assessing crop

loss due to floods for risk management, decision making and

economic insurance. Exploring plant microbiome under

waterlogging stress can provide novel nature-based strategy for

improving plant tolerance to waterlogging stress. Previous studies

have reported the microbial inoculation can ease waterlogging

induced effects in plants. For example, inoculation of plants with

Bacillus sps, producing 1-aminocyclopropane-1-carboxylic acid

deaminase, lower stress-induced ethylene levels, thereby protecting

plants from waterlogging stress (Ali and Kim, 2018). Similarly,

Farwell et al. (2007), revealed that inoculation of Pseudomonas

putida UW4 generates ACC deaminase, which mitigates the effects

of waterlogging and metal stress. Several ACC deaminase-producing

bacterial strains, including Serratia ureilytica, Achromobacter

xylosoxidans, Ochrobactrum rhizosphaerae, and Herbaspirillum

seropedicae, were isolated from the rhizosphere of waterlogged

Ocimum sanctum which may protect plants from waterlogging-

induced damage (Compant et al., 2019). These studies further

support the notion that microbiota can be an important tool for

mitigating waterlogging stress in sustainable agriculture. There are

many reports which have shown that microbiome as a significant

component for improving plant health and resilience to

environmental stressors (Koskella et al., 2017; Lau et al., 2017;

Compant et al., 2019). Unlike other stresses, there have been few

studies examining the influence of waterlogging on plant microbiota.

There are reports that waterlogging promotes anaerobes and disease-

causing pathogens which jeopardize plants survival (Hsu and Shih,

2013; Leelastwattanagul et al., 2023). However, it is likely that plants

may also recruit stress-relieving microbiome, with the ability to

promote or adapt to waterlogging stress necessitates future

investigations. The effects of waterlogging stress on microbial

diversity and plant microbiome interactions in not fully explored

despite the availability of high throughput tools. This mini review

offers an update on how waterlogging stress affects plants and their

microbiota. First, we discuss the effect of waterlogging in plants and

signaling evolved. Next, we discussed the effect of waterlogging stress

on plant microbiota. We also highlight how waterlogging promotes

pathogen distribution, distribution and disease severity in different

plant systems.
Waterlogging stress in plants

Waterlogging affects multifaceted morphological, physiological

and biochemical traits in plants which are crucial for their growth

and survival. The main challenges plants face during waterlogging
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stress are reduction in the rate of gas exchange, hypoxia, low

nutrient absorption, preventing aerobic respiration, increased

reactive oxygen species (ROS) and ethylene levels (Ashraf, 2012;

Tamang et al., 2014). Waterlogging also affects root system

architecture such as growth inhibition of lateral roots which is

due to the interference of ethylene with local auxin signaling

(Shukla et al., 2019). Waterlogging altered root system fails to

transport water and nutrients to aerial parts thereby causes

reduced apoplastic water movement (Sauter, 2013). Waterlogging

stress also affects chemical or hydraulic signals that cause stomatal

closure, eventually contributing to reduced leaf development (Li

et al., 2015). Another common response to floods is a reduction in

photosynthesis. On the other hand, waterlogging triggers the

accumulation of toxic compounds, carbon starvation and

cytoplasmic acidification which eventually leads to plant death.

On the other hand, plants vary in their capacity to survive the

detrimental effects of waterlogging due to their rapid or induced

modifications in plant traits, like plant height, adventitious roots

aerenchyma production, changes in leaf anatomy, improved shoot

elongation, starch storage hyponasty, barriers against radial oxygen

loss (Voesenek et al., 2016). For example, taller plants, in particular,

with aerenchyma content and larger specific leaf area may retain

greater levels of gas exchange during a flood and so continue to

grow (Colmer et al., 2019). Furthermore, certain plants may store

enormous amounts of starch in their underground structures, alter

their metabolic rates, and have the ability to develop quickly after

the flood waters subside (Voesenek and Bailey-Serres, 2015).

Plants under go rapid metabolic and anatomical reprogramming

during waterlogging stress in order to survive (Tyagi et al., 2023).

Previous research has shown that waterlogging triggers local hypoxia-

driven responses in the roots as well as systemic responses in the

shoots, including changes in hormonal dynamics, metabolic

reprogramming, ubiquitin-dependent protein degradation, and a

variety of other molecular and metabolic responses (Hsu et al.,

2011). Two hormones namely Abscisic acid (ABA) and ethylene

(ET) were identified as key drivers for systemic signaling during water

stress (Hsu et al., 2011; TSAI et al., 2014). One of the earliest

responses to anoxia conditions in plant roots or shoots is the

activation of calcium and reactive oxygen species (ROS) signaling

cascades and suppression of mitochondrial respiration (Yang et al.,

2023). Some of the key players like vacuolar H+/calcium transporter

CATION/PROTON EXCHANGER 1 (CAX1) and the

RESPIRATORY BURST OXIDASE HOMOLOGs D and F

(RBOHD and RBOHF) that drive early response during

waterlogging have been identified that regulates distinct anoxia

response like aerenchyma formation (Liu et al., 2017; Yang et al.,

2022). Recently, Peláez-Vico et al. (2023), identified GLUTAMATE-

LIKE RECEPTOR 3.3 and 3.6 (GLR3.3 and GLR3.6) calcium

channels, RBOHD, and aquaporin PLASMA MEMBRANE

INTRINSIC PROTEIN 2,1 (PIP2,1) proteins as potential players

involved in waterlogging systemic signaling in Arabidopsis. These

studies provide novel insights on how plants respond to waterlogging

stress at molecular level. However, future studies are required to

unravel early, localized and systemic signaling form root to shoot and
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also the role of cell wall sensors and calcium channels, hormones and

transporters during waterlogging stress, as well as how they regulate

signal perception and transduction.
Plant microbe interactions under
stress conditions

Plant-microbiome interactions are complex which can be

beneficial or harmful in nature. For example, beneficial microbiome

provides an array of benefits to plants such as nutrient availability and

uptake, nitrogen fixation, promote growth, antagonism towards

pathogens, boost stress resilience and improve soil fertility (Ali

et al., 2023). In contrast, harmful microbiota can be saprophytic,

biotrophic, hemi biotrophic and necrotrophic inhibiting or killing the

host through a variety of mechanisms (Wille et al., 2019). There have

been numerous studies highlighting the plant-microbe interaction

mechanisms, such as how plants respond to microbial colonization

and how microbial diseases and symbionts modify plant cellular

processes (Cheng et al., 2021). Interestingly, plant microbiome is an

essential determinant of plant health and also one of the important

drivers for plant survival under stressful conditions (Compant et al.,

2019). Plant beneficial microbiomes or their metabolites are

often used bioinoculants or biostimulants to enhance sustainable

plant development, and have emerged as a viable alternative

to agrochemicals that have negative environmental and

health consequences.

Plant microbiome interactions occurs at different plant

compartments with distinct habitats like phyllosphere, endosphere

and rhizosphere. Plant microbiome assembly is an intricate process

which is highly influenced by numerous genetic, biochemical, and

physiological and environmental factors. For example, microbes have

different growth conditions in terms of physiology, nutrients, pH,

temperature and moisture in addition to host factors all of which can

have significant impact on their assembly and host interactions in

above and below ground plant organ systems (Trivedi et al., 2020).

Plants ability to produce diverse chemical compounds like hormones,

flavonoids mucilage, and other chemicals from roots affects microbial

development, attracts particular bacteria, and can vary the rhizosphere

features. However, soil microbiota, on the other hand, are sensitive to

environmental changes, which has significant impact on plant survival

(Zhou et al., 2023). Increased climate change and other harsh

environmental stressors have not only direct effect on plant growth

and yield production but also on its beneficial microbiome and their

interactions. As, climate change is increasing the frequency and

intensity of drought, flooding, and global temperatures is rising all

of which changes the composition and activity of plant microbiomes,

potentially affecting host functional attributes. Many studies have

shown that environmental stressors change plant microbiome which

can have distinct impact on growth and adaptive traits or can be either

beneficial or detrimental to their host plants. For example, under

drought stress plant recruit selective drought tolerant bacterial taxa

which supports their growth under drought stress (Fitzpatrick et al.,

2020). Similarly, under salinity stress plant shape unique microbiome
frontiersin.org
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which alleviates their salt induced effects (Xu et al., 2020). Similarly,

endophytes have been found to promote seed germination during heat

and drought stress (Hubbard et al., 2019). According to Wipf et al.

(2021), Sorghum bicolor under drought and heat stress shapes

particular microbiota belongs to Actinobacteria which are known to

promote growth under stress conditions. On the other hand,

environmental cues can have detrimental impact on plants by

promoting harmful microbiota. For example, during waterlogging

anaerobes and pathogens can dominate which can have detrimental

impact on plant growth and survival (Moslemi et al., 2018).

Previous research has demonstrated that flooding affects the root

microbiome by decreasing immunological modulator beneficial

bacterial communities making plants more susceptible to disease

(Soltani et al., 2010; Kavamura et al., 2021). Climate change can

modify pathogen abundance and behavior, disrupt host-pathogen

interactions, and stimulate the formation of novel diseases (Cohen and

Leach, 2020).
Effect of waterlogging on
plant microbiome

Microbes associated with root system have a significant

influence on the soil environment, regulating numerous soil

biochemical processes as well as plant growth and adaptive (Sun

et al., 2024). Like other stressors, flooding has a direct influence on

soil and root microbiome by gradually depleting O2 in soil pores

which are filled with water. The shift from oxygenated to anoxic soil

affects the microbial makeup from a preponderance of aerobic

organisms, to a higher presence of facultative anaerobes, and

eventually to the dominance of strict anaerobes. Flooding alters

microbial communities in bulk and rhizo-sphere soils (Lin et al.,

2011; Hamonts et al., 2013; Francioli et al., 2021). Because the bulk

soil is the primary source of microorganisms recruited by plant

roots in the rhizosphere (Bulgarelli et al., 2012; Bonito et al., 2014),

flooding’s impact on the microbial composition of the bulk soil can

likewise influence the microbiome of the rhizosphere. Several

research on rice plants have shown how flooding impacts the

microbiome, mostly in terms of bacteria, although archaea,

oomycetes, fungus, and viruses remain largely unknown. Flooding

has been demonstrated to change rhizospheric and bulk soil

microbial populations (Iniesta-Pallarés et al., 2023). Previous

research has highlighted the impact of flooding on the rice

phyllosphere microbiome, with Firmicutes (54%) and Bacillus

(52.63%) being the leading species in flooded rice plants.

According to Tian et al. (2015), the amount and duration of

floods reduce plant microbial endophyte colonization. Under

normal conditions, the microbiome profiling showed that the

presence of beneficial microbial communities such as Desul-

fitobacterium), a nitrogen and carbon dioxide-fixing bacteria

Amnibacterium kyonggiense, phosphatase and beta-glucosidase-

producing bacteria, Streptomyces and Chaetomium pathogen

inhibiting, and plant growth hormone-producing microbes like

Trichoderma, Talaromyces Promicromonospora and Penicillium

(Hyakumachi, 1994; Salas-Marina et al., 2011). However, soil

microbiome profiling in sugarcane during waterlogging showed
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the dominance of plant detrimental microbial communities like

pathogens and growth-inhibiting bacteria (Leelastwattanagul et al.,

2023). Waterlogging also effects plant mycobiome in sugarcane

by increasing Basidiomycota and reducing Ascomycota which

contains many plant pgroth promoting fungal genera like

Trichoderma, Aspergillus, Talaromyces, Exophiala, Cladosporium,

Phoma, Penicillium, Purpureocillium, Chaetomium, and Phomopsis

(Leelastwattanagul et al., 2023). Similarly, Myricaria laxiflora, a

riparian shrub that frequently encounters periodic summer floods,

has decreased endophyte diversity in anaerobic conditions. A recent

study on spring wheat (Triticum aestivum) found that flooding

stress causes substantial alterations in the makeup of the

rhizosphere microbiome (Francioli et al., 2022). They found that

anaerobic bacteria belonging to phyla Desulfobacterota and

Firmicutes along with plant detrimental microbial taxa Geobacter

and Clostridium were dominant than plant-beneficial bacterial taxa

like Sphingomonas and Streptomyces which will have huge outcome

on plant fitness and survival. There have been numerous studies on

how flooding effected different microbial communities and their

functional attributes. For instance, hypoxia triggered by flooding

effects the plant mycorrhizal association mainly by inhibiting

hyphal growth and AM spore germination (Tacon et al, 1983).

Similarly, flooding also affects ecto-mycorrhiza (ECM) colonization

and richness (Unger et al., 2009). Plants exposed to waterlogging

stress reduced their ability to colonize with microbial endophytes as

most of the endophytes colonizing terrestrial roots are obligate

aerobes, and their survival is hindered under hypoxic conditions

triggered by flooding (Li et al., 2010). Previous studies have reported

that endophyte diversity was decreased in Myricaria laxiflora and

rice plants during flooding stress (Tian et al., 2015). Flooding also

alters phyllosphere microbiome structure in plants (Tian et al.,

2015; Vishwanathan et al, 2020). For instance, rice culms exhibited

a decrease in Gammaproteobacteria members in response to

flooding stress, although Firmicutes members, particularly

Bacillus species, appeared to adapt to flooding (Cui et al., 2019).

In rice, flooding and heat stress dramatically changes root

microbiome by enhancing the presence of bacterial alpha

diversity and reducing the relative richness of Actinobacteria and

Firmicutes which plays key role in carbon decomposition and soil

fertility (Liu et al., 2023). In addition to root microbiome, flooding

also effects leaf microbiome dynamics depending on the

developmental stage, with younger plants experiencing a more

dramatic disturbance in community formation (Francioli et al.,

2022). Importantly, these studies reported that the change in

microbiome composition was directly related to plant growth and

development as well as adaptive responses.

In comparison with other stressors, how waterlogging changes

plant root exudate chemistry that influence microbiome structure is

not fully understood. It is well documented that plants undergo

metabolic reprogramming from aerobic to anaerobic energy

synthesis which can direct influence on root exudates. Therefore,

it will be interesting to unravel the root exude diversity under

waterlogging conditions in both model and crop plants which can

provide novel insights on how plants influence its microbiome

during waterlogging. However, the effect of waterlogging on soil

physicochemical traits such as pH, structure, porosity, nutrients and
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oxygen reduction or reduced gaseous exchange are the primary

factors have severe influence on microbial diversity and community

activity (Neatrour et al., 2004; Yu et al., 2022). Further we have

shown the effect of waterlogging on plant microbiome and its

functional traits that are associated with plant growth and

adaptive responses in Figure 1. In this schematic illustration we

have highlighted host driven factors like metabolic shift from

aerobic to anaerobic, altered root exudes, and soil based factors

such as hypoxia, reduction in gaseous exchange, nutrition shortage

that alter plant microbiome during waterlogging.
Waterlogging increases pathogen
distribution and disease severity
in plants

Plants are constantly challenged by different microbial pathogens

which causes significant yield losses (Ali et al., 2018; Mir et al., 2021).

With climate change and occurrence of abiotic stressors has changed

the distribution, host specificity and pathogenicity of microbial

pathogens thereby posing serious threat to sustainable agriculture

(Ali et al., 2023). Flooding not only affects plant growth but also

makes them susceptible to number of pathogens. Flooding changes

plants microbiome structure which have significant impact of their

disease resistance. Indeed, flooding impacts the onset and

development of various plant diseases by altering host vulnerability

as well as the survival and pathogen distribution. In general, diseases

and pests proliferate rapidly in high humidity circumstances due to

enhanced germination and proliferation which ultimately leads to

huge crop yield losses (Savary et al., 2019). Flooding promotes disease

progression when plants get infected with oomycete or fungal
Frontiers in Plant Science 05
diseases like Phytopythium, Pythium, Phytophthora, Fusarium

(Wilcox, 1985; Moslemi et al., 2018). These pathogens cause more

damage to waterlogged stress plants and leads to high mortality.

During floods, increased root exudation of ethanol, carbohydrates,

and amino acids can promote pathogen infection (Blaker and

McDonald, 1981; Tyler, 2002). Flooding promotes disease

development by altering beneficial microbial communities which

are crucial for activating plant immune system. Previous studies

have shown that flood affects immunemodulator beneficial microbial

communit ies belonging Sphingomonas , Streptomyces ,

Flavobacterium, Saccharimonadia and Massilia which leads to dis-

ease progression (Soltani et al., 2010; Kavamura et al., 2021). Also,

flooding promotes disease progression by affecting plant symbiotic

association which are known to inhibit disease and pathogen

distribution by their antagonistic or antibiotic potential, as well as

activating systemic resistance induction. Francioli et al. (2021),

reported an increase in Clostridium species in roots after floods

which is commonly linked with root rot under waterlogged soils.

Previous study has revealed that flooding in Ulmus minor plants

changes root mycobiome and increases the development of root rot

disease caused by Plectosphaerella cucumerina by altering the

beneficial microbial communities (Martıńez-Arias et al., 2020).

Recent study has revealed that Phytophthora medicaginis a

causative agent of root rot disease in chickpea, was more severe

under waterlogging conditions (Dron et al., 2022). At present there

are not effective control measures against Phytophthora root rot

however, farmers are advised to avoid fields prone to waterlogging.

Similar studies have demonstrated that waterlogging enhances the

infection of phytopthora root rot in oak, avocado, and lucerne plants

(Kuan and Erwin, 1980; Jacobs et al., 1997). In kiwi fruit,

waterlogging triggers the severity of root rot disease caused by
A B

FIGURE 1

A schematic illustration shows how waterlogging affect plants and their microbiome. (A) Depicts waterlogging induced changes in tolerant and
susceptible plants. (B) Shows how waterlogging stress affects microbiome structure by altering host driven factors and soil physicochemical
properties which leads to dysbiosis and effects plant growth and adaptive traits.
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Phytopythium vexans and Phytopythium chamaehyphon, which

causes more damage that waterlogging alone (Savian et al., 2020).

Waterlogging has been shown to increase the prevalence of apple

crown and root rot (Phytophthora spp.), banana vascular wilt (F.

oxysporum f. sp. cubense), raspberry damping off (Pythium

irregulare), and chili pepper verticillium wilt (Verticillium dahlia)

(Aguilar et al., 2000; Sanogo et al., 2008; Li et al., 2015). On the other

hand, waterlogging renders pigeon pea plants more vulnerable to

fungal diseases including Fusarium wilt and Phytophthora blight,

resulting in considerable output losses (Yohan et al., 2017). Previous

study has reported that waterlogging increases the severity of disease

in pea plants caused by Mycosphaerella pinodes and resulted in

reduced root and shoot growth (McDonald and Dean, 1996).

Above studies further provides the evidence that waterlogging

enhances pathogen aggressiveness, their occurrence that causes

more damage than waterlogging alone. Further we have

summarized the case studies highlighting the effect of waterlogging

on disease incidence and severity in different plants in (Table 1).
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The promotion of pathogenic microbes and disease progression in

plants during waterlogging in mainly linked with energy deprivation

(Moslemi et al., 2018), suppression of oxidative burst and the immune

response, and hypersensitive cell death (McDonald, 2002). It will be

interesting in future to decipher the molecular complexity of

waterlogging and plant disease development and identify potential

targets that suppresses plant immunity. Further we have shown the

effect of waterlogging on disease development in plants in Figure 2. In

contrast, hypoxia caused by floods can minimize disease development

in plants by enhancing host defense responses as a result of the

activation of a general stress response (Chung and Lee, 2020).

Similarly, it was found that flooding stress lead the activation of

plant immune signature transcriptional factors WRKY which

modulated the expression of plant defense marker genes which have

diverse antagonistic effect on microbial pathogens (Hsu et al., 2013).

Future research is thus needed to determine how waterlogging affects

plant immune signaling cascades utilizing different crop systems, since

this would offer fresh perspectives on enhancing disease resistance.
TABLE 1 Waterlogging induced pathogen occurrence and disease progression in different plants.

Plant Waterlogging
(WL)

Pathogen Effect References

Chickpea WL Phytophthora
medicaginis

Enhanced disease progression and
reduced the total plant biomass

(Dron et al., 2022)

Soybean WL Pythium ultimum
P. irregulare, P. aphanidermatum, and
P. vexans

Root discoloration. Reduced plant weight (Kirkpatrick et al., 2006)

Wheat
and barley

WL Fusarium poae Enhanced disease incidence and severity,
Effects yield components and
grain composition

(Martıńez et al., 2019)

Bell Pepper WL Phytophthora capsici Increased disease severity and plant mortality (Bowers et al., 1990)

Apple WL Phytophthora cambivora,
Phytophthora cactorum and
P. cryptogea

Enhanced the severity of root rot disease (Browne and Mircetich, 1988)

Soybean
and tobacco

WL P. sojae and P. nicotianae Suppression of
host disease resistance

(McDonald, 2002)

Kiwifruit WL P. vexans and P. chamaehyphon Enhanced onset of disease and severity.
High mortality rate

(Savian et al., 2020)

Potato WL Erwinia carotovora Effect the expression of host defense genes
and increased the severity soft rot.

(Rumeau et al., 1990)

Onion WL Colletotrichum sp. Enhanced disease development (Lopes et al., 2021)

Banana WL F. oxysporum Increased the prevalence of wilt disease (Aguilar et al., 2000)

Common
bean

WL Pythium sps Enhanced disease development (Li et al., 2015)

Pigeon pea WL Fusarium and Phytophthora Increased disease incidence and
development. Yield losses

(Yohan et al., 2017)

Peach WL P. vexans and P. irregulare Enhanced disease severity (Biesbrock and Hendrix, 1970)

Pea WL Mycosphaerella pinodes Increased disease incidence
Reduced root and shoot growth

(McDonald and Dean, 1996)

Alfalfa WL Phytophthora megasperma Enhanced root damage and disease severity (Kuan and Erwin, 1980)

Jarrah WL Phytophthora cinnamomi Increased disease incidence and severity (Burgess et al., 1999)
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Conclusion and future perspectives

Waterlogging is a complex process which affects plant growth

and its metabolic traits by reducing soil oxygen levels, soil nutrient

utilization efficiency and altering microbiome. Over the last decade,

there has been a great deal of interest in exploring the beneficial

functional attributes of plant microbiomes, for crop improvement

which have proven to be an effective nature-based solution to

combat environmental stresses while safeguarding environmental

and soil health. For instance, the development of drought or salinity

tolerant microbiome synComs have been used by many researchers

to improve the growth and adaptive responses in different plant

systems under lab and field conditions. Therefore, there is need to

utilize plant beneficial microbiome as a key strategy for mitigating

waterlogging stress in plants and enhance crop productivity. This

will require an in-depth study using different omics and synthetic

biology approaches to decipher how plant microbiome responds

and adapts to waterlogging stress. Also, harnessing genome editing

tools and synthetic biology to engineer plants to produce root

exudates that can shape unique stress resilient microbiome is

another viable strategy for improving plant waterloging tolerance

and growth traits. There is need to explore the microbiome of

waterlogging tolerant crops or wild varieties which may lead to the

identification unique stress resilient microbiota that might promote

the plant growth and survival under waterlogging conditions.

Future studies should also unwire how waterlogging driven

metabolic shift in plants alter root exudate chemistry that will
Frontiers in Plant Science 07
eventually shape distinct microbiome communities. In light of

climate change, microbes are the best candidates to explore

because of their rapid natural adaptability to environmental

extremes and nourish under extreme growth conditions. At the

same time, how microbiome dysbiosis occurs during waterlogging

stress that triggers disease development or pathogen distribution

warrants future investigation. Finally, we recomend for designing

future flood modelling tools which will be an effective way for

evaluating hypothesis and examining different situations,

particularly with relation to the health of plants, microbial

communities, plant pathogen interactions and soil health. This

would require the collaboration of plant scientists from different

backgrounds to design future flood modelling in order to prevent

flood induced damage to sustainable agriculture.
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Furtak, K., and Wolińska, A. (2023). The impact of extreme weather events as a
consequence of climate change on the soil moisture and on the quality of the soil
environment and agriculture–A review. Catena 231, 107378. doi: 10.1016/
j.catena.2023.107378

Hamonts, K., Clough, T. J., Stewart, A., Clinton, P. W., Richardson, A. E., Wakelin, S. A.,
et al. (2013). Effect of nitrogen and waterlogging on denitri-fier gene abundance,
community structure and activity in the rhizosphere of wheat. FEMS Microbiol. Ecol. 83,
568–584. doi: 10.1111/fem.2013.83.issue-3

Hsu, F. C., Chou, M. Y., Chou, S. J., Li, Y. R., Peng, H. P., and Shih, M. C. (2013). Sub-
mergence confers immunity mediated by the WRKY22 transcription factor in
Arabidopsis. Plant Cell. 25, 2699–2713. doi: 10.1105/tpc.113.114447

Hsu, F. C., Chou, M. Y., Peng, H. P., Chou, S. J., and Shih, M. C. (2011). Insights into
hypoxic systemic responses based on analyses of transcriptional regulation in
Arabidopsis. PloS One 6, e28888. doi: 10.1371/journal.pone.0028888

Hsu, F.-C., and Shih, M.-C. (2013). Plant defense after flooding. Plant Signaling
Behav. 8, 2699–2713. doi: 10.4161/psb.26922

Hubbard, C. J., Li, B., McMinn, R., Brock, M. T., Maignien, L., Ewers, B. E., et al.
(2019). The effect of rhizosphere microbes outweighs host plant genetics in re-ducing
insect herbivory. Mol. Ecol. 28, 1801–1811. doi: 10.1111/mec.14989
frontiersin.org

https://doi.org/10.1071/BT99009
https://doi.org/10.1016/j.micres.2018.04.008
https://doi.org/10.1016/j.micres.2018.04.008
https://doi.org/10.3389/fmicb.2018.01096
https://doi.org/10.3390/microorganisms11020392
https://doi.org/10.3390/microorganisms11020392
https://doi.org/10.1016/j.envpol.2022.118940
https://doi.org/10.1016/j.envexpbot.2022.104933
https://doi.org/10.5897/AJARX11.084
https://doi.org/10.1094/Phyto-60-880
https://doi.org/10.1094/Phyto-60-880
https://doi.org/10.1094/Phyto-71-831
https://doi.org/10.1038/s41598-019-54685-y
https://doi.org/10.1111/mec.12821
https://doi.org/10.1094/Phyto-80-1439
https://doi.org/10.1094/Phyto-78-846
https://doi.org/10.1038/nature11336
https://doi.org/10.1046/j.1365-3059.1999.00396.x
https://doi.org/10.1016/j.plaphy.2021.02.026
https://doi.org/10.3389/fmicb.2020.01920
https://doi.org/10.1016/j.pbi.2020.02.008
https://doi.org/10.1111/pce.13562
https://doi.org/10.1016/j.jare.2019.03.004
https://doi.org/10.1093/femsec/fiz036
https://doi.org/10.1093/femsec/fiz036
https://www.fao.org/documents/card/en?details=cb4476en
https://www.fao.org/documents/card/en?details=cb4476en
https://doi.org/10.1016/j.envpol.2006.10.014
https://doi.org/10.1146/annurev-micro-022620-014327
https://doi.org/10.1038/s41598-022-15133-6
https://doi.org/10.3389/fmicb.2021.773116
https://doi.org/10.3389/fmicb.2021.773116
https://doi.org/10.1016/j.catena.2023.107378
https://doi.org/10.1016/j.catena.2023.107378
https://doi.org/10.1111/fem.2013.83.issue-3
https://doi.org/10.1105/tpc.113.114447
https://doi.org/10.1371/journal.pone.0028888
https://doi.org/10.4161/psb.26922
https://doi.org/10.1111/mec.14989
https://doi.org/10.3389/fpls.2024.1407789
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Tyagi et al. 10.3389/fpls.2024.1407789
Hyakumachi, M. (1994). Plant-growth-promoting fungi from turfgrass rhizosphere
with potential for disease suppression. Soil Microorganisms. 44, 53–68. doi: 10.18946/
jssm.44.0_53
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