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Introduction: Tomatoes are sensitive to low temperatures during their growth

process, and low temperatures are one of the main environmental limitations

affecting plant growth and development in Northeast China. Chlorophyll

fluorescence imaging technology is a powerful tool for evaluating the

efficiency of plant photosynthesis, which can detect and reflect the effects that

plants are subjected to during the low temperature stress stage, including early

chilling injury.

Methods: This article primarily utilizes the chlorophyll fluorescence image set of

tomato seedlings, applying the dung beetle optimization (DBO) algorithm to

enhance the deep learning bidirectional long short term memory (BiLSTM)

model, thereby improving the accuracy of classification prediction for chilling

injury in tomatoes. Firstly, the proportion of tomato chilling injury areas in

chlorophyll fluorescence images was calculated using a threshold

segmentation algorithm to classify tomato cold damage into four categories.

Then, the features of each type of cold damage image were filtered using SRCC

to extract the data with the highest correlation with cold damage. These data

served as the training and testing sample set for the BiLSTM model. Finally, DBO

algorithm was applied to enhance the deep learning BiLSTM model, and the

DBO-BiLSTM model was proposed to improve the prediction performance of

tomato seedling category labels.

Results: The results showed that the DBO-BiLSTM model optimized by DBO

achieved an accuracy, precision, recall, and F1 score with an average of over 95%.

Discussion: Compared to the original BiLSTM model, these evaluation

parameters improved by 9.09%, 7.02%, 9.16%, and 8.68%, respectively. When

compared to the commonly used SVM classification model, the evaluation

parameters showed an increase of 6.35%, 7.33%, 6.33%, and 6.5%, respectively.

This study was expected to detect early chilling injury through chlorophyll
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fluorescence imaging, achieve automatic classification and labeling of cold

damage data, and lay a research foundation for in-depth research on the cold

damage resistance of plants themselves and exploring the application of deep

learning classification methods in precision agriculture.
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1 Introduction

The greenhouse refers to a building that can control or partially

control the growth environment of plants, and it has facilities such

as cold protection, heating, and light transmission, and is mainly

used in seasons that are not suitable for plant growth (Hanan,

2017), such as low temperature seasons. The severely cold regions of

Northeast have a colder climate and large latitude span in China,

and in winter and spring, outdoor temperatures may reach minus

40 degrees Celsius (Shao and Jin, 2020). Even if heating equipment

is used to increase the temperature inside the greenhouse, it is

difficult to always maintain the temperature at which plants adapt to

their growth. Especially at night, the temperature will suddenly

drop, making plants vulnerable to low temperature stress damage.

Therefore, low temperature is one of the main environmental

limiting factors affecting plant growth and development in

Northeast China. Tomatoes (Lycopersicon esculentum) are one of

the most important vegetables grown worldwide, and are warm

loving plants that are sensitive to cold during nutrition and

production growth (Zhang et al., 2004; Lyons, 1973). Especially,

the seedling stage is the most susceptible stage for the cultivation of

horticultural crops for year-round production in greenhouses, and

tomato normally grows at 15 to 33°C, when the external

temperature is lower than 10°C, the growth rate slows down

(Zhang et al., 2023). Chilling injury is damage caused by exposure

to low temperatures stress (0-12°C) during the growing period,

which may impair plant growth and productivity (Ronga et al.,

2018). Thus, chilling injury is one of the important disasters worth

paying attention to in China’s agricultural production research.

Low temperature as one of the main abiotic stresses reduces the

cell membrane fluidity and enzyme activities before the temperature

reaches a freezing point, inhibits plant physiological metabolic

activities, affects seed germination and seedling growth (Feng

et al., 2023), and leads to an imbalance between the light energy

absorbed by the photosystem and the energy consumed by

metabolic reactions.Under natural conditions, plants are exposed

to stress sooner or later, and the growth and development of plants

depend on and are regulated by mechanisms that absorb light and

convert this into usable chemical energy photosynthesis (Valcke,

2021). Photosynthesis is the basic life activity of plants and the

fundamental source for plants to synthesize organic matter and
02
obtain energy, and photosynthetic organs are cold-sensitive parts of

plants, so low temperatures can directly affect the performance and

activity of photosynthesis (Zhang et al., 2022; Liu et al., 2012), such

as stomatal conductance, mesophyll conductance, biochemical

capacity combined with Rubisco, the Calvin-Benson cycle,

thylakoid membrane electron transport, nonphotochemical

quenching, and carbon metabolism or fixation pathways (Hou

et al., 2016; Hussain et al., 2021).

In recent years, different researchers have applied machine

learning and deep learning methods to agricultural data

classification, providing a theoretical basis for further improving

the industrial automation level of facility agriculture. Hang et al.

(2020) identified five common symptoms of tomato diseases by

training the Skip gram algorithm, which can be classified using the

Long short term memory (LSTM) algorithm. This study showed

that the average accuracy of the tomato disease and pest corpus

recognition model based on the LSTM algorithm and classifier

exceeded 60%. Alkanan and Gulzar (2024) explored the integration

of artificial intelligence in maize disease discrimination and

classification. This study used a comprehensive dataset and an

enhanced iterative network of MobileNetV2 to predict four

categories of diseases, with accuracy values ranging from 0.949 to

0.975 and recall values ranging from 0.957 to 0.963. Amri et al.

(2024) utilized the advantages of three mature architectures:

MobileNet, Inception, and VGG to propose a new deep learning

model, MIV PlantNet, specifically designed for classifying different

plant communities in Saudi Arabia. The results showed that the

accuracy of the MIV PlantNet deep learning model reached 99%,

while demonstrating extraordinary accuracy of 96% and excellent

F1 performance of 98%, highlighting its robustness and reliability.

Gulzar (2024) added five additional layers based on the

InceptionV3 architecture, integrating techniques such as transfer

learning, adaptive learning rate adjustment (up to 0.001), and

model checkpoints to optimize accuracy, and comparative

analysis with existing studies reveals competitive accuracy of

98.73% achieved by their proposed model in soybean seed

classification. In the research of classification methods for images

and data, people are gradually realizing the importance of early

recognition of plant classification. Cen et al. (2016) used the

hyperspectral imaging system to obtain information about

cucumbers, and three classification algorithms of the Naive Bayes
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(NB), Support Vector Machine(SVM), and K-nearest neighbor (K-

NN) method were used to monitor and classify cucumbers into two

categories (normal and chilling injury) and three categories

(normal, mild, and severe chilling injury) based on the spectrum

and image of the selected band ratio. Jung et al. (2022) successfully

diagnosed early infection of gray mold on strawberry leaves using

hyperspectral images combined with a three-dimensional

convolutional neural network (CNN) classification model. They

proposed the introduction of a new method that can extract regions

of interest (ROIs) from these images to classify different infection

states, with a classification accuracy of 84%. Kuo et al. (2023)

proposed an improved CNN model, called the 1D-CNN model,

which features embedded residual global context (ResGC) blocks

and is specifically designed to process Visible spectrum (Vis)/Near

Infrared(NIR) spectral data of tomato leaves in order to detect early

signs of drought stress. Ünal et al. (2024) detected Vis and NIR

images of naturally damaged Super Chief red apples using deep

learning models Alexnet, Inception-V3, and Visual Geometry

Group(VGG)16 network structures for training and evaluation,

and the results showed that when using the NIR dataset for

model training and testing, the accuracy of Inception V3 and

VGG16 was as high as 100% and 100%, respectively. Therefore, it

is recommended to use near-infrared datasets for accurate and

reliable apple classification in industrial environments. Meanwhile,

the application of chlorophyll fluorescence technology to study

plant feature classification is gradually increasing (Cen et al., 2017;

Hai-yan et al., 2018). Cen et al. (2017) used chlorophyll fluorescence

imaging combined with feature selection to characterize and detect

Huanglongbing (HLB) disease. This study combines support vector

machines (SVM) and partial least squares discriminant analysis

(PLS-DA) classifiers to achieve unique fluorescence features of HLB

through three feature selection methods, and to classify healthy,

HLB infected, and nutrient deficient leaves for three-level

classification. The results showed that this novel data-driven

method combined average fluorescence parameters and image

features gave the best classification performance, with an accuracy

of 97%. Sapoukhina et al. (2022) proposed a new method to

generate chlorophyll fluorescence images of diseased plants

through automatic lesion annotation. This study mainly

segmented disease lesion categories on plant leaf fluorescence

images and labeled them accordingly. The results showed that the

trained model showed a recall rate of 0.793% and an average

accuracy rate of 0.723%. Dong et al. (2020) found that as the

stress time increased, the cold damage of tomato seedlings

worsened, when the entropy skewness, standard deviation, and

color descriptor features b and L/of chlorophyll fluorescence

parameter Y (II) were used as input variables for the back

propagation neural network (BPNN)l, the prediction accuracy of

categories with different degrees of chilling injury under different

low temperature stress times was the highest, with an accuracy of

90%. Lu and Lu (2021) obtained 675 nm and 750 nm chlorophyll

fluorescence imaging of pickled cucumbers, and the support vector

machine(SVM) was used to extract features to categorize the

cucumbers into two categories (normal and chilling-damaged)

and three categories (normal, mildly and moderately chilling

injury), with an overall accuracy of 96.9% and 91.2%, respectively.
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Table 1 summarizes the classification methods of agricultural

data from prior literature. Commonly image data types include VIS,

hyperspectral, NIR, and chlorophyll fluorescence. VIS-based plant

disease and species identification is common, whereas early cold

damage classification is less so. Hyperspectral data can detect subtle

spectral changes for early warnings, but may be less sensitive than

chlorophyll fluorescence during initial cold stress. NIR responds to

temperature variations, but subtle temperature changes in crops

during early cold damage limit its early detection ability.

Chlorophyll fluorescence imaging excels in sensitivity and

specificity, accurately reflecting photosynthetic system status,

especially PSII reaction center changes, making it a precise

indicator of environmental stress including chilling injury.

Chlorophyll fluorescence technology is a powerful tool for

measuring the photosynthesis of plants and provides the ability to

detect damage from a range of biotic and abiotic stressors before

visible symptoms appear (Legendre et al., 2021), including chilling

injury. Due to the uneven distribution of internal factors in plants,

the damage caused by the same stress may also be uneven in space

and may have uneven effects on photosynthetic capacity and

stomatal aperture, so that different fluorescence activities will be

displayed on the same leaf at the same time. Chlorophyll

fluorescence imaging (CFI) technology is a visualization

technology of chlorophyll fluorescence, which allows studying the

spatiotemporal heterogeneity of chlorophyll fluorescence

parameters over the entire leaf area (Dong et al., 2019). This

technology has become an important method for diagnosing

plant photosynthesis and plant stress response mechanism

(Herritt et al., 2021; Ogawa and Sonoike, 2021; Kasampalis et al.,

2021). Pereira et al. (2011) investigated the color descriptors (Red,

Green, Blue, Hue, Saturation, Value, and Lightness) obtained by

laser induced fluorescence imaging technology, demonstrating their

potential use in monitoring sweet orange greening diseases. By

analyzing the average value of color descriptors, fluorescence

imaging technology can detect signs of plant disease invasion in

the early stages. A newmethod for detecting Y (II) was developed by

Wang et al. (2018) based on chlorophyll fluorescence imaging,

which reflects the photosynthetic capacity of plants, R=0.85989,

u=0.048803 when using multiple linear regression and R=0.84285,

u=0.054739 when using partial least square regression. Dong et al.

(2021) used an improved K-means++ clustering algorithm to

segment fluorescence images of tomato leaf cold damage. The

experimental results showed that the average matching rates of

the improved K-means++ algorithm were 0.96%, 13.52%, and

37.08% higher than those of K-means, Fuzzy C-means(FCM), and

Hue Saturation Value(HSV) methods, respectively. The average

error rates of the improved K-means++ method were 0.16%, 5.56%,

and 13.69% lower than those of K-means, FCM, and HSV methods,

respectively. These studies indicate that chlorophyll fluorescence

technology can be well used to study plant damage. The above

classification methods are mostly based on the classification and

recognition of agricultural plant species and diseases. while there

are relatively few classifications for plant chilling injury under low

temperatures, especially in the study of leaf stress damage

classification using chlorophyll fluorescence technology on living

plants. Previous studies have shown that, with the increase of stress
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time, the cold damage to tomato seedlings intensifies (Dong et al.,

2020). However, in fact, under the same environmental stress,

different plants within the same species may have different stress

resistance and exhibit varying degrees of damage. How to classify

and discuss the degree of damage to tomato seedlings based on their

actual damage situation in a targeted manner has become an urgent

problem that needs to be solved.

This study focused on tomato seedlings and used dung beetle

optimization (DBO) bidirectional(Bi) LSTM to classify and predict

the low-temperature cold damage suffered by tomatoes based on

chlorophyll fluorescence imaging data. This study had three specific

objectives: (1) to classify tomato chilling injury in chlorophyll

fluorescence images based on the proportion of the actual cold

damage area of each tomato plant in the entire leaf; (2) to establish

the BiLSTM model for tomato seedling cold damage based on the

image features filtered from each category, and to predict the cold

damage category labels of seedlings automatically; (3) to optimize

the parameters of the BiLSTM model based on the DBO algorithm

and to propose DBO-BiLSTM, which effectively predicted cold

damage category labels and improved the accuracy of recognition.

This study was expected to detect early chilling injury through

chlorophyll fluorescence imaging, achieve automatic classification

and labeling of cold damage data, and lay a research foundation for

in-depth research on the cold damage resistance of plants
Frontiers in Plant Science 04
themselves and exploring the application of deep learning

classification methods in precision agriculture.
2 Materials and methods

2.1 Sample preparation

The experiment was conducted at the Facility Agricultural

Biological Information Testing Laboratory of Shenyang

Agricultural University and the Bioinformatics Laboratory of

Suqian University between the years 2017 and 2022. The

experimental tomato variety used in this study was “L-404”, a

cultivar frequently cultivated in Northeast China. Tomato plants

were cultivated in peat-based compost within pots, housed in a

greenhouse environment. When tomato seedlings reached the

5-leaf, 1-heart stage, 60 vigorous plants were placed in an

artificial climate chamber for optimal growth conditions (25°C/

12h day, 15°C/12h night, 600mmol m-2 s-1 light, 70% humidity)

(Zhang et al., 2014; Dong et al., 2020; Li et al., 2023). Under these

conditions, plants grow vigorously. After a week, plants were

subjected to low-temperature stress (5°C/12h night for 3 days).

Fluorescence imaging data was collected daily at 8 am, preceded by

30-minute dark adaptation before data collection. Chlorophyll
TABLE 1 Classification methods for agricultural data.

Types of
data sources

Research
Direction

Classification objective Research
method

Identify
initial damage

Reference

Visible spectrum (VIS) image

Disease classification Five Diseases of Tomatoes LSTM / Hang
et al. (2020)

Four types of corn diseases MobileNetV2
optimization

/ Alkanan and
Gulzar (2024)

Population classification Different Plants in Saudi Arabia MobileNet、
Inception and VGG

optimization

/ Amri
et al. (2024)

Intraspecific classification Different seeds of soybeans InceptionV3
optimization

/ Gulzar (2024)

Hyperspectral image

Environmental
coercion classification

Cucumber cold damage level NB、SVM、K-NN Yes Cen
et al. (2016)

Disease classification Strawberry gray mold CNN / Jung
et al. (2022)

Near Infrared (NIR)
spectral data

Environmental
coercion classification

Tomato drought stress damage CNN optimization Yes Kuo
et al. (2023)

Natural
damage classification

Natural damage to apples Inception V3
and VGG15

/ Ünal
et al. (2024)

Chlorophyll fluorescence
imaging data

Disease classification Healthy, HLB infected, and nutrient
deficient leaves

SVM and PLS-DA
optimization

/ Cen
et al. (2017)

Arabidopsis diseases U-Net Yes Sapoukhina
et al. (2022)

Environmental
coercion classification

Tomato chilling injury level BPNN Yes Dong
et al. (2020)

Chilling injury level of
pickled cucumber

SVM Yes Lu and
Lu (2021)
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fluorescence images were acquired using the MAXI IMAGING-

PAM System(Heinz Walz GmbH, Effeltrich, Germany) and

processed with the Matlab R2021b and PyCharm Community

Edition 2022.
2.2 Images features acquisition

In this experiment, all chlorophyll fluorescence images of

tomato leaves were collected using the MAXI version of the

IMAGING-PAM imaging system (Heinz Walz GmbH, Effect,

Germany). The device uses 44 parallel optical corrected ultra

strong emitting blue (450 nm) diodes as the excitation light

source, and measures once every 24 hours for 3 consecutive

days.All of which were collected from live leaves. When collecting

data, the leaves did not leave the plant and continued to exhibit

photosynthetic activity. The artificial climate chamber and

IMAGING-PAM were placed in the same experimental

greenhouse, and during the experiment collection, the greenhouse

was in a completely black state to eliminate the potential impact of

light. IMAGING PAM obtains chlorophyll fluorescence of plant

leaves, generates fluorescence grayscale image, and displays them as

color image through pseudo coloring. The 36 features of chlorophyll

fluorescence images were processed and obtained by the program,

including 18 color image features and 18 gray image features.

First, 18 features were extracted from chlorophyll fluorescence

color images of healthy and chilling injury leaves, of which nine color

descriptor features (R, G, B, H, S, V, L, a, b) were from RGB, HSV,

and L*a*b* color spaces, while the other nine features were their

ratios (parameter feature columns in Table 2). Subsequently, eighteen
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features was extracted from the leaf gray image, from chlorophyll

fluorescence gray images of healthy and chilling injury leaves,

encompassing four statistical features (mean, standard deviation,

skewness, and smoothness, as shown in Table 3) derived from the

histogram, six texture features (low gradient advantage、high

gradient advantage, non-uniformity of gray distribution, non-

uniformity of gradient distribution, average gradient, gradient

standard deviation, as shown in Table 4) extracted from the Gray-

level Gradient Co-occurrence Matrix (GGCM), and an additional

four texture features (energy, entropy, inertia, and correlation, as

shown in Table 5) along with their respective standard deviations,

sourced from the Gray-Level Co-occurrence Matrix (GLCM) (Qiao

et al., 2019; Dong et al., 2020).
TABLE 2 Table of spearman correlation.

Characteristic
parameters

Spearman
Correlation

Characteristic
parameters

Spearman
Correlation

Characteristic
parameters

Spearman
Correlation

R 0.338 H 0.417 L 0.557

G 0.540 S 0 a -0.465

B 0.076 V 0.381 b 0.555

G/R 0.496 S/H -0.417 L/a 0.464

G/B -0.076 V/S 0.380 L/b 0.496

B/R 0.076 V/H -0.352 b/a -0.089

Mean 0.893
Homogeneity of
gray distribution

-0.835 Inertia 0.204

Standard deviation 0.885
Homogeneity of

gradient distribution
-0.826 Mean of correlation 0

Skewness 0.802 Average gradient 0.803
Standard deviation

of energy
0.147

Histogram Smoothness 0.884
Gradient

standard deviation
0.750

Standard deviation
of entropy

0.221

Small gradient dominance -0.824 Mean of energy -0.312
Standard deviation

of inertia
0.190

High gradient advantage 0.803 Mean of entropy 0.309
Standard deviation

of correlation
0

TABLE 3 Statistical features of gray image.

Characteristic
Parameters

Definition

E =o
Ng

i=1

iH(i)
Mean, reflect the overall
brightness of the image.

Where i is gray level; Ng is
the number of gray levels, H
(i) is the discrete function of
image gray level.

s =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Ng
o
Ng

i=1

(i − E)2
s Standard deviation,

reflects the extent to
which the pixel value is
offset from the mean.

S =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Ng
o
Ng

i=1

(i − E)3
3

s Skewness, reflecting the
symmetry of the image
color distribution.

R = 1 −
1

1 + s 2

Smoothness, measure of
the relative smoothness
of grayscale within
an image.
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2.3 Classification method for chilling injury

At present, there is no clear classification method for the degree

of chilling injury under low- temperature stress. The degree of

damage in crop diseases is generally expressed by the percentage of

the diseased area in the total leaf area or the average diameter of the

diseased area (Qiao et al., 2019; Sun et al., 2018). Compared with the

disease damage, the chilling injury may be distributed at any

position of the leaf, and sometimes it is difficult to calculate the

average diameter when the chilling injury area is scattered.

Therefore, this study divided the chilling injury classification

according to the above method of the percentage of damage area

to total leaf area, and all leaves were divided into sound leaves, slight

chilling injury leaves, moderately chilling injury leaves, and severe

chilling injury leaves. Since the area of chilling injury was

proportional to the number of pixels in the chilling injury area,

and the area of chilling injury leaf was proportional to the number

of pixels in the chilling injury leaf area, the classification of the

degree of chilling injury could be expressed by the ratio Lk of the

number of pixels in the chilling injured area to the total number of

pixels in the leaf area, as shown in Equation 1 (Wang et al., 2021).

Lk = A1=A = N1=N (1)

Where in, A1 was the area of the chilling injury area, and A was

the total area of the chilling injury leaf; N1 was the number of pixels

in the chilling injury area, and N was the total number of pixels in

the chilling injury leaf. Chlorophyll fluorescence image chilling
Frontiers in Plant Science 06
injury area can be calculated via threshold segmentation of chilling

injury area ratios (Souza and Yang, 2021).
2.4 Spearman rank correlation coefficient

Spearman rank correlation coefficient is an indicator that

describes whether there is equal or opposite convergence between

two groups of variables (Spearman, 1904). The Spearman

correlation coefficient only needs to determine the level at each

point (period) to obtain the correlation, so it has good properties.

Under the condition that there are no duplicate observations in

both groups of data, the equation Equation 2 Spearman rank

coefficient is used to determine the statistical correlation between

different characteristics and chilling injury (Amarkhil et al., 2021).

Rs = 1 −
6o​d2i
n3 − n

(2)

Where, Rs = Spearman rank correlation coefficient (Rs value

ranging from 1 showing the robust direct relationship, and -1

showing strong inverse correlation), di = difference in causes

ranking of the identified conditions, n= number of variables

(Amarkhil et al., 2021). Currently, despite a lack of a unified

classification criterion, the degree of correlation strength between

variables is frequently employed as a basis for categorization (Song

and Park, 2020; Jia et al., 2020; Amarkhil et al., 2021). In this

experiment, the strength of the correlation was described using the

following guide for the absolute value of Rs: 0-0.29,”weak”; 0.30-

0.59, “moderate”; 0.50-0.79, “strong”; and 0.80 to 1.0, “very strong”

(Dong et al., 2020; Yu and Hutson, 2024).
2.5 Bidirectional long short term
memory network

Due to the time series relationship between different

classifications and features of chlorophyll fluorescence images of

tomato seedlings, this study chose Long Short Term Memory

(LSTM) network.

2.5.1 LSTM network
Long short term memory (LSTM) networks store “memory” in

a special way (Devi and Thongam, 2023).They were first proposed

by Hochreiter and Schmidhuber in 1997, which initially introduced

the clever concept of self circulation, providing an efficient path to

achieve long-term continuous transmission of gradients (Liu et al.,

2018). Figure 1A shows an abstract diagram of the LSTM neural

network structure, explaining its memory method. The gate

structure of LSTM neural network can control the inflow and

outflow of information, which is divided into three stages: forget

gate, input gate, and output gate. The LSTM forget gate controls

which information in a memory cell needs to be retained and which

needs to be forgotten, by means of a sigmoid function and a tanh

function. The input gate controls which new information can flow

into the memory cell by means of a sigmoid function and a tanh
TABLE 4 Texture features from the GGCM of gray image.

Characteristic
Parameters

Definition

T1 =
o
Ng

i=1
o
T

j=1

H(i, j)

H

Low gradient
advantage, reflects the
degree of dominance
of pixels with smaller
gradient values in
the image.

Where H(i,j) in the
gray gradient co-
occurrence matrix
indicates the
probability of pixel
pairs with gray level i
and gradient level j. H
represents the total
sum of these elements.
T, a gradient
threshold,
differentiates “low”
from “high” gradients,
classifying gradients
exceeding T
as “High.”.

T2 =
o
Ng

i=1
o

Ns

j=T+1

j2H(i, j)

H

High gradient
advantage, reflects the
proportion of areas
with drastic grayscale
changes in the image.

T3 =
o
Ng

i=1

½o
Ns

j=1

H(i, j)�2

H

Non-uniformity of
gray distribution.

T4 =
o
Ns

j=1

½o
Ng

i=1

H(i, j)�
2

H

Non-uniformity of
gradient distribution.

m= o
Ns

j=1

j½o
Ng

i=1

P(i, j)� Average gradient.
Where P(i,j) signifies
the normalized pixel
probability, reflecting
image clarity and
texture depth. Ng and
Ns represent the
number of gray levels
and gradient
levels, respectively.

∂= o
Ns

j=1

(j − m2)
2½o
Ng

i=0

P(i, j)�
( )1

2=

Gradient
standard deviation.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1409200
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Dong et al. 10.3389/fpls.2024.1409200
function. The output gate controls which information can affect the

current output through a sigmoid function.

Figure 1B shows the internal structure of LSTM. The input is to

store external content into a memory unit, and the main function of

the input gate control signal is to control the input gate, denoted as

it . The main function of the forget gate control signal is to control

whether the memory unit is cleared, denoted as ft . The output

mainly refers to the content of the memory unit being output to

other hidden layers, and the function of the output gate control

signal is mainly to control whether the memory unit is output,

denoted as Ot . LSTM can store important content in memory unit

Ct , achieve functions such as outputting or clearing when needed,

and construct “long-term dependencies” through memory units,

and “short-term dependencies” through hidden layer states ht .

Among them, xt represents the input of the neuron, s represents

the sigmoid excitation function, tanh represents the tanh excitation

function, eCt represents the new candidate values created by

the excitation function tanh that can be added to the cell unit,
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⊗ represents the multiplication operation, ⊕ represents the

addition operation, and → represents the transfer of vectors.

2.5.2 Bi LSTM network
The traditional LSTM network calculates sequence data in

chronological order, step by step from front to back. However, in

some cases, the backward dependency relationship in the sequence

is also very important, that is, the output of one time step may also

be affected by subsequent time steps. To solve this problem, the

bidirectional LSTM (BiLSTM) network added an inverse layer to

achieve bidirectional scanning, which can capture more contextual

information in a single model and achieve better prediction, as

shown in Figure 2.

BiLSTM consists of a forward LSTM layer and a reverse LSTM

layer (Michael et al., 2024). Combinations of hidden states in both

directions, which are fed into other layers, can be used to extract

features in the time dimension. The BiLSTM summarizes

information by concatenating the forward (left-to-right, Equation

3) and backward (right-to-left, Equation 4) hidden states, yielding

its output as per Equation 5 (Hameed and Garcia-Zapirain, 2020).

hft
!

= LSTM(ht−1, xt−1) (3)

hbt
 

= LSTM(ht+1, xt−1) (4)

ht = ahft
��!

+ bhbt
 �

(5)

Where, xt , h
f
t

!
, hbt
 

are the input data of the moments, the output

of the forward LSTM hidden layer and the output of the reverse

LSTM hidden layer, respectively. ht denotes the combination of hft
!

and hbt
 

at moment t, a , b are constant coefficients and denote the

weights of and hft
!
, hbt
 

respectively.

The working steps of the BiLSTM network for predicting

chilling injury to tomato leaves were summarized as: data

preparation, construction of the BiLSTM model, model

initialization, model training, model prediction, and evaluation.

The input data of the model was the chlorophyll fluorescence image

of tomatoes under low temperature stress.
TABLE 5 Texture features from the GLCM of gray image.

Characteristic
Parameters

Definition

ASM =o
i
o
j

½Q(i, j)2�
Energy, it is used to
measure the degree
of texture thickness
of the image.

Where i, j represent
grayscale levels of
points, Q(i,j) is the
normalized grayscale
matrix. mx, my are
average grayscale,
gradient, sx, sy are
their standard
deviation,
respectively.

ENT =o
i
o
j

Q(i, j) logQ(i, j)

Entropy, it describes
the degree of
complexity of
an image.

INE =o
i
o
j

(i − j)2Q(i, j)

Inertia,it reflects the
periodicity of
texture changes.

COR =
o
i
o
j

(i� j)Q(i, j) − mxmy

sxsy

Correlation, it
indicates the degree
of similarity of the
gray level co-
occurrence matrix in
the row or
column direction.
FIGURE 1

1 LSTM structure. (A) Abstract structure of LSTM. (B) Internal structure of LSTM.
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2.6 Dung beetle optimization - BiLSTM

2.6.1 DBO algorithm
The Dung beetle optimization (DBO)-BiLSTM algorithm

incorporates the population intelligence optimization technique

known as DBO (Dung beetle optimizer), which draws inspiration

from the behaviors of dung beetles, specifically their rolling and

reproductive habits. This approach was initially introduced in 2022

(Xue and Shen, 2023).

During the rolling process, dung beetles rely on celestial cues to

navigate and ensure that the dung ball rolls in a straight path. To

simulate this behavior, it is assumed that the beetles move in a

predetermined direction throughout the entire search space. As

dung beetles use the sun for navigation, it is also assumed that the

intensity of the light source impacts their path. The update of the

beetle’s position during rolling can be represented as Equations 6, 7

(Byrne et al., 2003):

xi(t + 1) = xi(t) + a*k*xi(t − 1) + b*Dx (6)

Dx = xi(t) − Xwj j (7)

Where, t denotes the current iteration number, xi(t) denotes the

position information of the i moult at the t iteration, k ∈ (0, 0:2�
denotes the deflection coefficient, k is a fixed value,b denotes a fixed

value belonging to (0,1), a is a natural coefficient assigned to -1 or 1,

Xw denotes the global worst position, Dx is used to simulate the

change of light intensity.

1. In nature, dung beetles choose a safe environment as a place

to lay eggs. The strategy of simulating dung beetles to select the

boundary of the spawning area are defined as Equations 8, 9:

Lb* = max(X* � (1 − R), Lb) (8)

Ub* = min(X* � (1 − R),Ub) (9)

2. Among them, X* is the current local optimal position, Lb*

and Ub* are the lower and upper bounds of the spawning area,

R = 1−t
Tmax

and Tmax represent the maximum number of iterations,

Lb and Ub represent the upper and lower bounds of the

optimization problem, respectively.

3. In the DBO algorithm, the female dung beetle produces only

one egg in each iteration. According to formula (8) and (9), the
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spawning range is influenced by the value of R, resulting in the egg’s

location changing. This is defined as Equation 10:

Bi(t + 1) = X* + b1 � (Bi(t) − Lb*) + b2 � (Bi(t) − Ub*) (10)

Where, Bi(t) is the position information of the i sphere at the t

iteration, b1 and b2 are denoted as two independent random vectors

of size 1�D, with D denoting the number of dimensions, and the

position of the sphere is strictly limited to a certain range (Mirjalili

and Lewis, 2016).

4. The larvae that grow out of the egg globule, which we call

oyster roach, need to establish the optimal feeding zone to guide the

oyster roach to feed in the DBO algorithm, and the optimal feeding

zone are defined as Equations 11, 12:

Lbb = max(Xb � (1 + R), Lb) (11)

Ubb = min(Xb � (1 + R),Ub) (12)

Where, Xb is the global optimal feeding position, Lbb and Ubb

are the lower and upper bounds of the optimal feeding

zone, respectively.

5. Thus the position of the oyster roach is updated, defined as

Equation 13:

xi(t + 1) = xi(t) + C1 � (xi(t) − Lbb) + C2 � (xi(t) − Ubb) (13)

Where xi(t) denotes the position of the i oyster roach at the t

iteration, C1 denotes a random number obeying a normal

distribution, C2 denotes a random vector belonging to (0,1).

6. Dung Beetle iterates the position updates in a continuous

optimization process and finally outputs the optimal position as Xb

(Xue and Shen, 2023).

2.6.2 DBO-BiLSTM model
Traditional BiLSTM networks require adjusting a large number

of parameters during the training process, such as learning rate,

number of hidden layer units, regularization parameters, etc. The

adjustment of these parameters often relies on manual experience

and trial and error methods, which are inefficient and have unstable

effects. In the experiment, after the data preparation of the DBO-

BiLSTM model in the working steps of the BiLSTM network, the

hyperparameters of the BiLSTM model were optimized using the

Dung Beetle Algorithm (DBO) (Xue and Shen, 2023) before
FIGURE 2

BiLSTM network structure.
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constructing the model.The DBO algorithm can simulate the

behaviors of dung beetles such as rolling, dancing, foraging,

stealing, and breeding. Through iterative optimization, it can find

the optimal solution of network parameters, avoid getting stuck in

local optima, and improve the training efficiency and performance

of BiLSTM networks. The main optimization parameters in this

study are: learning rate, number of hidden layer nodes, and

regularization coefficient. The specific optimization steps were

as follows:
Fron
1. Initialized the dung beetle population: Randomly initialized

a group of dung beetles in the search space, with each beetle

representing a set of hyperparameters.

2. Evaluated hyperparameter combinations: Trained BiLSTM

models with each set of hyperparameters and evaluated the

performance of the models (such as accuracy, loss, etc.) on

the test sample set. This evaluation result served as the

fitness value for that group of hyperparameters.

3. Updated the positions of the beetles: Based on their fitness

values and search strategies (such as random walking,

following the optimal solution, etc.), updated the

positions of the beetles in the search space, that is,

updated the values of the hyperparameters.

4. Iteratively optimized: Repeated the steps of evaluating

hyperparameter combinations and updating dung beetle

positions until the termination conditions were met (such

as reaching the maximum number of iterations,

convergence of fitness values, etc.).

5. Selected the optimal hyperparameter combination: After the

optimization process was completed, selected the

hyperparameter combination represented by the beetle

with the highest fitness value as the optimal solution.

6. Trained the BiLSTM model using optimal hyperparameters:

Constructed and trained the BiLSTM model using the

selected optimal hyperparameter combinations.
2.6.3 Confusion matrix evaluation
The confusion matrix is used to evaluate the DBO-BiLSTM

model. The evaluation criteria are shown in Table 6. The model

finally needs to judge whether the result of the sample is 0 or 1, or

positive or negative.

Table 6 presents the confusion matrix classification. True

Positive (TP) denotes correctly predicted positive samples, True

negative (TN) represents correctly predicted negative samples, False

positive (FP) indicates incorrectly predicted negative samples
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as positive, and False negative (FN) signifies incorrectly predicted

positive samples as negative (Valero-Carreras et al., 2023).

When the values of TP and TN are large and the values of FP and

FN are small, it indicates a better predictive classification model.

However, it is difficult to measure the superiority of the model when

dealing with a large amount of data. Therefore, the confusion matrix

extends the following four indicators based on the basic statistical

results to measure the performance of the classification model.

Accuracy is the proportion of all correct predictions in the

classification model to the total number of test samples, as shown

in Equation 14; Precision is the correct proportion of results that are

positive, and the denominator is the sum of all values in this column,

as shown in Equation 15; Sensitivity, also known as recall, is the

proportion of the classification model with positive true values and

correct predictions, with the denominator representing the total

number of all true positive samples, as shown in Equation 16; F1-

measure is the reconciled mean of precision and recall, which is a

comprehensive index considering the balance between the two,

distributed between [0,1], the closer to 1 the better, as shown in

Equation 17 (Xiong et al., 2022).

Accuracy =
TP + TN

TP + TN + FP + FN
(14)

Precision =
TP

TP + FP
(15)

Recall =
TP

TP + FN
(16)

F1 −measure =
2

1
Precision +

1
Recall

=
2*Precision*Recall
Precision + Recall

(17)
3 Results

3.1 Classification based on chilling
injury areas

Chlorophyll fluorescence imaging technology can reflect the

internal photosynthetic capacity of plants through photosynthetic

physiological parameters and their activity distribution, and can

detect early cold damage before it is visible to the naked eye.

Figure 3 displays the visible light and chlorophyll fluorescence

images of tomato seedling leaves. Figures 3A, C depict healthy

leaves, whereas Figures 3B, D represent the leaves exposure to low

temperature stress. As evident from the figure, chlorophyll

fluorescence imaging is capable of detecting early damage prior to

it becoming visually apparent, underscoring its potential for early

stress detection. According to Equation 1, the proportion of chilling

injury areas was used to classify chlorophyll fluorescence images.

The classification method of chilling injury to tomato seedling

leaves was shown in Table 7.

The experimental data categorized tomato seedling leaves into

four levels based on the percentage of chilling injury: Level 1 (0-5%,

healthy), Level 2 (5-15%, slightly damaged), Level 3 (15-30%,
TABLE 6 The confusion matrix values.

The confusion matrix True values

Positive Negative

Predicted values Positive TP FP (Type II)

Negative FN (Type I) TN
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moderately damaged), and Level 4 (>30%, severely damaged).

During the experiment, Level 1 corresponded to A, Level 2 to B,

Level 3 to C, and Level 4 to D.
3.2 DBO-BiLSTM identifies chilling
injury classification

3.2.1 Input feature selection of DBO-BiLSTM
After classifying the chlorophyll fluorescence images of tomato

leaves, 220 images were selected, which included four types of

images: A, B, C, and D. 36 features were extracted from each image,

of which 18 were from color images and 18 were from grayscale

images. Due to the fact that each image has 36 features, which are

input into the classification model for detection, the computational

workload is high. In order to perform effective calculations, it was
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necessary to reduce the dimensionality of 36 features. Although the

principal component analysis (Bro and Smilde, 2014) well reduced

the dimension of features, it couldn’t retain the original information

parameters, so Spearman feature selection (Amarkhil et al., 2021)

was used to analyze features. The formula (2) in the previous 2.4

was used to calculate the Spearman correlation between the

characteristics of the chlorophyll fluorescence grayscale image and

the chilling injury classes of tomato leaves, as shown in Table 2.

Among them, the correlations between chilling injury levels and

the histogram mean value, histogram mean square deviation,

histogram third moment, histogram smoothness, Low gradient

advantage, large gradient advantage, non-uniformity of gray

distribution, gradient distribution non-uniformity, and gradient

mean value were between 0.8-1.0, which was the very strong

correlation group, and defined as cold sensitive-feature group;

The correlations between the degree of chilling injury and the

mean square differ- ence of L, B, and gradient were between 0.5 and

0.8, which was the strong group; The correlations bet- ween the

chilling injury levels and R, G/R, H, V, S/H, V/S, V/H, a, L/a, L/b,

energy average, and entropy average were between 0.3-0.5, which

was the moderate group; The correlations between the chilling

injury levels and B, G/B, B/R, S, b/a, inertial mean, correlation

mean, energy standard deviation, entropy standard deviation,

inertial standard deviation, and correlation standard deviation

were between 0.0-0.3, which was the weak group. Finally, the very

strong group with a high correlation was selected to identify the

chilling injury classifications in tomato leaves,that is, select the
TABLE 7 Classification of chilling injury tomato.

Classification
Chilling

injury level
Level

standard
Labels

1 Sound Lk<5% A

2 Slight chilling injury Lk<15% B

3
Moderate

chilling injury
Lk<30% C

4 Severe chilling injury Lk>30% D
FIGURE 3

Image of tomato leaves. (A) Visible light image of healthy leaves. (B) Visible light image of leaves damaged by low temperature stress. (C) Chlorophyll
fluorescence image of healthy leaves. (D) Chlorophyll fluorescence image of leaves damaged by low temperature stress.
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following features as input features for the DBO-BiLSTM prediction

model: histogram mean, histogram mean square error, histogram

third moment, histogram smoothness, Low gradient advantage,

large gradient advantage, grayscale distribution non- uniformity,

gradient distribution non-uniformity, and gradient mean.

3.2.2 DBO-BiLSTM identifies chilling
injury classification

The 220 images in the chlorophyll fluorescence image set were

divided into two groups in an 8:2 ratio, with 176 images in the

training set and 44 images in the prediction set. The training set and

test set samples were input into the model for training and

prediction, respectively. This experiment adopted the BiLSTM

algorithm in deep learning and optimized it with DBO to achieve

deep learning for chilling injury recognition and classification of

tomato seedlings. In the BiLSTM model, the number of hidden

nodes is 200, the initial learning rate is 0.001, and the regularization

parameter is 0.001. Optimize the BiLSTMmodel using dung beetles,

optimize three parameters based on initial values, and determine

the optimal values of the number of hidden nodes in the model, as

well as the learning rate and regularization parameters of the

model parameters.

As show in Table 8 The experimental input data is the

characteristic parameters of chlorophyll fluorescence parameter F

image, with a total of 220 images, including 4 groups of chilling

injury classification (chilling injury level 1, level 2, level 3, and level

4). Among them, there were 176 training samples, and the number

of chlorophyll fluorescence images corresponding to 1, 2, 3, and 4

levels of chilling injury leaves was 42, 46, 46, and 42, respectively,

and the labels were A, B, C, and D, respectively. There were 44 test

samples, and the number of chlorophyll fluorescence images

corresponding to 1, 2, 3 and 4 chilling injury leaves was 10, 12,

12 and 10, respectively, and the labels were A, B, C and D,

respectively. The training set sample leaves were coded, and 1~42

was the “Sound” group; 43~88 was the “Slight chilling injury”

group; 89~134 was the “Moderate chilling injury” group; 135~176

was the “Severe chilling injury” group. The sample leaves of the test

set were numbered, and 1~10 was the “Sound” group; 11~22 was

the “Slight chilling injury” group; 23~34 was the “Moderate chilling

injury” group; 35~44 was the “Severe chilling injury” group.

The group features with a strong relationship with cold damage

were selected based on the Spearman rank correlation coefficient, as

input vectors, and the recognition performance of BiLSTM model

and DBO-BiLSTMmode for low-temperature damage classification
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was compared. After many experiments, the optimal parameter

setting value is preliminarily determined: the population size is 20,

the number of iterations is 8, and the maximum training times is

500. This article uses the DBO algorithm to optimize the parameters

of the BiLSTM model. The learning rate reduction factor is 0.1, the

learning rate range is set between 0.0001 and 0.1, the number of

hidden layer nodes is selected between 5 and 100, and the

regularization parameter range is 0.0001 to 0.1. Through search,

the best hyperparameter combination is automatically found. The

model evaluation and cold damage identification results of BiLSTM

model and DBO-BiLSTM model are shown in Figure 4.

As shown in Figure 4A, each column of the BiLSTM confusion

matrix represents the prediction category, the total number of each

column represents the number of predicted data for this category;

each row represents the actual data category, and the total number

of data per row represents the actual number of data for that

category. The actual corresponding numbers of chilling injury

labeled as categories 1, 2, 3 and 4 were 10, 12, 12 and 10,

respectively, while the number of correct predictions was 8 in

category 1, 11 in category 2, 9 in category 3 and 10 in category 4,

respectively, as shown in the green part of Figure 4A. Category 1

contained 8 positive and 2 negative samples and had 80% accuracy

in recognizing healthy leaves. In the second category, there were 11

positive samples and 1 negative sample, and the recognition

accuracy of leaves with mild chilling injury reached 91.7%. The

third category contained 12 samples, including 9 positive samples

and 3 negative samples, and the recognition accuracy of leaves with

moderate chilling injury was 75%. Category 4 contained 10 samples,

and all severe chilling injury samples were correctly predicted. That

is, in the first category, two leaves were misdiagnosed as cold

damage in the second category. In the second category, one leaf

was misdiagnosed as cold damage in the first category. In the third

category, three leaves were misdiagnosed as chilling injury in the

second category.

After improvement, in the DBO-BiLSTM confusion matrix

model, the actual corresponding numbers of chilling injury

marked as categories 1, 2, 3, and 4 in Figure 4B are 10, 12, 12,

and 10, respectively. The number of correct predictions is 10 for

Category 1, 10 for Category 2, 12 for Category 3 and 10 for Category

4, respectively, as shown in the green section of Figure 4B. In the

second category, two leaves were misdiagnosed as the third

category. The DBO-BiLSTM proposed in this paper improved the

recognition accuracy of moderate chilling injury by 25% relative to

the BiLSTM, but shows a larger error in the classification prediction
TABLE 8 Experimental images classification.

Classification
Number of images in

the training set
Coded for the images in

the training set
Number of images in

the test set
Coded for the images in

the test set

1 42 1~42 10 1~10

2 46 43~88 12 11~22

3 46 89~134 12 23~34

4 42 135~176 10 35~44

176 44
frontiersin.org

https://doi.org/10.3389/fpls.2024.1409200
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Dong et al. 10.3389/fpls.2024.1409200
of slight chilling injury. The reason for misdiagnosis may be that the

characteristics of chilling injuries are close to each other, or the

incomplete segmentation of chilling injuries is not accurate enough.

The F1 measure is the harmonic mean of accuracy and recall,

commonly used as a comprehensive indicator for model evaluation.

The line chart intuitively displays the changes in F1 score as the

classification changes. Figure 5A shows that the F1 measurement

values of the BiLSTM model in four categories are 84, 79, 86, and

100, with values higher than 75 but lower than 100. It is evident that

the recognition of tomato leaf cold damage in categories 1 and 4 is

relatively good, and even the F1 score reaches 100% in severe cold

damage categories. However, the recognition performance of

tomato leaf cold damage in categories 2 and 3 is poor. Figure 5B
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shows that the F1 measurement values of the BiLSTM model

optimized by DBO are 100, 91, 92, and 100 in all four categories,

with all values ranging from 90 to 100. Obviously, after optimizing

the BiLSTM model by DBO module, the recognition performance

of healthy, mild, and moderate cold damage categories is

significantly improved, and the recognition of severe cold damage

categories is 100%, just like the BiLSTM model. Compared to the

BiLSTM model, the improved DBO-BiLSTM model showed an

increase in F1 scores. The DBO-BiLSTM model increased scores by

16, 12, 6, and 0 points in categories 1, 2, 3, and 4, respectively.

Therefore, the improvement effect of BiLSTM model in tomato

seedling cold damage classification using chlorophyll fluorescence

imaging is significant. However, both models showed slightly lower
FIGURE 5

F1 Curve Analysis. (A) F1 Curve of the BiLSTM Model. (B) F1 Curve of the DBO-BiLSTM Model.
FIGURE 4

Confusion matrices for classifying and identifying chilling Injury in tomato seedlings. (A) Confusion matrix obtained from the BiLSTM model.
(B) Confusion matrix obtained from the DBO-BiLSTM model.
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performance in identifying mild and moderate cold damage, but

showed higher accuracy in identifying healthy and severe cold

damage tomato seedlings, with severe cold damage reaching up to

100 points. This may be due to the ease of distinguishing between

healthy and severe cold damage in image data, while identifying

mild and moderate cold damage is relatively difficult.
4 Discussion

In the experiment, in the F-parameter images captured by the

IMAGING-PAM fluorescence imager, ordinary tomato leaves

appeared red, the background at non-leaf positions appeared black,

and the cold damaged areas appeared yellow-green. The above

characteristics enhanced the contrast between the target and

background, which was beneficial for effective image segmentation

and recognition. After low temperature stress, tomato seedlings

showed significant horizontal heterogeneity distribution changes in

leaf green fluorescence imaging, which is consistent with the study of

plant chlorophyll fluorescence damage heterogeneity by Hai-yan et al.

(2018). Models such as CNN (Jung et al., 2022), Alexnet, Inception-

V3, and VGG16 (Ünal et al., 2024) are specifically designed for image

classification processing and are not suitable for classifying table data

after feature extraction. Therefore, based on the analysis and

classification of chlorophyll fluorescence in tomato seedlings, this

article compares several commonly used classification models for data

analysis, BPNN (Qiao et al., 2019; Dong et al., 2020), NB (Cen et al.,

2016), K-NN (Cen et al., 2016), SVM (Cen et al., 2017; Lu and Lu,

2021), with BiLSTM and DBO-BiLSTM models for cold injury

classification and recognition, achieving the evaluation and

comparison of classification models (Table 9).

As shown in Table 9, the Accuracy, Precision, Recall, and F1 mean

of BPNN, NB, K-NN, SVM, BiLSTM, and DBO-BiLSTM

classification models were calculated based on the most relevant

features to cold damage, aiming to evaluate the effectiveness of

multiple models in identifying chilling injury in the table. The top

three models for Accuracy, Recall, and F1 mean were SVM, BiLSTM,

and DBO-BiLSTM, while the top three models for Precision were

BPNN, BiLSTM, and DBO-BiLSTM. In the experiment of chilling

injury classification and prediction, the DBO-BiLSTM model

optimized by DBO parameters improved the evaluation parameters
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Accuracy, Precision, Recall, and F1 mean by 9.09, 7.02, 9.16, and 8.68,

respectively, compared to the original BiLSTM model. The evaluation

parameters Accuracy, Precision, Recall, and F1 mean were 6.35, 7.33,

6.33, and 6.5 higher, respectively, than the SVM classification model.

Obviously, the DBO-BiLSTM gives a better prediction in the

experiment. The accuracy, precision, recall, and F1-measure of the

training and test sets of the BiLSTM optimized by the DBO algorithm

are all improved by at least 7% and all exceed 95%. Cen et al. (2016)

implemented supervised classifications using NB, SVM, and KNN for

two-class (normal vs. chilling) and three-class (normal, lightly chilling,

severely chilling) categorizations based on spectral and image analysis

at selected two-band ratios. For two-class recognition, SFS with NB,

SVM, and KNN achieved accuracies of 97.6%, 100%, and 98.8%,

respectively, with SVM outperforming. For three-class recognition,

MIFS with the same classifiers yielded accuracies >80%, specifically

81.0%, 88.1%, and 83.3%, with SVM again the most accurate.

However, for tomato leaves’ chilling injury into four categories,

SRCC-SVM yielded 89.1% accuracy, likely due to chlorophyll

fluorescence image characteristics and feature selection methods.

Qiao et al. (2019) reported BPNN recognition accuracy increasing

with blueberry decay grade, reaching 92.5% for severe decay. Dong

et al. (2020) used color descriptors and fluorescence parameters with

BPNN for chilling injury classification, achieving 90% accuracy.

However, in this study, the recognition rate of BPNN was only

82.22% when classified according to cold damage areas,potentially

due to input data selection. Leveraging the time series nature of class

features, the DBO-BiLSTM model significantly improved recognition

accuracy by 13.23% over BPNN, indicating its potential for deep

learning in plant stress identification.

In conclusion, it was feasible to classify tomato cold damage based

on the proportion of the damaged area in chlorophyll fluorescence

imaging. Although the recognition performance for categories 2 and 3

in the internal classification was significantly lower than for categories 1

and 4, this was likely due to the segmentation of the image set and data.

However, this phenomenon is consistent with the findings reported by

Cen et al. (2016), wherein the application of the MIFS method in

combination with SVM recognition was employed for the classification

of three distinct types of cucumber cold damage. Additionally, after

filtering features using SRCC, the conventional recognitionmethods like

BPNN, NB, K-NN, and SVM showed average performance, and the

evaluation parameters such as Accuracy, Precision, Recall, and F1 mean

did not exceed 90%. However, once we enhanced the deep learning

BiLSTM model using the Beetle Optimization (DBO) algorithm, the

classification evaluation parameters accuracy, precision, recall, and F1

mean for tomato cold injury degree, based on chlorophyll fluorescence

imaging, all surpassed 90%, indicating good results.

This study optimized the BiLSTM model leveraging the DBO

algorithm, significantly advancing the accuracy of tomato cold injury

classification via chlorophyll fluorescence imaging, comprehensively

surpassing 90% of evaluation benchmarks, and bolstering agricultural

intelligent monitoring and disease recognition automation. This

achievement not only helps to provide timely warnings and reduce

losses during crop growth, but also promotes the breeding of low-

temperature tolerant tomato varieties, enhances crop stress resistance,

and promotes sustainable agricultural development. Moreover, this

method’s broad applicability extends to other crops and integrates
TABLE 9 Evaluation of models for tomato cold damage classification
and identification.

Algorithm
model

Evaluation %

Accuracy Precision Recall
F1-

measure

BPNN 82.22 91.67 78.57 84.62

NB 72.72 74.05 78.34 73.58

K-NN 77.28 73.41 75.99 73.54

SVM 89.10 89.10 89.50 89.30

BiLSTM 86.36 89.41 86.67 87.12

DBO-BiLSTM 95.45 96.43 95.83 95.80
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multi-source data, enhancing disease identification accuracy and

robustness, introducing novel concepts and tools for intelligent

agricultural management.

Future endeavors will delve deeper into the integration of

algorithm optimization and deep learning to optimize model

efficiency and precision. Concurrently, data augmentation and

transfer learning techniques will be harnessed to bolster the

model’s generalization capacity and adaptability to dynamic

environments. Additionally, interdisciplinary collaborations across

plant physiology, computer science, and agricultural engineering will

be fortified, deepening the understanding of the relationship between

chlorophyll fluorescence and crop physiology, thereby underpinning

precision management and efficient agricultural production.
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