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Spatial variations impact
the soil fungal communities
of Larix gmelinii forests in
Northeast China
Wen Zhao, Kaichuan Huang, Reyila Mumin, Junning Li,
Yifei Sun* and Baokai Cui*

State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature
Conservation, Beijing Forestry University, Beijing, China
Soil fungi play a critical role in the biogeochemical cycles of forest ecosystems.

Larix gmelinii is a strong and important timber tree species, which forms close

associations with a wide range of soil fungi. However, the temporal-spatial

disparity effects on the assembly of soil fungal communities in L. gmelinii

forests are poorly understood. To address these questions, a total of 120

samples, including 60 bulk soil and 60 root samples, were collected from

Aershan and Genhe in July (summer) and October (autumn)2021. We obtained

7,788 operational taxonomic units (OTUs) after merging, filtering, and rarefying

using high-throughput sequencing. The dominant phyla are Basidiomycota,

Ascomycota, Mortierellomycota, and Mucoromycota. There were 13 dominant

families, among which the families with average relative abundance more than

5% included Thelephoraceae, Mortierellaceae, Archaeorhizomycoaceae, and

Inocybaceae. In the functional guilds, symbiotrophic fungi had a relative

advantage in the identified functions, and the relative abundances of

pathotrophic and saprotrophic fungi varied significantly between sites. There

were 12 families differentially expressed across compartments, 10 families

differentially expressed between seasons, and 69 families were differentially

expressed between sites. The variation in alpha diversity in the bulk soil was

greater than that in the rhizosphere soil. Among the three parts (compartment,

season, and site), the site had a crucial effect on the beta diversity of the fungal

community. Deterministic processes dominated fungal community assembly in

Genhe, whereas stochastic processes dominated in Aershan. Soil

physicochemical properties and climatic factors significantly affected fungal

community structure, among which soil total nitrogen and pH had the greatest

effect. This study highlights that spatial variations play a vital role in the structure

and assembly of soil fungal communities in L. gmelinii forests, which is of great

significance for us in maintaining the health of the forests.
KEYWORDS
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1 Introduction

As an important component of soil microorganisms, soil fungi

play a vital role in the cycling of carbon, nitrogen, and phosphorus

in the ecosystem (Lladó et al., 2018) and promote the

biogeochemical cycle of the earth (Crowther et al., 2019; Jiang

et al., 2021). Among these soil fungi, mycorrhizal fungi established

mutualistic interaction with their hosts (Zhong et al., 2021),

saprophytic fungi carried out material and energy cycling in soil

(Setälä and McLean, 2004), and pathogenic fungi were partly

transferring in soil and causing disease (Maron et al., 2011). The

closest connection between soil fungi and plants occurs in the

rhizosphere, which is due to the root exudates of the plant and

nutrient availability of the soil (Li et al., 2016; Praeg and Illmer,

2020). At the same time, plants also choose relevant fungi, so

vegetation types have a significant impact on the fungal community

in rhizosphere soil (Berendsen et al., 2012; Liu et al., 2023).

Larix gmelinii is a deciduous tree of the Pinaceae family with

rich timber accumulation and extreme cold tolerance (Kajimoto

et al., 1999; Sun et al., 2007). Northeast China is mainly located in

the Greater Khingan Mountains, which are important forest

resources. Larix gmelinii is an ectomycorrhizal tree species

(Ouimette et al., 2013; Miyamoto et al., 2021; Meng et al., 2023).

Numerous fungi attach to their host for nutrient uptake (Ishida

et al., 2007; Orwin et al., 2011). It can also help plants absorb

nutrients (Kuang et al., 2021) and maintain health (Berendsen et al.,

2012). Complex plant-associated fungal communities are directly

influenced by organic compounds secreted from plant roots

(Broeckling et al., 2008).

Fungal communities in the forest soil exhibited strong temporal

and spatial differences. Previous studies showed that

ectomycorrhizal fungi play a significant role in plant growth

season, whereas saprophytic fungi evidently increase during the

cold season (Vorı̌śǩová et al., 2014; Santalahti et al., 2016). Seasonal

changes in temperature and precipitation are also responsible for

variations in soil fungal communities (Tedersoo et al., 2014; Zhang

et al., 2018). In our previous study, temperature and precipitation

were found to be the most important factors affecting fungal

diversity with seasonal variations (Zhao et al., 2023). As for

spatial differences, soil fungal communities have different

structures between geographic sites, and their physicochemical

properties directly constitute different fungal living environments,

such as nitrogen (Zhou et al., 2016), pH (Zhang et al., 2016), and

moisture (Zumsteg et al., 2013). Our previous study showed that

differences in temperature and precipitation are also the main

driving factors for differences in fungal communities at large

regional scales (Wang et al., 2022). Even at a small local scale,

there are significant differences in soil fungal communities among

different vegetation types (Huang et al., 2023).

Community assembly, which is the balance between fungal

community activity and environmental filtration, is categorized into

deterministic and stochastic processes. Deterministic processes

involve biotic and abiotic factors, including interspecific

interactions such as competition, predation, symbiosis, and

environmental filtering. Stochastic processes are understood as

the drift, migration, speciation, and species extinction of
Frontiers in Plant Science 02
microorganisms (Nemergut et al., 2013). When the environment

limited the life of fungi, deterministic processes were the main

factors affecting communities. Therefore, the communities

dominated by deterministic processes were more unstable. In

contrast, the communities dominated by stochastic processes were

resistant to environmental change (Powell et al., 2015). It is difficult

to understand the key factors that affect soil fungal community

assembly processes, because we cannot directly measure an

indicator to gauge the process. Ecologists have obtained a deeper

and more scientific understanding of the community assembly

process and shown that the stochastic and deterministic processes

can be strongly influenced by selection, dispersal, diversification,

and drift (Vellend, 2010; Stegen et al., 2012), and compute a value

through a framework to delineate the processes (Stegen et al., 2013).

Zhou and Ning (2017) suggested that one of the main goals of

microbial ecology is to project future scenarios of microbial

community structure and functions in a changing environment.

In this study, we aimed to determine the differences in

rhizosphere and bulk soil fungal communities with different

temporal and spatial variations and to determine the relationship

between the fungal community and environmental variables.

Considering the long winters and frozen soil in Frigid-Temperate

Zones, and combining with the annual variation in temperature and

precipitation, we finally chose July and October to represent the

seasons (summer and autumn). We selected two representative sites

in the main distribution of L. gmelinii in the Greater Khingan

Mountains and collected 120 rhizosphere and bulk soil samples for

analysis and exploration in July and October of 2021. Furthermore,

we identified the main taxa and their functional guilds, summarized

their variations, and calculated the community assembly processes

and the main factors that caused these results. This was a

multifaceted systematic analysis to explore the temporal-spatial

patterns and driving factors of the soil fungal community in L.

gmelinii forest.
2 Materials and methods

2.1 Study sites

The present study was conducted in two typical areas of L.

gmelinii forests in the Greater Khingan Mountains, China (Figure 1,

Table 1). One study area was located in the Aershan National Forest

Park, Aershan (47°15′17″N, 120°17′34″E, shortened to Aershan),

the southernmost area of L. gmelinii growing in China. The other

was located in the Jinlin Forest Farm, Genhe (51°21′51″N, 121°20′
31″E, shortened to Genhe), which is the core area for the

distribution of L. gmelinii. The study area is located in a high-

latitude permafrost distribution area in China (Ding et al., 2019).

The winters in the study areas were long and cold, the summers

were short and rainy, and spring and autumn were cool with less

precipitation (Liu et al., 2020). The dominant tree species in these

areas were L. gmelinii and Betula platyphylla, with a forest coverage

rate of 80%. The zonal soil at both sites is Retisol (IUSS Working

Group, 2015). The soil in Aershan is a typical black soil that is soft,

moist, and nutritious, whereas the soil in Genhe is rich in gravel. A
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shovel was used to turn over the stones and obtain the soil in the

stone cracks.
2.2 Collection of bulk and rhizosphere soil

The rhizosphere and bulk soil samples were collected in July

and October 2021, representing summer and autumn, respectively.

At each sampling site, we established three 20 m × 20 m plots at

least 100 m apart and collected five soil samples from five points

(four corners and the center) as independent samples. Roots were

extracted by digging the trees near the points to collect rhizosphere

soil. In total, 120 samples (5 independent replicates× 3 plots × 2

compartments × 2 sites × 2 seasons) were used for DNA extraction.

Additionally, 60 bulk soil samples were used to determine the soil

physicochemical properties. Specifically, bulk soil from 0 to –20 cm

was obtained, sifted through a 2 mm mesh sieve, mixed, and then

packed into centrifuge tubes and sealed bags. The roots were stored

in sealed bags. The samples in centrifuge tubes were stored with dry

ice during the sampling process and transported to the laboratory

stored at −80°C. The roots were stored with ice in the field and then

transported to the laboratory stored at 4°C for the rhizosphere soil.

The bulk soil was stored in sealed bags and transported at

room temperature.
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Rhizosphere soil was then separated from roots by shaking root

and soil in 25 mL 0.1 M sterile phosphate buffer (7.1 g Na2HPO4

and 4.4 g NaH2PO4·H2O were added to 820 mL deionized water;

pH 7.0) in a 50 mL plastic conical centrifuge tube at 67 g for 5 min.

The soil suspension was centrifuged at 4000 g for 15 min, and the

obtained soil pellet was regarded as the rhizosphere soil and stored

at −80°C until DNA extraction (Liu et al., 2021).
2.3 Environmental variables

To determine soil properties, we followed the method described

by Bao (2000). The soil in the sealed bags was dried naturally to

determine the following physicochemical properties: soil organic

carbon (SOC) was determined by the potassium dichromate

volumetric method (Li et al., 2020), available phosphorus (AP)

was determined by molybdenum antimony resistance colorimetry

(Cai et al., 2018), pH was determined by the potential method (Li

et al., 2020), total nitrogen (TN) was determined by Kjeldahl

method (Shi et al., 2014), and the cation exchange capacity (CEC)

was determined by the ammonium acetate exchange method (Liang

et al., 2015).

Historical monthly weather data were obtained from

WorldClim (https://www.worldclim.org/data/monthlywth.html#;

accessed July 20, 2023), including average minimum temperature

(°C), average maximum temperature (°C), and total precipitation

(mm) in July and October 2021. The mean annual temperature and

precipitation for 1970–2000 were obtained from WorldClim.
2.4 Soil DNA extraction and
PCR amplification

DNA was extracted using the DNeasy PowerSoil Pro Kit

(Qiagen, Frankfurt , Germany). A NanoDrop NC2000

spectrophotometer (Thermo Fisher Scientific, Waltham, MA,

USA) was used to quantify the DNA, and the quality of the DNA

was detected using 1.2% agarose gel electrophoresis. The ITS1

region of fungi was amplified, and the primers were ITS5F (5-

GGAAGTAAAGTAAAAGTCGTAAAGG-3) and ITS2R (5-

GCTGCGTTCTTCATCGATGC-3) (White et al., 1990). PCR

system (20 mL): 2 mL (2.5 mM) of dNTP. Of note, 1 mL (10 μM)

forward primers and 1 mL (10 μM) reverse primers, 2 mL template

DNA, 10 mL ddH2O, and 4 mL Fast pfu DNA polymerases.

Circulating system: 95°C for 2 min; 30 cycles at 95°C for 30
FIGURE 1

Distribution of the two forests.
TABLE 1 Localities, climates and forest conditions of the sampling sites.

Site
Latitude,
longitude

MAT (°C)
MAP
(mm)

Altitude
(m)

Average
tree
height (m)

DBH (cm)
Tree age
(year)

Understory

Aershan
47°15′17″N,
120°17′34″E

−2.87 459 1065 14 18 40 Grass

Genhe
51°21′51″N,
121°20′31″E

−5.11 507 915 12 15 60 Ledum palustre
MAT, Mean Annual Temperature; MAP, Mean Annual Precipitation; DBH, diameter at breast height.
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seconds, 55°C for 30 seconds, and 72°C for 30 seconds; 72°C for 5

min. PCR amplification was performed using an Applied

Biosystems 2720 Thermal Cycler (Thermo Fisher Scientific,

Waltham, MA, USA). The Quant-iT PicoGreen dsDNA assay was

performed using a Microplate Reader FLx800 (BioTek, Burlington,

Vermont, USA). PCR amplicons were purified and recovered by

adding Vazyme VAHTSTM DNA Clean Beads (Vazyme, Nanjing,

China), quantified with the fluorescent reagent of Quant-iT

PicoGreen dsDNA assay kit (Invitrogen, Carlsbad, CA, USA), and

then mixed in proportion to the sequencing amount. Pair-end 2 ×

250 bp sequencing was performed using the Illumina MiSeq

platform with a NovaSeq 6000 SP reagent kit at Shanghai

Personal Biotechnology Co., Ltd. (Shanghai, China). All raw

sequencing data from this study have been deposited in the NCBI

database with the Short Read Archive (SRA) accession

number PRJNA1037725.
2.5 Sequence analysis

The early sequence processing in this experiment was based on

QIIME 2–2021.2 (Bolyen et al., 2019). A Demux plug-in was used to

split the samples. The DADA2 plug-in was used to perform quality

control, such as filtering and noise removal; the positions at which

the forward and reverse read sequences should be truncated due to a

decrease in quality were 222 and 232, respectively, and the

minimum and maximum sequence lengths were 230 and 438,

respectively. The Vsearch plug-in was used to cluster the

sequences into operational taxonomic units (OTUs) according to

the 97% similarity principle. The Phylogeny plug-in was used to

generate the phylogenetic trees. According to the fungus UNITE

v.8.2 database (Nilsson et al., 2019), we used the Feature Classifier

plug-in to annotate the species. Functional guilds and trophic

modes were obtained from the FUNGuild database (Nguyen

et al., 2016).

ITS is not a conserved region, making the constructed

phylogenetic trees unstable. In this case, a hybrid tree based on

the Silva 138 18S database and Unite 8.2 fungal dynamic database

was constructed using q2-ghost-tree (Fouquier et al., 2016). The

results of species composition and diversity analysis based on the

OTU selected according to the ghost tree were basically consistent

with those of the ITS tree, and the community assembly processes of

the two phylogenetic trees were consistent. However, compared to

phylogenetic trees based on ITS primers, the minimum frequency of

samples decreased from 39,602 to 9,499, resulting in the loss of 76%

of OTUs. Therefore, we decided to construct the ITS phylogenetic

tree in this study.
2.6 Statistical analysis

The data processing part was mainly completed with R 4.1.2 (R

Core Team, 2022) and SPSS 26.0 (SPSS Inc., Chicago, IL, USA). The

vegan package provides tools for describing the community ecology.

First, we used the rarefy command of the vegan package to
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standardize the OTU table according to the minimum sequence

number of samples and constructed the rarefaction curve using the

rare-curve command. Counts of different taxonomic categories were

obtained using the Phyloseq package. Then we grouped taxa and

functions which was not identified or whose average relative

abundance was less than 1% into “others,” and defined dominant

taxa as which a relative abundance more than 1%. The

MicrobiotaProcess package was used to obtain alpha diversity

indices. For alpha diversity analysis, the Shannon diversity index,

Chao1 richness index, and Pielou evenness index were selected for

one-way analysis of variance (ANOVA) and Tukey’s honest

significant difference (HSD) test at P < 0.05 to compare species

diversity. Beta diversity was tested by Principal coordinate analysis

(PCoA) based on the OTU level, and the differences between fungal

communities were tested by Permutational multivariate analysis of

variance (PERMANOVA) of 999 permutations. Differential

expression analysis was performed using the DESeq2 package

based on the family level except for unassigned families.

Comparisons were performed in four groups for each part to

avoid the influence of other parts, and differentially expressed

families (P < 0.05) were categorized as up regulated

(log2FoldChange > 2) or down regulated (log2FoldChange < −2).

A family that was up regulated or down regulated in two or more

groups in each part was defined as differentially expressed in this

part. We selected the null model described by Stegen et al. (2013) to

classify community assembly processes. We calculated the b-nearest
taxon index (bNTI) and modified Raup-Crick index (RCBray) using

iCAMP package. bNTI values < −2 (homogeneous selection) or > +2

(heterogeneous selection) indicated deterministic processes; −2 <

bNTI values <+2 indicated stochastic processes including

homogenizing dispersal (RCBray < −0.95), dispersal limitation

(RCBray > 0.95) and undominated (−0.95 < RCBray < 0.95). The

Mantel test was performed on community structure and

environmental variables. A heatmap was used to show Spearman’s

correlation between the relative abundance of dominant phyla and

environmental variables. The data were visualized using the ggplot2

package. All analyses of variance (ANOVA) were calculated using

SPSS, with P < 0.05 considered statistically significant.
3 Results

3.1 Soil properties and climatic factors

We only analyzed the soil properties in bulk soil, as we can only

extract a small amount of rhizosphere soil for DNA extraction.

There were significant differences in the physicochemical properties

of the soil among the different variables (Table 2). Soil total nitrogen

(TN), SOC, pH, and CEC in Aershan were significantly higher than

those in Genhe. Available phosphorus (AP) in Genhe was

significantly higher than that in Aershan. Between the two

seasons, there were no significant differences in TN, SOC, and

CEC in Aershan, and no significant difference in pH in Genhe. In

summary, compared with the season, the differences in soil

physicochemical properties between the two sites were greater.
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3.2 Fungal community composition and
functional guilds

In total, 7,593,884 quality-filtered sequences were obtained

from the 120 samples. After rarefying 39,602 sequences per

sample (Figure 2A), 4,752,240 unique sequences were clustered

into 7,788 operational taxonomic units (OTUs) with 97% identity.

These OTUs belonged to 17 phyla, 60 classes, 138 orders, 362

families, and 864 genera.

We found that the differences in fungal composition

were significant (Figures 2B, C), and there were also

significant differences in functional guilds between the groups

(Figure 2D). Basidiomycota, Ascomycota, Mortierellomycota, and

Mucoromycota were the dominant phyla (average relative abundance

> 1%). There were 13 dominant families, among which the families
Frontiers in Plant Science 05
with a relative abundance more than 5% included Thelephoraceae,

Mortierellaceae, Archaeorhizomycoaceae, and Inocybaceae. In terms

of functional guilds, symbiotrophic fungi had an absolute advantage

in the identified functions and the relative abundances of

pathotrophic and saprotrophic fungi in Aershan were significantly

higher than those in Genhe.

More families were differentially expressed between sites

(Figure 3C), while there were fewer families with differential

expression in different compartments and seasons (Figures 3A, B).

Clavulinaceae, Hoehnelomycetaceae, Hydnangiaceae, Hygrophoraceae,

Pyronemataceae, Rhizopogonaceae, Sporidiobolaceae, and

Tritirachiaceae were significantly express families in bulk soil.

Mytilinidiaceae, Russulaceae, Trichosporonaceae, and Tulasnellaceae

were significantly expressed in rhizosphere soil. In July, only

Archaeorhizomycetaceae and Trimorphomycetaceae were
TABLE 2 Soil properties compared by ANOVA (mean values ± S.E.s) and monthly average climate factors in 2021.

Environmental factor Factor BAJ BAO BGJ BGO

Soil property

TN (g/kg) 5.79 ± 0.12a 5.77 ± 0.16a 2.61 ± 0.21b 1.87 ± 0.26c

SOC (g/kg) 72.21 ± 1.18a 75.56 ± 2.48a 71.08 ± 7.22ab 49.97 ± 8.45b

AP (mg/kg) 10.59 ± 0.87bc 10.04 ± 0.83c 16.43 ± 2.25ab 18.32 ± 2.02a

pH 5.02 ± 0.05b 5.81 ± 0.05a 4.33 ± 0.07c 4.38 ± 0.08c

CEC (cmol(+)/kg) 46.72 ± 0.39a 46 ± 0.57a 40.08 ± 1.42a 28.69 ± 3.76b

Climate factor

Tmax (°C) 23 7 22 5

Tmin (°C) 12 −7 10 −10

Prec (mm) 232.30 19.10 191 19.20
BAJ, bulk soil in Aershan, July; BAO, bulk soil in Aershan, October; BGJ, bulk soil in Genhe, July; BGO, bulk soil in Genhe, October; TN, total nitrogen; SOC, soil organic carbon; AP, available
phosphorus; CEC: cation exchange capacity; Tmax, the monthly minimum temperature; Tmin, the monthly minimum temperature; Prec: mean monthly precipitation. Different letters indicate
significant differences among different season tested by one-way ANOVA (P < 0.05).
B

C D

A

FIGURE 2

Fungal community structure in different compartments, seasons, and sites. (A) The rarefaction curve of the total 120 samples. Fungal community
composition at phylum (B) and family (C) levels, and the functional guilds (D) of the community. In Figure (D), red represents pathotroph, a series of
blue represents saprotroph, a series of green represents symbiotroph. A, Aershan; G, Genhe; J, July; O: October; B, Bulk; R, Rhizosphere. BAJ, bulk
soil in Aershan, July; BAO, bulk soil in Aershan, October; BGJ, bulk soil in Genhe, July; BGO, bulk soil in Genhe, October; RAJ, rhizosphere soil in
Aershan, July; RAO, rhizosphere soil in Aershan, October; RGJ, rhizosphere soil in Genhe, July; RGO, rhizosphere soil in Genhe, October.
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significantly expressed. As for October, Clavulinaceae, Cordycipitaceae,

Leucosporidiaceae, Mortierellaceae, Mycosphaerellaceae, Pezizaceae,

Schizoporaceae, and Vibrisseaceae were significantly expressed. A

total of 69 families showed differential expression between these two

sites, with 40 families dominating at Aershan and 29 families

dominating at Genhe (Table 3).

These results indicated that there were significant differences in

community composition and functional guilds between different

compartments, seasons, and sites.
3.3 Fungal diversity and community
assembly processes among different
compartments, seasons, and sites

The differences between the Shannon diversity, Chao1 richness,

and Pielou evenness indices were significant in different groups,

which consist of compartments, seasons, and sites. Shannon

diversity and Pielou evenness indices of RGO were highest among

these groups (Figures 4A, C). The group with the highest Chao1

richness index is BAJ (Figures 4B). Three-way ANOVA was used to
Frontiers in Plant Science 06
analyze the effects of compartment, season, and site on alpha

diversity. Among the single factors by Three-way ANOVA

(Table 4), the compartment had a significant effect on the

Shannon (F = 10.179, P = 0.002) and Pielou (F = 12.58, P =

0.001) indices, whereas both season (F = 24.934, P < 0.0001) and site

(F = 85.252, P < 0.0001) had a significant effect on the Chao1 index.

Principal coordinate analysis (PCoA) based on the Bray–Curtis

distance (Figure 4D) indicated significant differences among

multiple groups, especially between different sites (R² = 0.202, P =

0.001). The difference in fungal community structure between the

rhizosphere and bulk soil in Genhe was relatively small, whereas the

difference between the two seasons was significant. According to the

results of the permutational multivariate analysis of variance

(PERMANOVA), the grouping was credible (F = 9.088, P = 0.001).

According to the result of the b-nearest taxon index (bNTI,
Figure 4E), the values were dispersed around −2. Homogeneous

selection was more important than other processes in Genhe fungal

community assembly, whereas dispersal limitation was more

important than other processes in Aershan (Figure 4F). Soil

fungal communities in Aershan were dominated by stochastic

processes with average relative importance of 70.48−84.76%,
B

C

A

FIGURE 3

Differential expression analyses at family level in different compartments, seasons, and sites. (A) The ratio of rhizosphere to bulk. (B) The ratio of
October to July. (C) The ratio of Genhe to Aershan. BAJ, bulk soil in Aershan, July; BAO, bulk soil in Aershan, October; BGJ, bulk soil in Genhe, July;
BGO, bulk soil in Genhe, October; RAJ, rhizosphere soil in Aershan, July; RAO, rhizosphere soil in Aershan, October; RGJ, rhizosphere soil in Genhe,
July; RGO, rhizosphere soil in Genhe, October.
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whereas those in Genhe were dominated by deterministic processes

with average relative importance of 59.05−68.57%. The proportions

of deterministic and stochastic processes in the fungal community

assembly process significantly differed between the two sites.
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According to the results, there were significant differences in

alpha diversity and beta diversity of fungal communities in the soil

of L. gmelinii. Differently dominant processes in the community

assembly may cause the above results.
TABLE 3 The families of differential expression analyses in different compartments, seasons, and sites.

Part Rhizosphere_vs_Bulk October_vs_July Genhe_vs_Aershan

Down
regulated

Clavulinaceae Archaeorhizomycetaceae Amphisphaeriaceae Mrakiaceae

Hoehnelomycetaceae Trimorphomycetaceae Atheliaceae Nectriaceae

Hydnangiaceae Cephalothecaceae Phaeosphaeriaceae

Hygrophoraceae Ceratobasidiaceae Physalacriaceae

Pyronemataceae Cucurbitariaceae Piskurozymaceae

Rhizopogonaceae Cystofilobasidiaceae Psathyrellaceae

Sporidiobolaceae Dermateaceae Pseudeurotiaceae

Tritirachiaceae Discinaceae Pyronemataceae

Fomitopsidaceae Saccharomycetaceae

Ganodermataceae Sanchytriaceae

Gomphidiaceae Sebacinaceae

Hyaloscyphaceae Sordariaceae

Hymenogastraceae Sporidiobolaceae

Hypocreaceae Sporormiaceae

Inocybaceae Syzygosporaceae

Leptosphaeriaceae Thelephoraceae

Leucosporidiaceae Tremellaceae

Lyophyllaceae Tricholomataceae

Melanommataceae Trichomeriaceae

Microascaceae Trimorphomycetaceae

Up
regulated

Mytilinidiaceae Clavulinaceae Archaeorhizomycetaceae Hoehnelomycetaceae

Russulaceae Cordycipitaceae Ascocorticiaceae Hydnodontaceae

Trichosporonaceae Leucosporidiaceae Aspergillaceae Hygrophoraceae

Tulasnellaceae Mortierellaceae Boletaceae Leotiaceae

Mycosphaerellaceae Chrysozymaceae Lipomycetaceae

Pezizaceae Clavariaceae Mycosphaerellaceae

Schizoporaceae Clavicipitaceae Myxotrichaceae

Vibrisseaceae Coniochaetaceae Phacidiaceae

Cordycipitaceae Plectosphaerellaceae

Cortinariaceae Rhizopogonaceae

Didymosphaeriaceae Rutstroemiaceae

Geminibasidiaceae Serendipitaceae

Gloniaceae Tritirachiaceae

Helotiaceae Tulasnellaceae

Herpotrichiellaceae
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3.4 The relationship between fungal
community and environmental factors in
bulk soil

We performed mantle tests on the relationship between

individual environmental factors and the fungal community

structure of bulk soil and found that all soil properties,

temperature, and precipitation significantly affected the fungal

community structure (Table 5). Among the environmental

factors, TN (r = 0.734, P = 0.001) and pH (r = 0.174, P = 0.001)

had the greatest effect on fungal community structure. Altogether,

the correlation between the total environmental factors and

community structure was not high (r = 0.174, P = 0.001).

In the correlation relationships between alpha diversity indices

and environmental factors (Figure 5A), climatic factors had a

significant effect on all three alpha diversity indices, and alpha

diversity increased as temperature and precipitation increased.
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Additionally, the Chao1 evenness index was significantly

influenced by the CEC, TN, pH, SOC, and AP. The effects of the

CEC and pH on the Shannon diversity index were also significant.

To determine which taxa dominate the variation in fungal

community structure in L. gmelinii forests under environmental

changes, we evaluated the relationship between fungal families and

the environment. In total, 16 of 17 dominant families were

significantly correlated with environmental factors (Figure 5B),

whereas the correlation between Hygrophoraceae and

environmental factors was low and not significant. Russulaceae

was significantly and negatively correlated with climatic factors.

Inocybaceae were only significantly correlated with soil

physicochemical properties. Mortierellaceae, Atheliaceae,

Pyronemataceae , Pseudeurot iaceae , Hyaloscyphaceae ,

Tricholomataceae, and Thelephoraceae significantly correlated

with AP, CEC, TN, pH, Tmax, and Tmin. A few of them were

significantly correlated with Prec or SOC. Umbelopsidaceae was
B C

D E

F

A

FIGURE 4

Differences in soil fungal communities among different compartments, seasons, and sites. The Shannon diversity index (A), Chao1 richness index (B)
and Pielou evenness index (C) of the fungal community. (D) Principal coordinate analysis (PCoA) based on the Bray-Curtis distance of fungal
community. (E) The b-Nearest Taxon Index (bNTI) of the communities. (F) The proportion of deterministic and stochastic processes in fungal
community assembly process in the two sites. Different lower case letters indicate significant difference among groups (P < 0.05). BAJ, bulk soil in
Aershan, July; BAO, bulk soil in Aershan, October; BGJ, bulk soil in Genhe, July; BGO, bulk soil in Genhe, October; RAJ, rhizosphere soil in Aershan,
July; RAO, rhizosphere soil in Aershan, October; RGJ, rhizosphere soil in Genhe, July; RGO, rhizosphere soil in Genhe, October.
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significantly and positively correlated with CEC, TN, and climatic

factors. Archaeorhizomycetaceae and Serendipi,taceae were

significantly correlated with environmental factors except Prec.

Myxotrichaceae, Cortinariaceae, and Clavulinaceae were

correlated with some soil physicochemical properties and Prec.

The 17 dominant families were divided into two categories based on

their correlations as a result of clustering.

Our results demonstrated that soil physicochemical properties

and climatic factors played key roles in the diversity, composition

and community structure of soil fungi.
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4 Discussion

4.1 The fungal community of
rhizosphere soil

Hosts produce exudates to regulate the rhizosphere

microenvironment and provide carbon to microorganisms (Zhuang

et al., 2020). Fungi combined with host roots to assist plants in

absorbing carbon, nitrogen, phosphorus, and nutrients and play an

important role in plant growth, development (Lu et al., 2018), and

health (Berendsen et al., 2012). Many factors affect rhizosphere fungal

communities, including vegetation type (Philippot et al., 2013), soil

properties (Li et al., 2016), and biotic interactions (Paungfoo-

Lonhienne et al., 2015). In our study, the fluctuations in Shannon

and Chao1 indices were smaller in rhizosphere soil than in bulk soil.

We supposed that the composition of fungal community in the

rhizosphere was more stable. The alpha diversity of the fungal

community in rhizosphere of L. gmelinii forest in Genhe was

higher than that in bulk soil. However, the result was completely

opposite in the soybean soil (Zhang et al., 2018). The selective effects

of the root on specific taxa caused all the differences (Philippot et al.,

2013). There were four families enriched in the rhizosphere soil of L.

gmelinii. Russulaceae and Tulasnellaceae formed obligate mutualistic

root symbionts with L. gmelinii, and they were also widely distributed

in the mycorrhizae of orchid species (Li et al., 2021). Mytilinidiaceae

and Trichosporonaceae were mainly involved in soil saprophytic

processes and animal pathogenic transmission (Lourenço et al., 2020;

Eagar et al., 2023). The families enriched in rhizosphere suggesting

that those fungi were active in assisting nutrient uptake and

transforming organic matter for L. gmelinii. Our results further

confirmed that the host root system played a decisive role in soil

fungi, and selected the specific fungal species. Exploring the status of

rhizosphere fungal communities helps us understand the root health

status of plants.
4.2 The effect of seasonal changes on soil
fungal communities

Seasonal changes in temperature and precipitation have important

effects on aboveground and underground organisms. A previous study

has shown that fungal communities have better adaptability and

resistance to cold environments compared with bacterial

communities (Buckeridge et al., 2013). Regardless of seasonal
TABLE 4 Effect of compartment, season, site and their interactions on
fungal alpha diversity index by Three-way ANOVA.

Source of variation diversity index F P

compartment Chao1 0.896 0.346

Shannon 10.179 0.002

Pielou 12.58 0.001

season Chao1 24.934 <0.001

Shannon 1.11 0.294

Pielou 0.085 0.771

site Chao1 85.252 <0.001

Shannon 0.014 0.906

Pielou 3.384 0.068

compartment × season Chao1 26.79 <0.001

Shannon 8.96 0.003

Pielou 5.994 0.016

compartment × site Chao1 47.514 <0.001

Shannon 19.627 <0.001

Pielou 13.872 <0.001

season × site Chao1 20.184 <0.001

Shannon 4.329 0.04

Pielou 2.807 0.097

compartment × season × site Chao1 4.164 0.044

Shannon 0.946 0.333

Pielou 1.301 0.256
Bold values represent significant differences.
TABLE 5 The Spearman’s correlations (r) between single environmental factor (Euclidean distance) and fungal community structure (Bray-Curtis
distance) of the bulk soil determined by the Mantel test.

Factor TN SOC AP pH CEC Tmax Tmin Prec Total

r 0.734 0.161 0.125 0.616 0.332 0.230 0.230 0.234 0.174

P 0.001 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0.001
fro
Bold values represent significant differences. TN, total nitrogen; SOC, soil organic carbon; AP, available phosphorus; CEC: cation exchange capacity; Tmax, the monthly minimum temperature;
Tmin, the monthly minimum temperature; Prec: mean monthly precipitation.
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changes, Basidiomycetes and Ascomycetes are the main components

of fungal communities (Xie and Yin, 2022). However, Zeng et al.

(2020) reported that the relative abundance of Ascomycota decreases

as the annual average precipitation increases. Previous studies have

shown that saprophytic fungi dominate the soil during the cold

season, whereas ectomycorrhizal fungi have a greater advantage

during the growing season (Vorı̌śǩová et al., 2014; Santalahti et al.,

2016; Zeng et al., 2022). At our sampling sites, temperature and

precipitation were concentrated in July; the temperature in October

was below zero and the soil was relatively dry. High soil moisture

promotes the decomposition of dead leaves and increases soil

nutrients, thereby affecting the functional groups of the soil fungal

community (Brockett et al., 2012). During the drier season, soil fungal

abundance decreases compared to the wet season, but fungal diversity

increases (Kivlin and Hawkes, 2016). In our previous study, variations

in temperature and precipitation were important factors influencing

seasonal changes in the fungal communities (Zhao et al., 2023). In fact,

seasonal changes were masked by sites in this study.
4.3 The effect of community assembly on
fungal community

Deterministic and stochastic processes were used to determine

soil fungal community structure. Selection, drift, speciation, and

dispersal are usually responsible for the deterministic fitness

differences, species abundance, creates new species, and

movement by the four processes, among which selection is a

deterministic process and diffusion is a stochastic process
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(Vellend, 2010). The fungal community assembly in Aershan was

dominated by stochastic processes, whereas it was dominated by

deterministic processes in Genhe. The body size is crucial for

dispersal (Luan et al., 2020), it is also an important stochastic

factor that leads to the low similarity of the two communities in our

study. The assembly process of different communities can cause

differences in the community structure. Nevertheless, the role of

stochastic processes in microbial community assembly remains

unclear (Nemergut et al., 2013; Gao et al., 2020; Jiao et al., 2020).

Combining niche breadth, deterministic processes have a strong

impact on specialist species with narrow niche breadth, while the

generalist species with wide niche breadth has stronger

competitiveness (Graham et al., 2016). In general, the community

dominated by stochastic process has more resources around it and

less competitive pressure (Jiao et al., 2020). Based on this

understanding of community assembly, we consider that the soil

condition of Genhe was more limited, resulting in contemporary

selection dominating the fungal communities. The soil conditions

in Aershan were better, providing more opportunities for fungal

communities to drift, diversify, and disperse.
4.4 The effect of contemporary
environment heterogeneity and historical
contingencies on the structure of
fungal communities

Notably, contemporary environmental heterogeneity and

historical events (geographic distance) were the two major factors
B

A

FIGURE 5

The impact of environmental factors on fungal communities. The Spearman’s correlation relationships between alpha diversity indices (A), the
relative abundance of dominate families (B) and environmental factors. *, P < 0.05; **, P < 0.01; ***, P < 0.001. TN, total nitrogen; SOC, soil organic
carbon; AP, available phosphorus; CEC: cation exchange capacity; Tmax, the monthly minimum temperature; Tmin, the monthly minimum
temperature; Prec: mean monthly precipitation.
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affecting the biographical distribution of soil fungal communities

(Ramette and Tiedje, 2007). The two sampling sites for L. gmelinii

were 460 km apart, and significant differences were found in the soil

physicochemical properties between the two sites, so we considered

the effect of geographical distance. In previous studies, the

geographical scale played an important role in fungal community

structure (Tedersoo et al., 2014; Zhang et al., 2018; Adamo et al.,

2021). He et al. (2017) even suggested that spatial heterogeneity has

a more significant effect than temporal consistency.

In the biogeographical distribution of soil fungi, the

contemporary environment played a more important role (Zeng

et al., 2019). As important soil nutrient factors, C, N, and P not only

have a profound effect on aboveground vegetation but also provide

an environment for the living dynamics of soil fungi. Nutritional

factors such as TN, AP, and SOC are important in the regulation of

fungal communities (Lauber et al., 2008; He et al., 2016; Dang et al.,

2017; Li et al., 2020; Luo et al., 2023). Long-term nitrogen

enrichment decreases the relative abundance and diversity of

ectomycorrhizal taxa; however, the saprotrophs respond positively

to nitrogen enrichment. (Zhou et al., 2016; Morrison et al., 2016).

Nitrogen deposition affects the soil fungal community in L. gmelinii

forests annually and is a major cause of global environmental

change (Galloway et al., 2008). SOC significantly affects the

structure of soil fungal communities (Sul et al., 2013; Li et al.,

2017). A few families in our study were significantly related to SOC;

however, all related families belonged to saprophytic and symbiotic

fungi, such as ericoid mycorrhizal fungi, orchid mycorrhizal fungi,

and ectomycorrhizal fungi. They degrade cellulose (Li et al., 2017),

and assist hosts in obtaining carbon (Suetsugu et al., 2021).

Nevertheless, when the other four physicochemical properties

were significantly correlated with alpha diversity indices and

some dominant families, AP showed a significant opposite

correlation (Figure 5). Similar to our results for paddy fields in

subtropical China, fungal richness and diversity indices declined

significantly with increasing phosphorus rates (Liu et al., 2018). Bao

et al. (2013) also found that the relationship between available

phosphorus and fungal biodiversity showed a hump trend, slowly

increasing before peaking and rapidly decreasing thereafter. As a

non-nutritional factor, pH has a significant effect on soil fungal

communities (Tedersoo et al., 2020). Compared with bacteria, fungi

have a wider pH adaptation range (Rousk et al., 2010), but the

dominant fungal taxa in different soil pH environments differ

(Zhang et al., 2016). In our study, the correlation between the

most dominant families and pH was high and extremely significant.

CEC also affects the structure of fungal communities (Docherty

e t a l . , 2015) . Some symbio t i c t axa and the fami ly

Archaeorhiziomyceae were negatively correlated with pH, CEC,

TN, and SOC. The relationship between these fungi and their hosts

allows them to gain advantages in poor and acidic soils (Rosling

et al., 2011; Vohnıḱ et al., 2016; Zhang and Sun, 2021). In addition

to the factors studied, soil moisture content (Docherty et al., 2015)

and salinity (Cao et al., 2021) also play important roles.
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There were close relationships between TN, SOC, AP, pH, CEC

and community structure, with TN and pH having the greatest

effect (Table 5). The soil total nitrogen of our samples ranged from

0.81 g/kg to 6.88 g/kg, and the pH values ranged from 3.71 to 6.23,

which was consistent with the values in the study of Miyamoto et al.

(2021). We did not conduct further experiments on its optimal

gradient, but pH around 4.89 (4.89 ± 0.08) may be its superior pH

by ANOVA. Combined with the results that soil total nitrogen was

positively correlated with alpha diversity indices (including

Shannon diversity index, Chao1 richness index and Pielou

evenness index), we supposed that high soil total nitrogen is more

advantageous for soil fungal communities. So appropriate nitrogen

supplementation and soil pH regulation can maintain and regulate

the health of L. gmelinii forest.
5 Conclusion

Our findings revealed that compared to compartment and

season, the impact of site on the soil fungal community of L.

gmelinii was more important. Firstly, geographical distance

determined low community similarity in terms of the stochastic

process of community assembly. Secondly, there were significant

differences in soil physicochemical properties between the two sites,

which belonged to deterministic process. Environmental factors

significantly affected fungal community structure, with soil TN and

pH being the most important influencing factors. The geographical

distance and environmental differences between the two sites result

in significant differences in the soil fungal community assembly

process. Meanwhile, seasonal changes appeared insignificant. This

further deepens our understanding of the soil fungi of L. gmelinii

forest and grasps the important soil environment in which L.

gmelinii lives, which helps us to maintain the health of L. gmelinii.
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